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1. This note consists of three contents. Recall that we have introduced in
Part I such solution concepts as dominance equilibrium, Nash equilib-
rium, SPNE, backward induction, and forward induction. In sections
2-15 we shall continue to go over the other relevant equilibrium con-
cepts, such as strong equilibrium, coalition-proof equilibrium, rational-
izable strategies, and correlated equilibrium. Then, in sections 16-26,
we shall examine a class of pricing games which has been important in
the marketing literature. Finally, sections 27-32 introduce the concept
of signal-jamming, which has important applications in both marketing
and finance.

2. Consider the following strategic game (G1).

player 1/player 2 D C
D 0,0 0,0
C 0,0 1,1

This game has two mixed strategy NE’s. In view of Wilson’s theorem
(1971), this game is quite unusual. Note that (D,D) is an NE where
players play weakly dominated strategies in equilibrium. This does not
seem reasonable. To get rid of this type of NE’s, Selten (1975) proposes
the trembling-hand perfect equilibrium in normal form games, which
is a refined notion of NE’s, aiming at screening out better NE’s. To
see Selten’s idea, note that the reason that (D,D) can become an NE
is because players are sure that C will be played by the rival with
zero probability. Therefore, if we consider only those strategy profiles
which are limits of totally mixed strategy profiles, then (D,D) can be
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ruled out. Formally, let Σ0 be the set of totally mixed strategy profiles,
and given any ϵ ∈ ℜ++, σ ∈ Σ0 is called an ϵ-perfect equilibrium if
∀i ∈ I, ∀si, s′i ∈ Si,

ui(si, σ−i) < ui(s
′
i, σ−i) ⇒ σi(si) ≤ ϵ.

A trembling-hand perfect equilibrium is then a profile σ ∈ Σ (which
need not be totally mixed!) such that there exists a sequence {ϵk; k ∈
Z+} in ℜ++ and a sequence {σk; k ∈ Z+} in Σ0 with (i) limk→∞ ϵk = 0;
(ii) σk is an ϵk-perfect equilibrium for all k ∈ Z+; and (iii) limk→∞ σi,k(si) =
σi(si), ∀i ∈ I, ∀si ∈ Si. It can be shown that a trembling-hand perfect
equilibrium must exist for a finite game, and the trembling-hand perfect
equilibrium is itself an NE, but the reverse is not true.1 In particular,
the above profile (D,D) is not a trembling-hand perfect equilibrium.

3. Consider the extensive game with two players where player 1 first
chooses between L and R, and the game ends with payoff profile (2, 2)
if R is chosen, but if instead L is chosen, then player 2 can choose
between l and r, with the game ending with payoff profile (1, 0) if r is
chosen, and if instead player 2 chooses l, then player 1 can choose be-
tween A and B, with the game ending with respectively payoff profiles

1Let us prove that a trembling-hand perfect equilibrium σ is an NE. Recall the following
definition of NE: a profile σ ∈ Σ is an NE if and only if for all i ∈ I, for all si, s′i ∈ Si,

ui(si, σ−i) < ui(s
′
i, σ−i) ⇒ σi(si) = 0.

Note that for all i ∈ I, for all si, s′i ∈ Si such that

ui(si, σ−i) < ui(s
′
i, σ−i)

there exists K ∈ Z+ such that

k ≥ K ⇒ ui(si, σ
k
−i) < ui(s

′
i, σ

k
−i),

by the fact that σk → σ, and hence for any such k, we have

σk
i (si) ≤ ϵk,

implying that
0 ≤ σi(si) = lim

k→∞
σk
i (si) ≤ lim

k→∞
ϵk = 0.

This shows that a trembling-hand perfect equilibrium is an NE.
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(3, 1) and (0,−5). This game has a unique SPNE, (L,l,A), but (R,r,B)
is a trembling-hand perfect equilibrium in the corresponding (reduced)
strategic game: consider letting player 1 play (L,A) with probability ϵ2

and (L,B) with probability ϵ, where notice that player 2 will optimally
respond by playing r (this happens because pro.((L,B)|L) = ϵ

ϵ+ϵ2
is

close to one when ϵ ↓ 0). The problem here is that at the two infor-
mation sets where player 1 is called upon to take actions, player 1’s
trembles are correlated. Because of this problem, Selten (1975) ar-
gues that we should pay attention to the agent-normal form, where
player 1 appearing at different information sets is treated as different
agents. Then, the trembling-hand perfect equilibria are defined as the
trembling-hand perfect equilibria of the agent-normal form, and will be
simply referred to as the perfect equilibria. With this definition, it can
be shown that perfect equilibria are SPNE’s.2

4. Consider the following strategic game (G2).

player 1/player 2 L M R
U 1,1 0,0 -9,-9
M 0,0 0,0 -7,-7
D -9,-9 -7,-7 -7,-7

This game has three NE’s, all in pure strategy. These are (U,L), (M,M),
and (D,R). In this game, (M,M) becomes a trembling-hand perfect
equilibrium!3

2In fact, they are also sequential equilibria defined by Kreps and Wilson (1982).
3To see that this claim is true, given ϵ > 0, consider the following totally mixed strategy

profile:
σϵ
1(U) = ϵ, σϵ

1(M) = 1− 2ϵ, σϵ
1(D) = ϵ,

σϵ
2(L) = ϵ, σϵ

2(M) = 1− 2ϵ, σϵ
2(R) = ϵ.

Given player 2’s totally mixed strategy σϵ
2, player 1’s best response is M, not U. This

is in sharp contrast to the case where player 2 can use only strategies L and M, where
against any totally mixed strategy that player 2 may adopt, U is a better reponse than M
from player 1’s perspective. The reason is obviously that, in the current strategic game,
when player 2 actually adopts R, using M instead of U can save 2 utils for player 1. When
player 2 adopts L instead, using U instead of M can only save 1 util for player 1. Now,
since player 1 expects player 2 to assign the same probability ϵ to L and R, player 1 must
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This is unreasonable, for what we did was adding two dominated strate-
gies R and D to (G1) to create the game (G2)! Myerson (1978) proposes
a remedy to this situation. Formally, let Σ0 be the set of totally mixed
strategy profiles, and given any ϵ ∈ ℜ++, σ ∈ Σ0 is called an ϵ-proper
equilibrium if ∀i ∈ I, ∀si, s′i ∈ Si,

ui(si, σ−i) < ui(s
′
i, σ−i) ⇒ σi(si) ≤ ϵσi(s

′
i).

A proper equilibrium is then a profile σ ∈ Σ (which need not be to-
tally mixed!) such that there exists a sequence {ϵk; k ∈ Z+} in ℜ++

and a sequence {σk; k ∈ Z+} in Σ0 with (i) limk→∞ ϵk = 0; (ii) σk is
an ϵk-proper equilibrium for all k ∈ Z+; and (iii) limk→∞ σi,k(si) =
σi(si), ∀i ∈ I, ∀si ∈ Si. It can be shown that a proper equilibrium is
necessarily a trembling-hand perfect equilibrium (this is obvious; sim-
ply observe that σi(si) ≤ ϵσi(s

′
i) ⇒ σi(si) ≤ ϵ), and hence an NE, but

the reverse is not true. In particular, the above game has a unique
proper equilibrium (U,L). To see this, consider any ϵ-proper equilib-
rium σϵ, which is by definition totally mixed. Since player 1 would feel
indifferent about M and D only if player 2 were expected to use R with
probability one, here we conclude that player 1 prefers M to D. This
implies that player 1 should assign probabilities

(A1) σϵ
1(D) ≤ ϵσϵ

1(M),

which implies that, from player 2’s point of view, for ϵ > 0 small
enough,

u2(L, σ
ϵ
1)− u2(R, σ

ϵ
1)

= 10σϵ
1(U) + 7σϵ

1(M)− 2σϵ
1(D)

≥ 10σϵ
1(U) + (7− 2ϵ)σϵ

1(M) > 0,

implying that
σϵ
2(R) ≤ ϵσϵ

2(L),

consider M a better response than U against player 2’s totally mixed strategy. Since the
above normal-form game is actually a symmetric game, the same argument applies for
player 2’s comparison about M and L. Thus the above strategy profile indeed defines an
ϵ-perfect equilibrium, which converges to (M,M) as ϵ ↓ 0.
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which in turn implies that, from player 1’s point of view, for ϵ > 0
small enough,

u1(U, σ
ϵ
2)− u1(M,σϵ

2)

= σϵ
2(L)− 2σϵ

2(R)

≥ (1− 2ϵ)σϵ
2(L) > 0,

implying further that

(A2) σϵ
1(M) ≤ ϵσϵ

1(U).

By (A1) and (A2), we conclude that σϵ
1(U) ≥ 1− ϵ− ϵ2, and hence in

any proper equilibrium σ = limϵ↓0 σ
ϵ, we have

1 ≥ σ1(U) = lim
ϵ↓0

σϵ
1(U) ≥ 1.

A similar reasoning applies to σ2(L). Hence (U,L) is the unique proper
equilibrium of this strategic game.

5. Myerson also proves that any finite strategic game has a proper equilib-
rium, and hence any finite game has a trembling-hand perfect equilib-
rium and an NE. Let us sketch Myerson’s proof. Note that it suffices to
show that for any ϵk ∈ (0, 1), an ϵk-proper equilibrium σk exists, since
by the compactness of Σ, a convergent subsequence of {σk; k ∈ Z+}
exists. Thus fix any ϵ ∈ (0, 1). Define

m ≡ max{#(Si); i = 1, 2, · · · , I},

where recall that #(A) is the cardinality of set A (the number of ele-
ments of A). Define d ≡ ϵm

m
. For all i = 1, 2, · · · , I, define

Σd
i ≡ {σi ∈ Σi : σi(si) ≥ d, ∀si ∈ Si}.

Note that Σd
i is a non-empty compact subset of Σ0

i . Define

Σd ≡ ΠI
i=1Σ

d
i .

For all i = 1, 2, · · · , I, consider the correspondence Fi : Σ
d → Σd

i defined
by

Fi(σ) = {σi ∈ Σd
i : ui(si, σ−i) < ui(s

′
i, σ−i) ⇒ σi(si) ≤ ϵσi(s

′
i), ∀si, s′i ∈ Si}.
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Note that given each σ ∈ Σd, Fi(σ) is convex and closed. We claim
that Fi(σ) is also non-empty. To see this, for each si ∈ Si, define ρ(si)
to be the number of pure strategies s′i ∈ Si with

ui(si, σ−i) < ui(s
′
i, σ−i).

Define

σ′
i(si) ≡

ϵρ(si)∑
s′′i ∈Si

ϵρ(s
′′
i )
, ∀si ∈ Si.

By construction, we have σ′
i(si) ≥ d, and

∑
si∈Si

σ′
i(si) = 1. Moreover,

it can be verified that σ′
i ∈ Fi(σ), showing that Fi(σ) is indeed non-

empty. Finally, one can verify that Fi is upper hemi-continuous. Define

F ≡ ΠI
i=1Fi : Σ

d → Σd.

Then F , inheriting the main properties from the Fi’s, is non-empty,
convex, and upper hemi-continuous, and hence F has a fixed point
by Kakutani’s fixed point theorem. A fixed point of F is an ϵ-proper
equilibrium. Since ϵ ∈ (0, 1) was chosen arbitrarily, this proves that
we can construct a sequence of ϵk-proper equilibria, {σk; k ∈ Z+}, and
the latter must have a convergent subsequence, of which the limit is
exactly a proper equilibrium. This finishes the proof for existence.

6. Definition 10. (Aumann, 1959) Given an I-person finite strategic
game Γ, a profile σ is a strong equilibrium if for any J ⊂ {1, 2, · · · , I},
and any σ′ ∈ Σ, there exists j ∈ J such that uj(σ) ≥ uj(σ

′
J , σ−J),

where σ′
J is the profile σ′ restricted on the set of players J and σ−J is

the profile σ restricted on the set of players not contained in J .

From now on any nonempty subset of players from the original game
is referred to as a coalition. Immediately from the above definition, a
strong equilibrium is an NE; to see this, just let J be any singleton
coalition. Define the set

U ≡ {(u1(σ), u2(σ), · · · , uI(σ)) : σ ∈ Σ}.

A strong equilibrium, if it exists, must give a profile of payoffs which
are not strictly Pareto dominated; this can be seen by taking J to be
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the entire set of players.4

4When a strategic game has two NE’s with one Pareto-dominating the other, we would
naturally think that the former NE is more likely to prevail than the latter NE, but game
theorists have argued convincingly that this need not be the case.

Consider the following strategic game taken from Harsanyi and Selten (1988):

player 1/player 2 L R
U 9,9 0,8
D 8,0 7,7

The game has two pure-strategy NE’s, which are (U,L) and (D,R), and a mixed-strategy
NE where player 1 uses U with probability 7

8 and player 2 uses L with probability 7
8 . Each

player gets 9 in (U,L), 7 in (D,R), and 63
8 in the mixed-strategy NE. The equilibrium

(U,L) Pareto dominates the other two equilibria. By the textbook definition, in the NE
(U,L) player 1 is perfectly sure that player 2 will play L and hence player 1 will play U.
However, if player 1 is not perfectly sure about player 2’s intention to play L, then playing
D is less risky than playing U. Indeed, if player 1 suspects that player 2 may play R with a
probability greater than 1

8 , then D dominates U from player 1’s perspective. Since perfect
predictability of the rival’s intention is an idealization, (D,R) may make more sense than
(U,L) when this game is applied in a real-world scenario.

Aumann (1990) points out that (D,R) may remain more reasonable than (U,L) even if
the two players have an opportunity to engage in pre-play communication: regardless of
player 2’s real intention, player 2 has an incentive to convince player 1 that U is better
than D. Indeed, player 2 would get either 9 or 8 if player 1 uses U, but player 2 would
only get 0 or 7 if player 1 uses D.

Finally, consider the following 3-player game taken from Bernheim, Peleg, and Whinston
(1987), where player 1 chooses row, player 2 chooses column, and player 3 chooses between
the two bi-matrice, and players are restricted to using only pure strategies:

player 1/player 2 L R
U 0,0,10 -5,-5,0
D -5,-5,0 1,1,-5

A

player 1/player 2 L R
U -2,-2,0 -5,-5,0
D -5,-5,0 -1,-1,5

B

The NE (U,L,A) Pareto-dominates the NE (D,R,B). However, given that player 3
chooses bi-matrix A, the two-player game played by players 1 and 2 have two NE’s, where
(U,L) is Pareto-dominated by (D,R). That is, the Pareto-dominant NE (U,L,A) involves
players 1 and 2 play a Pareto-dominated strategy profile!
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Thus a strong NE is an NE which is robust against not only unilat-
eral deviations but any coalitional deviations also. The problem with
this solution concept is that it asks us to check all possible coalitional
deviations, including those coalitional deviations which are themselves
unreasonable: given a coalition that might benefit from a joint devi-
ation from the original NE strategy profile, there may be some sub-
coalition that can benefit from a joint deviation from this supposed
joint deviation of the entire coalition. Thus coalitional deviations must
be treated in a logically consistent way; this is where the coalition-
proof equilibrium gets in the picture. Intuitively, among the solution
concepts of NE, strong NE, and coalition-proof NE, the former is the
weakest, and the strong NE is the strongest, so that it can happen that
given a game, there exists an NE and a coalition-proof equilibrium, but
no strong equilibrium.

7. Definition 11. (Bernheim, Peleg, and Whinston, 1987) Suppose that
we are given an I-person finite strategic game Γ. Let J be the set of
all feasible coalitions.
(i) If I = 1, then a profile σ is a coalition-proof equilibrium if and only
if u1(σ) ≥ u1(σ

′) for all σ′ ∈ Σ.
(ii) Suppose I ≥ 2 and coalition-proof equilibrium (CPE) has been
defined for all n-person finite strategic game with n ≤ I − 1. A profile
σ is self-enforcing for the game Γ if for all J ∈ J with #(J) ≤ I−1, σJ
is a coalition-proof equilibrium in the game Γ/σ−J (which is the #(J)-
person strategic game where everything is as in Γ except that players
in −J are restricted to playing σ−J). A coalition-proof equilibrium is
a self-enforcing profile σ such that no other self-enforcing profiles σ′

can simultaneously provide each and every player in Γ a strictly higher
payoff than σ.

Thus when I = 1, CPE requires only the best response property. By
definition, a self-enforcing profile must be a Nash equilibrium profile for
Γ, a CPE must be a Nash equilibrium which is not strictly Pareto dom-
inated by other Nash equilibria. In fact, for two-person finite strategic
games, self-enforcing profiles coincide with NE profiles, and CPE are
equivalent to the set of NE’s which are not Pareto strictly dominated.
Apparently, a strong equilibrium, if it exists, must be a CPE.
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With these definitions and discussions in mind, we now consider two
problems. First, consider three players A, B, and C, who are to divide
one dollar, and each of them must choose a point in the two-dimensional
simplex {(a, b, c) ∈ ℜ3

+ : a + b + c = 1}. The three players move
simultaneously, and if at least two of them pick the same point (a, b, c),
then this point will be implemented, in the sense that a, b, and c will
be the payoffs for A, B, and C respectively; or else, the dollar will
be destroyed. We claim that this game has no CPE’s. To see this,
suppose instead that there were a CPE (denoted σ) in which the players
get expected payoffs (a, b, c), where without loss of generality, a > 0.
Given σ1, players 2 and 3 could jointly deviate in the game Γ/σ1 by
announcing simultaneously (0, a

2
+b, a

2
+c), for example, thereby having

the latter implemented (but this joint deviation must form a Nash
equilibrium for players 2 and 3, given player 1’s move being fixed!).
This arrangement strictly Pareto dominates the original equilibrium
profile in the two-person finite strategic game Γ/σ1 for players 2 and
3, showing that σ cannot be self-enforcing. (For σ to be self-enforcing,
it is necessary that (σ2, σ3) be a CPE in the game Γ/σ1, which in turn
requires that (σ2, σ3) be a Pareto undominated equilibrium in Γ/σ1.)
Thus by definition, σ cannot be a CPE, a contradiction.

Lemma 1. We say that an I-person finite strategic game Γ exhibits
the unique-NE property if for any J ∈ J and any σ−J , there exists
a unique NE in the game Γ/σ−J . A game exhibiting the unique-NE
property has a unique CPE.
Proof. Note that there can be 1 self-enforcing profile for the game Γ if
such a profile exists; recall that self-enforcing profiles must be NEs. In
this case, the defining property of a CPE that no other self-enforcing
profiles strictly Pareto dominates the CPE is automatically satisfied.
Thus it suffices to show that for a game exhibiting the unique-NE
property, self-enforcing profiles, CPEs and Nash equilibrium profiles
are the same. This is obvious if I = 1; the player must have a unique
optimal pure strategy.

Suppose that I = 2 for Γ. By hypothesis, this game has a unique NE,
denoted by (σ1, σ2), and hence a unique self-enforcing profile, which is
a CPE obviously.

Suppose that I ≥ 3 for Γ and that it has been proven that for a
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game with no more than I − 1 players and exhibiting the unique-NE
property, self-enforcing profiles and CPEs are both equivalent to NE
profiles. This game has only 1 NE σ, and hence no other self-enforcing
profiles. Then σ is a self-enforcing profile because by assumption the
equivalence of self-enforcing profiles, CPEs, and NEs have already been
established for σJ in the game Γ/σ−J (which has no more than I − 1
players and exhibits the unique-NE property) for any J ∈ J. ∥
Let us give two applications of Lemma 1. First, the prisoners’ dilemma
discussed in Lecture 1, Part I, apparently exhibits the unique-NE prop-
erty, and hence has a unique CPE, in which both players choose to
confess the crime. This CPE is not a strong equilibrium.

Next, consider the Cournot game where N firms producing costlessly
a homogeneous good must compete in quantity given that the inverse
market demand is (in the relevant region) p = 1− ∑N

i=1 qi. This game
again exhibits the unique-NE property, and hence has a unique CPE.

8. The last equilibrium concept we shall go over is rationalizability (Bern-
heim, 1984). Define Σ0

i = Σi. For all natural numbers n, define

Σn
i = {σi ∈ Σn−1

i : ∃σ−i ∈ Πj ̸=ico(Σ
n−1
j ), ui(σi, σ−i) ≥ ui(σ

′
i, σ−i) ∀σ′

i ∈ Σn−1
i }.

We call elements in
∩+∞

n=0 Σ
n
i rationalizable strategies for player i. Intu-

itively, rational players will never use strategies which are never best
responses. Rationalizability extends this idea to fully utilize the as-
sumption that rationality of players is their common knowledge.

9. Let us now develop the notion of rationalizability in detail. Given a
game Γ in normal form with I players, consider sets Hi ⊂ Σi for all
i = 1, 2, · · · , I. We shall adopt the following definitions.

• Let Hi(0) ≡ Hi and define inductively

Hi(t) ≡ {σi ∈ Hi(t− 1) : ∃σ−i ∈ Πj ̸=ico(Hj(t− 1))

∋: ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) ∀σ′

i ∈ Hi(t− 1)},
where co(A) is the smallest convex set containing A, called the
convex hull generated by A. Define

Ri(Π
I
i=1Hi) ≡

∞∩
t=1

Hi(t).
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• A I-tuple of sets (A1, A2, · · · , AI) has the best response property
if for all i, Ai ⊂ Σi and for all i, for all σi ∈ Ai, there exists
σ−i ∈ Πj ̸=ico(Aj) such that σi is a best response for i against σ−i.

• Ai ⊂ Σi has the pure strategy property if for all σi ∈ Ai, for all
si ∈ Si such that σi(si) > 0, si ∈ Ai.

• A profile σ ∈ Σ is rationalizable, if σi ∈ Ri(Σ) for all i.

With these definitions, we have
Lemma 2. Suppose that the I-tuple of sets (A1, A2, · · · , AI) is such
that for all i, Ai ⊂ Σi is nonempty, closed, and satisfies the pure strat-
egy property. Then, (a) for all i and all t ∈ Z+, Ai(t) is nonempty,
closed, and satisfies the pure strategy property; and (b) for some k ∈
Z+, Ai(t) = Ai(k) for all i and all t ≥ k.

Proof. By induction, to prove (a), it suffices to show that the state-
ment will be true for t if it is true for t− 1. By definition, if σi ∈ Ai(t),
then each si ∈ Si with σi(si) > 0 will too, proving the pure strategy
property. To show nonemptiness, note that co(Ai(t − 1)) is compact
for all i, since Ai(t − 1) is. By the induction hypothesis, Ai(t − 1) is
nonempty for all i. Since ui is continuous, the Weierstrass theorem en-
sures the nonemptiness of Ai(t). Finally, for closedness, note that any
convergent sequence { σn

i } in Ai(t) must have a limit σi in Ai(t− 1),
as by the induction hypothesis, Ai(t − 1) is closed. Suppose for each
n, σn

i is a best response against σn
−i in Πj ̸=ico(Aj(t− 1)). Since the set

Πj ̸=ico(Aj(t− 1)) is compact, a subsequence { σnk
−i } converges to some

σ−i ∈ Πj ̸=ico(Aj(t − 1)). Now σi must be a best response against σ−i

by the continuity of ui. Thus σi ∈ Ai(t), showing that Ai(t) is closed.

Finally, consider statement (b). Note that Ai(t) ̸= Ai(t − 1) only if
co(Aj(t)) ̸=co(Aj(t−1)) for some j ̸= i. By the pure strategy property,
this can happen only if some pure strategy sj ∈ Aj(t− 1) was deleted
and was not contained in Aj(t). Since there are only a finite number
of pure strategies for any given j, this process must stop somewhere.

10. Now we can give the main results regarding the rationalizable set of
profiles.
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Proposition 1. For all i, Ri(Σ) is nonempty and it contains at least
one pure strategy.

Proof. Simply let Ai = Σi and apply lemma 2.

Note that by statement (b) of Lemma 2, the I tuple of sets

{R1(Σ), R2(Σ), · · · , RI(Σ)}

has the best response property.

Proposition 2. Define for all i,

Ei ≡ {σi ∈ Σi : for some I-tuple {A1, A2, · · · , AI}

with the best response property, σi ∈ Ai}.

Then, Ei = Ri(Σ) for all i.

The proof of Proposition 2 is left as an exercise.

11. Because of proposition 2, we can show that

Proposition 3. Every NE, denoted σ, is rationalizable.

Proof. The I-tuple of sets { {σ1}, {σ2}, · · ·, {σI} } satisfies the best
response property and σi ∈ {σi}, ∀i, so that proposition 2 implies that
for all i, σi ∈ Ri(Σ).

12. An important connection between the rationalizable set of profiles and
the profiles surviving the iterated strict dominance is now given. In
general, the former is contained in the latter.

Proposition 4. In two-person finite games, the two concepts coincide.
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Proof. Suppose that σi is not a best response to any element of Σj;
i.e. for each σj ∈ Σj there exists b(σj) ∈ Σi such that

ui(b(σj), σj) > ui(σi, σj).

Call the original game Γ, and construct a zero-sum game Γ0 as follows.
The new game has the same set of players and pure strategy spaces,
but the payoffs are defined as

u0i (σ
′
i, σj) ≡ ui(σ

′
i, σj)− ui(σi, σj)

for all (σ′
i, σj) ∈ Σ, and

u0j(σ
′
i, σj) = −u0i (σ′

i, σj).

This game has an NE in mixed strategy. Let it be (σ∗
i , σ

∗
j ). For any

σj ∈ Σj, we have

u0i (σ
∗
i , σj) ≥ u0i (σ

∗
i , σ

∗
j ) ≥ u0i (b(σ

∗
j ), σ

∗
j )

> u0i (σi, σ
∗
j ) = 0,

proving that σi is strictly dominated by σ∗
i . Thus a strategy for player

i that can never be a best response against player j’s strategy must be
strictly dominated from player i’s point of view. Define for the purpose
of iterated deletion of strictly dominated strategies S0

i = Si, Σ
0
i = Σi,

and for all t ∈ Z+,

St
i ≡ {si ∈ St−1

i : ∀σi ∈ Σt−1
i ,∃s−i ∈ St−1

−i , ui(si, s−i) ≥ ui(σi, s−i)},

Σt
i ≡ {σi ∈ Σi : σi(si) > 0 ⇒ si ∈ St

i},
S∞
i ≡

∩
t∈{0}

∪
Z+

St
i ,

and

Σ∞
i ≡ {σi ∈ Σi : ∀σ′

i ∈ Σi,∃s−i ∈ S∞
−i, ui(σi, s−i) ≥ ui(σ

′
i, s−i)}.

In terms of these new notations, we have proved that Σ1
i = Σi(1)

(since a strictly dominated strategy for player i can never be a best
response against player j’s strategy). However, the above argument can
be repeated which shows that Σ∞

i = Σi(∞), so that the two concepts
are equivalent.
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13. Let us offer another proof to Proposition 4. Fix j ∈ {1, 2}. Let

(s1j , s
2
j , · · · , s

#(Sj)
j ) be an enumeration of player j’s pure strategies. Let

#(Sj) = nj. For each σi ∈ Σi, let

xi(σi) ≡ (ui(σi, s
1
j), ui(σi, s

2
j), · · · , ui(σi, s

nj

j )),

and define the set
Xi ≡ {xi(σi) : σi ∈ Σi}.

Then Xi is non-empty, convex, and compact. To see that Xi is convex,
note that xi : Σi → R is linear, and linear image of convex set is convex:
For any σi, σ

′
i ∈ Σi and any λ ∈ [0, 1],

λxi(σi) + (1− λ)xi(σ
′
i)

= λ(ui(σi, s
1
j), ui(σi, s

2
j), · · · , ui(σi, s

nj

j ))+(1−λ)(ui(σ′
i, s

1
j), ui(σ

′
i, s

2
j), · · · , ui(σ′

i, s
nj

j ))

= xi(λσi + (1− λ)σ′
i),

and since λσi + (1− λ)σ′
i ∈ Σi, xi(λσi + (1− λ)σ′

i) ∈ Xi. Also, as the
linear function xi(·) is continuous, Xi is compact because Σi is compact.

If σi is not strictly dominated, we claim that xi(σi) is a boundary point
of Xi. (A point x ∈ A ⊂ Rm is a boundary point of A if for all r > 0,
B(x, r)

∩
A ̸= ∅ ̸= B(x, r)

∩
Ac.) Suppose not. Then there would exist

r > 0 such that B(xi(σi), r) ⊂ Xi. This would mean that, for all
e ∈ (0, r), xi(σi)+(e, e, · · · , e) ∈ Xi, and it strictly dominates σi. Next,
define

Yi ≡ {y − xi(σi) : y ∈ Xi}.

It follows that zero is a boundary point of the nonempty, convex, com-
pact set Yi. Consider the nonempty Z ⊂ Rnj defined by

Z ≡ {z ∈ Rnj : z ≫ 0nj×1},

where z ≫ 0 means that for all k = 1, 2, · · · , nj, the k-th element of z,
denoted zk, is strictly positive. Note that Z

∩
Yi = ∅. Moreover, Z is

convex. One version of the separating hyperplane theorem implies the
presence of some non-zero vector p ∈ Rnj such that p′y ≤ 0 ≤ p′z for
all y ∈ Yi and z ∈ Z. Now we claim that for all k = 1, 2, · · · , nj, the
k-th element of p, denoted pk, is non-negative. To see this, suppose

14



that pk < 0 for some k. This implies that for some l, pl > 0 (so that
nj ≥ 2). Let m be the largest l with pl > 0. Pick z∗ ∈ Z such that
z∗k > (nj − 1)pm and z∗q = 1 for all q ̸= k. It follows that, for this z∗,
p′z∗ < 0, which is a contradiction.

Thus we have shown the existence of a positive vector p ∈ Rnj , of
which not all elements are zero, such that p defines a hyperplane (or
a functional) separating the sets Z and Yi. We can normalize this
functional by letting p be such that

∑nj

k=1 pk = 1, so that p is a legitimate
mixed strategy for player j. Given p, since p′y ≤ 0 for all y ∈ Yi, we
have shown that σi is a best response of player i to player j’s mixed
strategy p. As in the first proof for proposition 4, this argument can
be iterated to show that the set of profiles surviving iterated strict
dominance is included in the set of rationalizable profiles, so that the
two solution concepts coincide in two-player finite strategic games.

14. The above proof for proposition 4 fails if I > 2 because not all prob.
distributions over S−i are products of independent prob. distributions
over Sj, for all j ̸= i. (Recall that an NE in mixed strategy assumes
independent randomization among players.) However, the equivalence
between the two concepts stated in Proposition 4 is restored if players’
randomization can be correlated.
Definition 12. Given a game in normal form,

G = (I ⊂ ℜ; {Si; i ∈ I}; {ui : Πi∈ISi → ℜ; i ∈ I}),

an (objective) correlated equilibrium is a prob. distribution p(·) over
S such that for all i, for all si ∈ Si with p(si) > 0,

E[ui(si, s̃−i)|si] ≥ E[ui(s
′
i, s̃−i)|si], ∀s′i ∈ Si.

Each p(·) can be thought of as a randomization device for which s ∈ S
occurs with prob. p(s), and when s occurs the device suggests player i
play si without revealing to player i what s is, such that all players find
it optimal to conform to these suggestions at all times. Let P be the
set of all possible devices of this sort. Immediately, all NE’s in mixed
strategy are elements of P .

15



Proposition 5. If si is not strictly dominated for player i, then it is
a best response for some p(·) ∈ P .

15. Find all (objective) correlated equilibria for the following game:
Player 1/Player 2 L R
U 5, 1 0, 0
D 4, 4 1, 5

Solution. Let the correlated device assigns (U,L), (U,R), (D,L), and
(D,R) with respectively probability a, b, c, and d. Define the following
4 inequalities (referred to as I,II,III,and IV):

a

a+ c
· 1 + c

a+ c
· 4 ≥ a

a+ c
· 0 + c

a+ c
· 5,

a

a+ b
· 5 + b

a+ b
· 0 ≥ a

a+ b
· 4 + b

a+ b
· 1,

c

c+ d
· 4 + d

c+ d
· 1 ≥ c

c+ d
· 5 + d

c+ d
· 0,

b

b+ d
· 0 + d

b+ d
· 5 ≥ b

b+ d
· 1 + d

b+ d
· 4.

For (a, b, c, d) to define a correlated equilibrium, when players are told
to play (U,L) for instance, I and II should hold. Similarly, when players
are told to play (D,L), (U,R), and (D,R), [I,III], [IV, II], and [III,IV]
should respectively hold. Simplifying, we have four conditions:

a ≥ c, a ≥ b, d ≥ c, d ≥ b.

Let the set of correlated equilibria be A. Then,

A = {(a, b, c, d) : a+ b+ c+ d = 1, a, b, c, d ≥ 0, a, d ≥ b, c.}.

Note that all NE’s are contained in A,5 and if (a, b, c, d) is a totally
mixed strategy NE, then it must satisfy

a

b
=
c

d
,
a

c
=
b

d
.

5There are 3 NE’s for this game, and they are respectively

(a, b, c, d) = (1, 0, 0, 0), (a, b, c, d) = (0, 0, 0, 1), (a, b, c, d) = (
1

4
,
1

4
,
1

4
,
1

4
).
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16. Example 6. In a duopolistic industry two risk neutral firms (i.e.
expected profits maximizers) that produce respectively products A and
B are faced with three segments of consumers:

Segment Population Valuation for A Valuation for B
LA α V 0
LB β 0 V
S 1− α− β v v

where 0 < β ≤ α < α + β < 1, and 0 ≤ v < V . These segments are
loyals to the two firms and the switchers who regard the two products
as perfect substitutes. We have assumed that a loyal is willing to pay
more than the switcher to obtain the product.

For simplicity the two firms have no production costs, and they compete
in price in a simultaneous game. We shall demonstrate the equilibrium
dealing behavior of the two firms.

17. First, we look for a pure strategy NE. Suppose (pA, pB) is an equi-
librium. There are 3 possibilities: (i) pA, pB > v; (ii) pA, pB ≤ v;
and (iii) max(pA, pB) > v ≥ min(pA, pB). For case (i), we must have
pA = pB = V , and for this to be an NE, we must require

βV ≥ (1− α)v, αV ≥ (1− β)v. (1)

When (1) holds, indeed a pure strategy where pA = pB = V exists, and
in this NE the switchers are unserved.

On the other hand, if (ii) were an NE, then pA = pB. To see this,
suppose that to the contrary pi < pj. But then firm j could have
done better by pricing at V ! Again, pA = pB is not an NE unless
pA = pB = 0: for otherwise the equilibrium price is dominated by a
price slightly lower. It is obvious that pA = pB = 0 is still not an NE,
for each firm can at least make a profit greater than or equal to βV .

Finally, for case (iii) to be an NE, we must have either (iii-a) pA = V ,
pB = v or (iii-b) pA = v, pB = V . The conditions that support (iii-a)
are

αV ≥ (1− β)v ≥ (1− α)v ≥ βV, (2)
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and when (2) holds, indeed a pure strategy NE where pA = V and
pB = v exists. On the other hand, in a pure strategy NE satisfying
(iii-b), we must have

(1− β)v − αV ≥ 0 ≥ (1− α)v − βV ⇒ (α− β)v ≥ (α− β)V,

which is impossible.

The bottom line here is that, in any pure strategy equilibrium, at least
one firm must totally abandon the switchers.

18. Of course, we observe no dealing behavior in a pure strategy NE. Now
we look for mixed strategy NE’s. For the ease of exposition, we assume
from now on that α = β. (The asymmetric case will be dealt with in
section 24.) Then (2) becomes

α

1− α
=

v

V
,

which cannot hold generically. Thus the only possible generic pure
strategy NE of this game occurs when

α

1− α
≥ v

V
.

Therefore, we assume that

α

1− α
<

v

V
. (3)

Condition (3) says that the loyals are not important enough, and so
the firms cannot commit to not compete for the switchers.

19. Now the game is symmetric, and we shall look for a mixed strategy
NE (FA(pA), FB(pB)), where Fi(x) =prob.(p̃i ≤ x) is the (cumulative)
distribution function for firm i’s random price p̃i in equilibrium.6 7 We

6A weakly increasing function F : ℜ → ℜ satisfying (i) (right-continuity)
limx<y,y→x F (y) = F (x) for all x ∈ ℜ; (ii) limx→−∞ F (x) = 0; and (iii) limx→+∞ F (x) = 1
is called a distribution function. It can have at most a countably infinite number of dis-
continuity points, and each such point is referred to as a point of jump. We denote by
∆F (x−) ≡ F (x)− limy<x,y→x F (y) ≡ F (x)− F (x−) the probability that F (·) assigns to
the point of jump x.

7Given firm i’s equilibrium mixed strategy Fi(·) against Fj(·), we know that (i) if x is a
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shall make use of the following lemmas.
Lemma 3. In equilibrium, FA(v), FB(v) > 0.

Lemma 3 says that both firms have a positive prob. to choose some
price level equal to or less than v. To see this, suppose not. Then at
least one firm chooses to not serve the switchers in the NE, and that
firm must price at V with probability one, which implies that the other
firm should price at v with probability one, and that a contradiction
arises because the firm pricing at V can price at v − ϵ and become
better off for some ϵ > 0 small enough.

Lemma 4. For i ∈ {A,B}, Fi(·) is continuous on (−∞, v).

If Lemma 4 does not hold, then at some price x < v either FA(·)
or FB(·) has a jump.8 Thus assume that for firm i, at some x < v,
∆Fi(x) ≡ Fi(x) − Fi(x−) ≡ Fi(x) − limy↑x Fi(y) > 0. In mathematic
terms, x is a point of jump for the function Fi(·), which implies that x
is a best response of firm i in equilibrium. Let Πj(x) and Πj(x− ϵ) be
firm j’s expected profits when adopting respectively the pure strategies
x and x − ϵ against Fi(·). Here we assume that ∆Fi(x − ϵ) = 0.9 We
have

Πj(x) = [
1

2
(1−2α)+α]x·∆Fi(x)+[(1−2α)+α]x·[1−Fi(x)]+αxFi(x−)

< Πj(x− ϵ) = [(1− 2α) + α](x− ϵ) · [1−Fi(x− ϵ)] + α(x− ϵ)Fi(x− ϵ)

point of jump for Fi(·), then x is a (pure-strategy) best response for firm i; and (ii) if Fi(·)
is continuous and strictly increasing on an interval (a, b), then every point x ∈ [a, b) is a
(pure-strategy) best response for firm i. Note that (i) is true because firm i should adopt
a pure strategy x with a positive probability only if x is a pure-strategy best response in
equilibrium. Note that (ii) is true because we have Fi(y) > Fi(x−) whenever x ∈ (a, b)
and y > x, implying that there exists at least one pure-strategy best response contained in
the interval [x, x+ δ) for any δ > 0. Note also that a is also a pure-strategy best response
for i because Fj(·) is a right-continuous function and because there exists a sequence {an}
contained in (a, b) and converging to a such that each an is one of firm i’s pure-strategy
best responses against Fj(·). We emphasize here that b is in general not a pure-strategy
best response for firm i even though every point contained in (a, b) is.

8Recall that if F : R → R is increasing, then the only possible discontinuity points
are of the first kind: where F (·) has well-defined left-hand and right-hand limits, but the
functional values of F need not equal these limits.

9Since an increasing function can have at most a countably infinite number of points
of jump, no matter how small e > 0 is, finding a point x− ϵ in the interval (x− e, x) such
that Fi(·) does not jump at x− ϵ is always possible.
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when ϵ > 0 is sufficiently small. In fact, as we can easily see, given x
and ϵ, there exists some δ > 0 small enough such that

Πj(y) < Πj(x− ϵ), ∀y ∈ (x, x+ δ].

We have just reached the conclusion that

Fj(x) = Fj(x+ δ);

that is, no pure strategies in the interval (x, x+δ] can be best responses
for firm j against firm i’s equilibrium strategy Fi(·), and hence firm
j will assign zero probability to these pure strategies in equilibrium.
However, this implies that the pure strategy x cannot be a best response
for firm i against firm j’s equilibrium strategy Fj(·): pricing at x + δ

2

is better, for example, because the probability that firm i may win the
switchers’ patronage is the same whether firm i announces pi = x or
pi = x + δ

2
, but when firm i wins the switchers’ patronage it gets a

higher revenue by announcing pi = x + δ
2
instead of pi = x! This is a

contradiction, because pi = x, being a point of jump of Fi(·), should
be one of firm i’s pure-strategy best responses against Fj(·)!
Lemma 5. In equilibrium, FA(v−), FB(v−) > 0.

Lemma 5 says that both firms must randomize at some prices strictly
lower than v. This is a refinement of Lemma 3. To see this, suppose
that Fi(v−) = 0, so that by the fact that Fi(·) is increasing, we have

0 = Fi(v−) ≥ Fi(x) ≥ 0,⇒ Fi(x) = 0, ∀x < v.

Now, if at some x < v, Fj(x) > 0, then there must be some y ≤ x such
that y is a pure-strategy best response for firm j against Fi(·), which
leads to a contradiction because y+v

2
is obviously a better pure-strategy

response than y for firm j! Thus if firm i has Fi(v−) = 0, then firm
j must also have Fj(v−) = 0, or equivalently, Fj(x) = 0 for all x < v.
But then, Lemma 3 implies that both Fi(·) and Fj(·) must jump at v,
which implies another contradiction: given ∆Fi(v) > 0, for tiny δ > 0,
pricing at v − δ is strictly better than pricing at v for firm j. Thus we
conclude that both firms must randomize below v!

Lemma 6. For i ∈ {A,B}, if at a < v, Fi(a) > 0, then for all
b ∈ (a, v), Fi(b) > Fi(a).
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Lemma 6 says that in equilibrium the distribution function must be
strictly increasing at all prices that are close to but lower than v. More
importantly, this says that if firm i randomizes at pi < v, then not only
all x ∈ (pi, v) are best responses for firm i, in equilibrium firm i must
randomize over each x ∈ (pi, v).

To see that Lemma 6 is true, suppose to the contrary that a < v,
Fi(a) > 0, and yet Fi(·) is flat on some interval [z, y] ⊂ [a, v), i.e.
Fi(z) = Fi(y) ≥ Fi(a) > 0, a ≤ z < y < v. By Lemma 4, Fj(·)
is continuous over the region (−∞, v). We claim that firm i’s payoff
function Πi is continuous in its (pure-strategy) price pi on (−∞, v).
Indeed, lemma 4 implies that

∆Fj(pi) = 0, Fj(pi−) = Fj(pi), ∀pi ∈ (−∞, v),

so that

Πi(pi, Fj(·)) = pi{[
1

2
(1−2α)+α]·∆Fj(pi)+[(1−2α)+α][1−Fj(pi)]+αFj(pi−)}

= pi{0 + (1− α)[1− Fj(pi)] + αFj(pi)},

which is indeed continuous in pi. Now given y, define

x ≡ inf Z,

where the set

Z = {w ∈ (−∞, v) : Fi(w) = Fi(y)}

is nonempty (for it contains z) and it has a lower bound (which is a).
Hence Z has a greatest lower bound, implying that x is indeed well
defined.

By definition, Fi(p) < Fi(x) = Fi(y) for all p < x. Now we claim
that for each positive integer n, there must exist some best response
xn ∈ [(1− 1

n
)x, x) for firm i. Indeed, if this were not the case, then there

must exist some positive integer n such that firm i does not randomize
over the interval [(1− 1

n
)x, x), but then Fi(·) would have to be flat on

the interval [(1− 1
n
)x, y], showing that x could not be the greatest lower

bound of the set Z.
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Note that the sequence of best responses {xn;n ∈ Z+} converges to x,
and since given firm j’s mixed strategy Fj(·), firm i’s payoff

Πi(pi, Fj(·))

is continuous in pi, firm i’s equilibrium profit Π∗ must be such that

Π∗ = lim
n→∞

Π∗ = lim
n→∞

Πi(xn, Fj(·)) = Πi( lim
n→∞

xn, Fj(·)) = Πi(x, Fj(·)),

proving that x is also a best response for firm i.

Finally, we shall show that x cannot be an equilibrium best response
for firm i, and hence a contradiction would arise, which would then
allow us to conclude that Fi(·) can never be flat anywhere within the
interval [a, v).

To show that x cannot be an equilibrium best response for firm i, recall
that by assumption, Fi(·) is flat on [x, y]. In this case, none of the prices
pj contained in the interval [x, y) can be pure-strategy best responses
for firm j: pricing at pj+y

2
is a better response than pj from firm j’s

perspective! It follows that Fj(·) has to be flat on the interval [x, y), and
in particular, ∆Fj(x) = 0. Now, given that Fj(·) must be flat on the
interval [x, y), from firm i’s perspective, x cannot be a best response,
because pricing at x+y

2
is better than pricing at x! This concludes our

proof.

Lemma 7. For i ∈ {A,B}, there exists p
i
∈ (0, v) such that Fi(x) = 0

for all x ≤ p
i
and Fi(·) is positive, strictly increasing and continuous

on (p
i
, v).

Indeed, any price x < αV
1−α

is dominated by the price V from firm i’s
perspective, and hence the set

Li ≡ {x ∈ ℜ : Fi(x) = 0}

is non-empty. Lemma 3 shows that Li is bounded above by v. Thus
supLi exists, and we denote it by p

i
. Since αV

1−α
∈ Li, we have

0 <
αV

1− α
≤ p

i
.
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By Lemma 4, and by the fact that p
i
is a limit point of Li, we must have

Fi(pi) = 0 < Fi(v), proving that p
i
< v. It follows from Lemmas 4 and

6 that for each x ∈ (p
i
, v), Fi(·) is continuous and strictly increasing

on (x, v). Thus Fi(·) is positive, strictly increasing and continuous on
(p

i
, v). This completes the proof for Lemma 7.

20. Equipped with the above lemmas, now we can derive the mixed strategy
NE in closed form. Let Πi be firm i’s equilibrium expected profit. By
lemma 5, we have

Πi = pi{[1− α][1− Fj(pi)] + αFj(pi)},

for some pi < v, so that for i, j ∈ {A,B}, i ̸= j,

Fj(x) =
(1− α)− Πi

x

1− 2α
,

for all x ∈ [p
j
, v).10

Immediately, we have

p
j
=

Πi

1− α
. (4)

The monotonicity of Fj(·) on [ Πi

1−α
, v) allows us to take limit:11

Fj(v−) =
1− α− Πi

v

1− 2α
< 1,

where the inequality follows because if otherwise, then Πi = vα < αV ,
a contradiction. Since all pj ∈ (v, V ) are dominated by p′j = V for firm
j, it follows that either Fj(·) has a point mass at v or at V . Note that
it is impossible that both ∆Fi(v),∆Fj(v) > 0: if this were to happen,
then v would be a best response for both firms, but given firm i’s
strategy, from firm j’s perspective v would be dominated by pj = v− ϵ
for ϵ > 0 small enough, which is a contradiction.

10This follows from Lemma 6 which says that if pi < v is a best response for firm i then
so is x, for all x ∈ (pi, v).

11Real-valued monotone functions defined on ℜ are regular, in the sense that the left-
hand and right-hand limits exist at each and every point in the domain.
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21. Note that p
i
is a best response for firm i. To see this, note that all

pi ∈ (p
i
, v) are, and they generate the same expected profits for firm

i. By letting pi ↓ p
i
and using the fact that Fj(·) is continuous on

(−∞, v), we have that p
i
also attains Πi and hence is a best response

for firm i. Next, we claim that p
i
= p

j
. To see this, suppose instead

that p
i
> p

j
, so that firm j may randomize at, say pj ∈ (p

j
, p

i
). Note

however that pj is dominated by pj + ϵ for ϵ > 0 small enough. From
here, using (4), we conclude that Πi = Πj in equilibrium.

22. Now we summarize the equilibrium strategies. First suppose that for
one firm i, ∆Fi(v) > 0. Then ∆Fj(v) = 0, implying that ∆Fj(V ) > 0
and hence Πj = αV . It follows that Πi = αV also. Since v is a best
response for firm i, we must have

∆Fj(V )v(1−α)+[1−∆Fj(V )]vα = αV, ⇒ ∆Fj(V ) =
α(V − v)

v(1− 2α)
. (5)

Alternatively, we can obtain the same result from

∆Fj(V ) = 1− Fj(v−). (6)

In this case, we have

Fi(pi) =


0, pi ≤ αV

1−α
;

1−α−αV
pi

1−2α
, pi ∈ [ αV

1−α
, v);

p∗, pi ∈ [v, V );
1, pi ≥ V,

and

Fj(pj) =



0, pj ≤ αV
1−α

;
1−α−αV

pj

1−2α
, pj ∈ [ αV

1−α
, v];

1−α−αV
v

1−2α
, pj ∈ (v, V );

1, pj ≥ V,

(7)

where p∗ ∈ (
1−α−αV

v

1−2α
, 1].
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Next consider the case where ∆FA(v) = ∆FB(v) = 0. In this case, the
equilibrium is symmetric, and we have both FA(·) and FB(·) character-
ized by the Fj(·) above.12

23. Let SA and SB be the supports of equilibrium prices pA and pB. Then
for i = A,B, we can interpret supSi as the regular price of firm i,
and any price strictly lower than supSi as a dealing price. Now we can
compute the dealing frequency for a firm, which is the firm’s probability
of selecting a dealing price. In the symmetric equilibrium, the dealing

frequency for both firms is
1−α−αV

v

1−2α
, which is decreasing in α and V and

increasing in v, a result rather consistent with our intuition. The depth
of dealing for both firms in the symmetric equilibrium is defined as

V − E[p̃|p̃ ≤ v] = V −
αV log( (1−α)v

αV
)

1− α− αV
v

. (8)

As an exercise, you can examine how the parameters V, v, and α may
respectively affect the depth of dealing.

24. We can also consider the case where α > β, αV < (1 − β)v and
βV < (1− α)v. In fact, one can show that α(1− α) > (1− β)β,13 and
hence αV < (1−β)v implies that βV < (1−α)v. In this case, one can

12It can be verified that in the former equilibrium v is a not a pure-strategy best response
for firm j, but it is in the latter equilibrium.

13Since 1− α− β > 0, 1
2 − β > α− 1

2 , the inequality holds when α ≥ 1
2 > β. If instead

α < 1
2 , then the inequality holds obviously.

25



show that the unique equilibrium in mixed strategy is such that14

FA(x) =



0, x ≤ p ≡ αV
1−β

;
1−

p

x

1− β
1−α

, x ∈ [p, v);

1−
p

v

1− β
1−α

, x ∈ [v, V );

1, x ≥ V,

(9)

14Let us demonstrate in detail how to get this equilibrium.

• At first, the supports of FA and FB must share the same greatest lower bound

p, because given p
i
, each pj < p

i
is strictly dominated by, say,

pj+p
i

2 , for i ̸= j,
i, j ∈ {A,B}. Note that p > 0 because both firms can ensure a strictly positive
profit by serving their own loyals only. Since FA(·) and FB(·) must be strictly
increasing over [p, v) and continuous on (−∞, v), p must be an equilibrium best
response for both firms.

• Second, in equilibrium at least one firm i must price at V with a strictly positive
probability. To see this, define pj ≡ sup{pj : pj ≤ v} and suppose instead that
FA(v) = FB(v) = 1, and we shall demonstrate a contradiction. We first claim that
pA = pB = p: any pj ∈ (pi, pj) would otherwise be dominated by V . Next, we claim
that neither FA nor FB can have a jump at p: if ∆Fi(p) > 0 then firm j would rather
price at p− ϵ than at p, for some sufficiently small ϵ > 0, and hence ∆Fj(p) = 0, but
then pricing at p is dominated by pricing at V from firm i’s perspective! Now, by
the fact that FA and FB are both continuous at p, again, p must be a best response
because for some δ > 0, every price contained in (p − δ, p) is a best response (cf.
Lemmas 4 and 6), but it is clear that pricing at p is still dominated by pricing at
V from each firm’s perspective! We conclude that a contradiction would always
arise unless at least one firm will price at V with a strictly positive probability in
equilibrium.

• Third, there is exactly one firm that may price at V with a strictly positive probabil-
ity. To see this, recall that firm i’s equilibrium payoff (expected profit) is Πi = αiV
if with a strictly positive probability it may price at V , and that p is an equilibrium
best response for both firms, implying that ΠA = (1−β)p and ΠB = (1−α)p. Now,
if V were also an equilibrium best response for both firms, then we would have

αV = ΠA = (1− β)p, βV = ΠB = (1− α)p,

implying that
αV

1− β)
= p =

βV

1− α
⇒ α(1− α) = β(1− β),

which is a contradiction.

• Fourth, we claim that it is firm A that may price at V with a strictly positive
probability. To see this, suppose firm i may price at V with a strictly positive
probability in equilibrium. Then, for all x ∈ [p, v),

Πi = αiV = x{αi + (1− αi − αj)[1− Fj(x)]} ⇒ Fj(x) = 1−
αiV
x − αi

1− αi − αj
,

which, by the fact that Fj(p) = 0, implies that

p =
αiV

1− αj
.
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Now, if i = B, then we would have

p =
βV

1− α
,

so that firm A’s equilibrium payoff would become

(1− β)p < αV,

which is a contradiction!

There is an intuitive explanation for this result. Recall that when a firm lowers its
price from V in order to compete for the switchers, it fails to fully extract its loyal
customers’ consumer surplus. Thus the firm with a larger loyal base must incur a
greater opportunity cost when competing for the switchers. In equilibrium, this firm
cannot compete as aggressively as its rival does, and hence it cannot benefit from
the presence of the switchers. Since α = αA > αB = β, we know that firm A is the
one that fails to benefit from the existence of the switchers.

The above analysis implies that

p =
αV

1− β
,

and that

FB(x) = 1−
αV
x − α

1− α− β
, ∀x ∈ [

αV

1− β
, v).

Note that

FB(v−) ≡ lim
x↑v

FB(x) = 1− α(V − v)

(1− α− β)v
< 1.

Moreover, because αV < (1− β)v, we have

FB(v−) > 0.

• Fifth, we can deduce ΠB as follows. Note that

FA(x) = 1−
ΠB

x − β

1− α− β
, ∀x ∈ [

αV

1− β
, v),

and

FA(p) = FA(
αV

1− β
) = 0.

From here we have

ΠB = (1− α)p =
α(1− α)V

1− β
> βV.

The last inequality follows from α(1−α) > β(1−β), and it also tells us that pricing
at V is a dominated strategy for firm B. It follows that FB(v) = 1.
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and

FB(x) =


0, x ≤ p = αV

1−β
;

1−
p

x

1− α
1−β

, x ∈ [p, v);

1, x ≥ v.

(10)

What is the effect of an increase in α, say, on the equilibrium pricing
strategies?

Observe that an increase in α has two direct influences on the configu-
ration of consumers. It implies an increase in the population of firm A’s
loyals, and it also implies a decrease in the population of the switchers.
The former leads to an increase in the equilibrium p (because the set
of overly low prices dominated by the price V is enlarged, given that
α has increased so that there are now more loyals willing to pay V ),
and the latter results in an increase in the density of FA(·) for all prices
below v that might arise in equilibrium.

The former effect is self-evident. Let us examine the latter effect. Sup-
pose that α2 > α1, and for i = 1, 2, αi > β, αiV < (1 − β)v. Fix h, l
such that v > h > l > p

2
> p

1
. Note that given i, firm B is indifferent

about h and l:

hβFA(h, αi)+h(1−αi)[1−FA(h, αi)] = lβFA(l, αi)+l(1−αi)[1−FA(l, αi)], ∀i = 1, 2.

• Sixth, since FB(v−) < 1 = FB(v), we conclude that FB has a jump at v. This
implies that pB = v is a pure-strategy best response, and it also implies that pA = v
cannot be an equilibrium best response for firm A (v is worse than, for example,
v − ϵ for sufficiently small ϵ > 0), and hence FA(v−) = FA(v).

Let us verify that this is indeed so. Pricing at pB = v will generate a payoff (expected
profit) for firm B that equals

βvFA(v) + (1− α)v[FA(V )− FA(V−)] = βvFA(v) + (1− α)v[1− FA(v)]

= βv[1−
ΠB

v − β

1− α− β
] +

(1− α)v(ΠB

v − β)

1− α− β

=
βv(1− α− β) + (β − ΠB

v )βv + (1− α)v · ΠB

v − β(1− α)v

1− α− β
= ΠB .

Hence, FB having a jump at v is indeed consistent with equilibrium.

This finishes our derivation of FA and FB .
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Since given i, hFA(h, αi) > lFA(l, αi), we conclude that h[1−FA(h, αi)] <
l[1−FA(l, αi)] so that when α increases from α1 to α2, if firm A’s strat-
egy were still FA(x, α1), then firm B would strictly prefer h to l. This
result is not surprising, as an increase in α also implies a reduction in
1 − α − β, and given that β does not change, firm B now considers
lowering the price to win the switchers and giving up the chance of
extracting surplus from the loyals more costly than before.

Since only a mixed-strategy equilibrium can exist given α = α2, just
like in the case of α = α1, given the new FA(x, α2) firm B must again
feel indifferent about h and l. We demonstrate below that this will
require FA to have a higher density function under α = α2 than under
α = α1 over the prices under v that may be chosen in both the cases
α = α2 and α = α1.

Note that the above indifference equation can be re-arranged to get

FA(h, α) + l[
FA(h, α)− FA(l, α)

h− l
] =

1

1− β
1−α

.

Taking limit on both sides by letting l → h and assuming that FA is
differentiable on (p, v) (which can be verified independently), we have,
given α,

FA(h, α) + hfA(h, α) =
1

1− β
1−α

, ∀h ∈ (p, v),

where fA = F ′
A is the density function of firm A’s equilibrium price.

From here, we see two things. Note first that FA is strictly concave
on (p, v):15 the above righ-hand side is independent of h, and since
FA(h, α) is increasing in h, fA has to be strictly decreasing in h. Second,
note that there is a small interval [p, p̂) such that at every x inside that
interval, fA(x, α) is increasing in α. This happens because the above
right-hand side, 1

1− β
1−α

is increasing in α, and Leibniz rule tells us that

the change in FA at h induced by a change in α can be attributed to a

15This can be confirmed easily when α = β. In fact, we have shown earlier that in the
symmetric case where α = β, FA coincides with FB on (p, v), and they are concave on

this price region.
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change in p (which has a negative effect) and a change in the density
function.16

It is easy to verify that, indeed, given any h ∈ (p
2
, v) we have fA(h, α2) >

fA(h, α1). In fact, by directly differentiating, we have for all h ∈ (p, v),

∂2FA(h, α)

∂h∂α
=
∂fA(h, α)

∂α
=

∂

∂α

p

h2

1− β
1−α

> 0.

This reflects the need of restoring indifference for firm 2 after an increase
in α from α1 to α2. Following that increase, if firm 1 were to use
FA(·, α1), then firm 2 would strictly prefer h to l, and so to restore
indifference, we need to make sure that under α2, the difference in the
probabilities of losing the switchers, FA(h, α2) − FA(l, α2), is higher
than its counterpart FA(h, α1) − FA(l, α1) under α1. This being true
for all h and l, we conclude that fA is higher under α2 than under α1

at all h ∈ (p
2
, v).

Now, let us summarize the effect of an increase in α on FA. By directly
differentiating, we have for all x ∈ (p, v),

∂FA(x, α)

∂α
=

1

[1− β
1−α

]2
{ β

(1− α)2
[1−

p(α)

x
]−

p′(α)

x
[1− β

1− α
]},

so that the sign of ∂FA(x,α)
∂α

is the same as the sign of

G(x) ≡ β

(1− α)2
[1−

p(α)

x
]−

p′(α)

x
[1− β

1− α
].

Note that G(·) is strictly increasing, with G(p) < 0. Letting G(x∗) = 0,
we have

x∗ = p+
(1− α)(1− α− β)V

β(1− β)
.

Thus we can conclude that

16Note that FA(h, α) =
∫ h

p(α)
fA(x, α)dx. The Leibniz rule says that

∂FA(h, α)

∂α
= −p′(α)fA(p(α), α) +

∫ h

p(α)

∂fA(x, α)

∂α
(x, α)dx,

provided that fA and p(α) are both continuously differentiable in α.
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• If min(1, α
1−β

+ (1−α)(1−α−β)
β(1−β)

) > v
V
> α

1−β
so that the interval (p, v)

does not contain x∗, then at all x ∈ (p, v), we have ∂FA

∂α
< 0.17

• If instead 1 > v
V

≥ α
1−β

+ (1−α)(1−α−β)
β(1−β)

so that x∗ ∈ (p, v), then
∂FA

∂α
(x, α) ≤ 0 if and only if x ≤ x∗.

Intuitively, as suggested by Leibniz rule, an increase in α results in a
decrease in FA at all x ∈ (p

1
, p

2
], but to restore a mixed equilibrium,

as we mentioned above, the density fA must become higher at all x ∈
(p

2
, v). Thus for x ∈ (p

2
, v), either FA becomes higher or it becomes

lower under α2, and which one would happen depends on which between
the above two opposing effects dominates.

25. Example 7. Two firms A and B compete in price to serve two con-
sumers 1 and 2. For simplicity, firms incur no production costs. Each
consumer may buy 1 unit from either firm A or firm B, or decide not to
buy anything. Firms and consumers are risk-neutral, and they seek to
maximize respectively expected profits and expected consumer surplus.
Consumer 1 regards both firms’ products as perfect substitutes, and she
is willing to pay 2 dollars for either product A or product B. Consumer
2 is willing to pay 2 dollars for product A, but 5 dollars for product B.
The firms simultaneously post prices pA and pB, and upon seeing the
prices, consumers simultaneously decide whether to buy anything, and
which firm to buy from.
(i) Show that there exists no pure-strategy equilibrium for this game.
(Hint: Can there be a pure-strategy NE where firm B prices at pB > 2?
Can there be a pure-strategy NE where firm B prices at pB ≤ 2?)
(ii) Find a mixed-strategy NE {FA(·), FB(·)} for this game.18

17Recall that in the symmetric case, where α = β, we have shown that FA(x) =
1−α−αV

x

1−2α

for all x ∈ (p, v), and indeed ∂FA

∂α < 0.
18There are no loyal customers in this game. This creates new difficulty. The two

consumers differ only in the minimum price differential that is required to induce them to
switch from a high-price firm to a low-price firm. I shall provide a few hints about how to
derive an equilibrium.

• First verify that p
A
≤ p

B
.

• There are two possibilities: either p
B

> 2 or p
B

≤ 2. Let us conjecture that the
former is the case. This conjecture can be verified after you derive the equilibrium
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mixed strategies.

• Given the conjecture p
B

> 2, now you can show that pB = 5. If instead pB < 5,
then you can follow the procedure outlined below to obtain a contradiction.

(a) If pB < 5, pB − 3 < 2. Then ∆FA(pB − 3) = 0: if instead ∆FA(pB − 3) > 0,
then ∆FB(pB) = 0, implying that for firm A pricing at pA = pB − 3 will lose
consumer 2 for sure, and it fails to fully extract rent from consumer 1; pricing
at pA = 2 would be better. Then how can ∆FA(pB − 3) > 0?

(b) Having shown that FA(·) is continuous at pB − 3, you can show that pB has
to be a pure-strategy best response for firm B. You should use the following
two facts: (1) pB is the right endpoint of an interval in which every point is a
pure-strategy best respons for firm B (cf. Lemma 4 and Lemma 6 in Example
6 of Lecture 1, Part II); and (2) FA(·) is continuous at pB − 3.

(c) Show that F1(·) must be flat on [pB − 3, 2)!

(d) Because F1(·) must be flat on [pB − 3, 2), argue that pB is dominated by 5,
contradicting the previously established result that pB has to be a pure-strategy
best response for firm B.

• Show that p
A
= p

B
− 3. To see this, note that since p

B
> 2, firm A should try to

extract rent from consumer 1, and for that purpose alone, p
A
should be as close to

2 as possible. However, firm A also wants to compete for consumer 2. But even for
the latter purpose, there is no reason for firm A to price below p

B
− 3. Now, you

can argue from firm B’s perspective that, similarly, p
B

cannot be less than p
A
+ 3.

• Let the equilibrium profits of the two firms be denoted by πA and πB. Since pj has to

be a pure-strategy best response for firm j, and since when using such a lower-bound
price, firm j wins consumer 2 for sure, show that πA = 2p

A
and πB = p

B
.

• Show that pA = 2. If instead pA < 2, then since firm B does not price above pA +3,
this means that pB < 5, a contradiction to the result established earlier that pB = 5.

• Show that for all pA ∈ [pA, 2), and for all pB ∈ [p
B
, 5),

FA(pA) = 1− πB

pA + 3
, FB(pB) = 2− πA

pB − 3
.

• Using the previous step to conclude that ∆FA(2) > 0. If instead that FA(2−) = 1,
then πB = 0, which is impossible because firm B can always price at p

B
and get a

profit p
B
> 2.

• Show that ∆FB(5) = 0.

• Show that firm A when pricing at 2 must lose consumer 2 for sure, thereby concluding
that πA = 2.

• Show by using the previous step that p
A
= 1.

• Show by using the result p
A
= p

B
− 3 that p

B
= 4.
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26. Example 8. Consider the following variant of the duopolistic industry
examined in Example 6. Here the main difference is that the two firms
are faced with demand uncertainty. Assume that

Segment Population Valuation for A Valuation for B
LA α̃ 2 0
LB 2 0 2
S γ̃ 1 1

where the random variables (α̃, γ̃) are such that

(α̃, γ̃) =


(1, 11

2
), with probability 1

2
;

(6, 9
2
), with probability 1

2
.

While firm B is faced with the above-mentioned demand uncertainty,
firm A privately learns whether (α̃, γ̃) = (1, 11

2
) or (α̃, γ̃) = (6, 9

2
) right

before the two firms compete in price. The above information asym-
metry is part of the two firms’ common knowledge at the beginning
of the game. We shall look for a Bayesian equilibrium, which is de-
noted by {F1(·), F6(·), G(·)}, where G(·) is the uninformed firm B’s
mixed pricing strategy, and for j = 1, 2, Fj(·) is firm A’s equilibrium
mixed pricing strategy when firm A’s demand information indicates
that α̃ = j. (A Bayesian equilibrium is nothing but a Nash equilibrium
for the three-player game in which the two types of firm A are treated

• Show by using the result πB = p
B

that πB = 4.

• Give a complete characterization for (FA(·), FB(·)).
• Verify easily that, given the equilibrium FB(·), pricing outside [p

A
, pA] cannot be

optimal for firm A in equilibrium.

• Verify easily that, given the equilibrium FA(·), pricing over (−∞, 1) or over (2, 4) or
over (5,+∞) cannot be optimal for firm B.

• As a last step, verify that for firm B, given the equilibrium FA(·), neither pricing at
pB = 2 nor pricing over [1, 2) can generate a payoff higher than πB = 4.

Note that initially there do not exist loyal customers in the game. However, given the
strategy FB(·), consumer 1 becomes a loyal customer for firm A. Loyalty of a consumer is
thus endogenously determined by the firms’ equilibrium strategies.
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as two different players.)
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(i) Show that there exists a unique mixed strategy equilibrium where19

F1(x) =



0, x < 17
28
;

1− 17
11
[ 1
x
− 1], x ∈ [17

28
, 1);

1, x ≥ 1,

19Let us refer to firm A as of type j when α̃ = j. Let us define the following notation.

V = 2, v = 1, α1 = 1, α6 = 6, γ1 =
11

2
, γ6 =

9

2
, β = 2.

Thus γj is the size of switchers when α̃ = αj . Recall that β is the commonly known size
of firm B’s loyal customers. Note that these numerical values imply that

• the type-6 firm A never wants to compete for switchers,

α6V > [γ6 + α6]v;

• the type-1 firm A would like to serve the switchers if firm B were absent,

α1V < [γ1 + α1]v;

• firm B does not know firm A’s type, but it knows that firm A has more loyal
customers than firm B does if and only if α̃ = α6,

α6 > β > α1;

• even if firm B fails to capture any switchers in state α1, pricing at v is still better
than pricing at V for firm B,

βV < [
1

2
γ6 + β]v.

The Bayesian equilibrium reflects the above facts, and it extends the equilibrium that we
obtained for Example 6 in Lecture 1, Part II. Based on the facts listed above, we have the
following conjectures.

• First, the type-6 firm A’s pricing behavior is obvious.

• Second, in competing with firm A, firm B knows that firm A will price at V whenever
it is of type 6. This implies that, as we just pointed out, firm B can at least get
[β + 1

2γ6]v by pricing at v!

• Third, firm B knows that it has more loyal customers than the type-1 firm A, and
hence in state α1 the presence of switchers will not add to its expected profit! (A
lesson that we learn from Example 6 in Lecture 1, Part II, says that the firm with
more loyal customers does not benefit from the presence of switchers.) Thus firm B
will not get more than [β + 1

2γ6]v in this game. It must be that Π∗
B = [β + 1

2γ6]v.

• Since firm B has more loyal customers than the type-1 firm A, it is firm B’s indif-
ference between pB = v = 1 and p (which is the common price lower bound for firm
B and type-1 firm A) that determines p. In fact, since pricing at p is optimal in

equilibrium for firm B, it must be that p =
Π∗

B

β+E[γ̃] .
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F6(x) =


0, x < 2;

1, x ≥ 2,

G(x) =



0, x < 17
28
;

1−
13
2 × 17

4
7x

−1
11
2

, x ∈ [17
28
, 1);

1, x ≥ 1.

(ii) Denote by Π∗
B, Π

∗
1 and Π∗

6 the equilibrium payoffs (expected profits)
for respectively firm B, firm A with α̃ = 1, and firm A with α̃ = 6.

• Once p is correctly conjectured, we can infer Π∗
1, since pricing at p is optimal in

equilibrium for the type-1 firm A also.

• Finally, infer that for all x ∈ [p, v), we must have

ΠB(x) = xH(x) ≡ x{β +
1

2
· 1 · γ6 +

1

2
· [1− F1(x)] · γ1},

and
Π1(x) = x{α1 + γ1[1−G(x)]},

where ΠB(x) is firm B’s payoff as a function of firm B’s own price x, given the other
two firms’ equilibrium strategies, and Π1(x) is similarly defined. Now, obtain the
functions F1(·) and G(·) on the interval [p, v) from the above two equations.

• We must have ∆F1(v) = 0 < ∆G(v). In case F1(·) has a jump at v, then G(·) cannot
have a jump at v at the same time, implying that for firm A pricing at v in state α1

would lose the switchers with probability one, and that firm A’s equilibrium payoff
in state α1 is α1v < α1V , unless firm B would price at V with a strictly positive
probability, or, unless ΠB = βV , but in the latter case, we have

F1(v−) = lim
x↑v

F1(x) = lim
x↑v

[1−
βV
x − β − 1

2γ6
1
2γ1

] < 1 ⇔ βV > [β +
1

2
γ6]v,

which is a contradiction. Hence, F1(·) does not have a jump at v, implying that H(x)
is a left-continuous function of x for x ∈ (p, v], and since xH(x) = Π∗

B is a constant
for all x ∈ (p, v), we conclude that vH(v) = limx↑v xH(x) = limx↑v ΠB(x) = Π∗

B ,
and hence v attains the equilibrium payoff of firm B, showing that v is indeed a best
response for firm B.

Now, follow the above guidance to finish this exercise.
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Show that

Π∗
B =

17

4
, Π∗

1 =
221

56
, Π∗

2 = 12.

27. Before we end this note, we shall introduce a class of games with imper-
fect information, called games of signal jamming. We give 5 examples
below.

28. Example 9. Consider a firm run by an owner-manager Mr. A. At
date 1, Mr. A can either costlessly exert a low effort (e = 0) or exert a
high effort (e = 1) by incurring a disutility c > 0. Mr. A’s effort choice
is unobservable to public investors. Let π1 and π2 be respectively the
firm’s date-1 and date-2 profits. If Mr. A exerts a low effort, the firm’s
date-1 and date-2 profits are both zero. If Mr. A exerts a high effort,
then the firm’s date-1-date-2 profits may be

(π1, π2) =

{
(0, 5), with probability β;
(1, 0), with probability 1− β.

The firm has no growth opportunities after date 2, and it will be liq-
uidated at the end of date 2. Mr. A and all investors in the financial
market are risk-neutral without time preferences.
(i) Suppose that it is common knowledge that Mr. A will never sell
shares by the end of date 2. Find a set of conditions on c and β ensur-
ing that Mr. A exerts a low effort in equilibrium.
(ii) Suppose that 1 > β > 1

4
and 0 < c < 2. Suppose that, contrary to

part (i), it is common knowledge that Mr. A will sell all the equity at
date 1 (without distributing any cash dividends at date 1), and that
public investors’ only date-1 information about the firm is π1.

• Find further conditions on c and β ensuring that Mr. A exerts a
high effort in equilibrium.

• Find further conditions on c and β ensuring that Mr. A exerts a
low effort in equilibrium.

Solution. The answer to part (i) is c > 1 + 4β.

The answer to part (ii) is c > 1 − β if we want to induce Mr. A to
exert a low effort, and this answer needs a little explanation.
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At first, note that exerting a high effort is Mr. A’s equilibrium strategy
if it is common knowledge that Mr. A will not sell shares by the end
of date 2, because 1 > β > 1

4
and 0 < c < 2.

This can never be Mr. A’s equilibrium strategy if it is common knowl-
edge that Mr. A will sell all his shares at date 1. To see this, suppose
instead that it were. Then by exerting a high effort, Mr. A expects
that π1 = 0 (and hence he can get the proceeds π1 + π2 = 5 by selling
the firm) with probability β and π1 = 1 (and hence he can get the
proceeds π1+π2 = 1 by selling the firm) with probability 1−β, so that
Mr. A’s payoff is accordingly

5β + (1− β)− c = 1 + 4β − c.

However, by exerting a low effort, Mr. A can make sure that π1 = 0,
so that he can sell the firm for a price of 5 for sure at date 1. Thus
Mr. A will always deviate, which is a contradiction to the supposed
equilibrium.

Having shown that exerting a high effort cannot be Mr. A’s equilibrium
behavior, I must emphasize that this does not imply that exerting a
low effort is automatically Mr. A’s equilibrium behavior.

Suppose that Mr. A does exert a low effort in equilibrium. Then he
gets nothing by selling his firm. However, by exerting a high effort,
Mr. A expects that π1 = 1 with probability 1−β, and following such a
zero-probability event the public investors have no choice but to believe
that the firm is worth at least one dollar (because π2 is always non-
negative, regardless of Mr. A’s choice of effort).20 Hence if c < 1− β,
exerting a low effort is not Mr. A’s equilibrium behavior either.

We conclude that there are no conditions on c and β that can support
an equilibrium where Mr. A exerts a high effort, and that c > 1 − β

20The market does not know that Mr. A has deviated, and hence they still price the
firm at zero upon seeing zero profit in period 1. Only when the period-1 profit is 1, the
market is forced to re-assess the situation, and the market can then infer that this can
only happen after Mr. A has exerted a high effort, and hence the market also infers that
the period-2 profit is zero. Thus by exerting a high effort, the manager spends c, but only
gets 1 with prob. 1− β. For Mr. A’s exerting a low effort to be part an NE, we conclude
that c must be greater than 1− β.
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is the necessary and sufficient condition that supports the equilibrium
where Mr. A exerts a low effort.

This exercise delivers the basic idea of signal-jamming. Note that if
the market believes that Mr. A will exert a high effort (because it
is efficient to do so from the firm’s perspective), then Mr. A has an
incentive to fool the market and raise his own payoff by exerting a low
effort. By definition, a Nash equilibrium is a state of decision-making
by all players, where nobody predicts his rivals’ actions incorrectly.
Hence in equilibrium, Mr. A cannot have a chance to fool the market,
and we have shown that this implies a corporate inefficiency in the
current exercise—only exerting a low effort is consistent with a Nash
equilibrium of the current game.

29. Example 10. Consider a firm run by an owner-manager Mr. A. The
firm has 1 share of common stock outstanding. At date 1, Mr. A can
either costlessly exert a low effort (e = 0) or exert a high effort (e = 1)
by incurring a (non-monetary) disutility c > 0. Mr. A’s effort choice
is unobservable to public investors. Let π1 and π2 be respectively the
firm’s date-1 and date-2 profits. If Mr. A exerts a high effort, the firm’s
date-1 and date-2 profits are both 2. If Mr. A exerts a low effort, then
the firm’s date-1-date-2 profits may be

(π1, π2) =

{
(0, 1), with probability β;
(2, 6), with probability 1− β.

The firm has no growth opportunities after date 2, and it will be liq-
uidated at the end of date 2. Mr. A and all investors in the financial
market are risk-neutral without time preferences.

Now suppose that the firm has decided not to distribute cash dividends
at date 1, and that

β =
5

7
, c = 2.

(i) Suppose that it is common knowledge that Mr. A will never sell
shares by the end of date 2. What is the date-1 share price of the firm?
(ii) Suppose that, contrary to part (i), it is common knowledge that
Mr. A will sell all the equity at date 1, and that public investors’ only
date-1 information about the firm is π1. What is the date-1 share price
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of the firm?
Solution. For part (i), note that Mr. A will maximize the expected
value of π1 + π2 minus any disutility from exerting efforts. If he exerts
a high effort, then his payoff is

2 + 2− 2 = 2.

If he exerts a low effort, then his payoff becomes

β · (0 + 1) + (1− β) · (2 + 6) = 8− 7β = 3.

Thus the stock market expects Mr. A to exert a low effort, and hence
the date-1 share price is 1 after the stock market observes π1 = 0, and
the date-1 share price is 8 after the stock market observes π1 = 2.21

Now consider part (ii). We first show that exerting a low effort is no
longer Mr. A’s equilibrium behavior. Suppose instead that it were.
Then the date-1 share price would be 8 after the stock market sees
π1 = 2. But then by exerting a high effort, Mr. A could get the payoff

−2 + 8 = 6,

which is greater than 3, the supposed equilibrium payoff for Mr. A.

We still need to verify if exerting a high effort is Mr. A’s equilibrium
behavior. If the market believes that it is, then the date-1 share price
will be 4 after the stock market sees π1 = 2. What if the market sees
π1 = 0? This is a zero-probability event from the public investors’
perspective, but if it does happen, the market has no choice but to
believe that Mr. A has exerted a low effort, and hence the market can
infer that π2 = 1, thereby pricing the firm at 1. Now, would Mr. A
deviate and exert a low effort when the stock market believes that he
would exert a high effort?

Mr. A’s payoff in this supposed equilibrium is 2+2−2 = 2. By exerting
a low effort instead, according to our analysis above, with probability

21We have assumed that the firm does not distribute π1 as dividends, and so the date-1
cum-dividend price coincides with the date-1 ex-dividend price. If the stock market is
open at date 0, then the date-0 price equals 8− 7β = 3, which is the expected value of the
date-1 price, which is random conditional on the public investors’ date-0 information.
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β he would get 1, and with probability 1 − β, he would get 4 (which
is the firm value that the stock market believes upon seeing π1 = 2).
Hence by deviation Mr. A gets the payoff

β · 1 + (1− β) · 4 =
13

7
< 2.

Thus Mr. A has no incentive to deviate. This proves that exerting a
high effort is indeed Mr. A’s equilibrium behavior. Thus the date-1
share price is, with probability one, 4.

Value maximization results in a moral hazard problem in this exercise,
because Mr. A has an incentive to manipulate the market’s belief
regarding the unobservable effort. As is common in the moral hazard
literature, the equilibrium effort may be higher or lower than the effort
level chosen by Mr. A when his effort is observable. We have seen
in Example 9 that the managerial effort can be too low in the signal-
jamming equilibrium; here, it is too high.

30. Example 11. Two firms compete in an industry that extends for two
dates (t = 1, 2). Firm 2 may be of type G with prob. b and type B
with prob. 1− b. Neither firm 1 nor firm 2 knows firm 2’s type (notice
that we are abusing terminology here!). The game proceeds as follows.
At t = 1, firm 1 can choose either P (prey) or A (accomodate). If firm
1 chooses P, then firm 1’s profit is −c < 0 and firm 2’s profit is L < 0
at date 1. If firm 1 chooses A, then firm 1’s profit is 0 at date 1; firm
2’s profit is H > 0 if its type is G and is L < 0 if its type is B. Firm 1’s
action at date 1 is firm 1’s private information. After seeing its date-1
profit, firm 2 must decide whether to exit at the beginning of date 2.
If firm 2 decides to leave, firm 1 gets M > 0 and firm 2 gets zero at
date 2; if firm 2 decides to stay, then firm 1 again must decide to P or
to A at date 2, and the payoffs of the two firms at date 2 are just as
described for date 1. Each firm seeks to maximize the sum of its profits
at the two dates.

Find conditions on the parameters sustaining the SPNE’s where, re-
spectively, (1) firm 1 preys at date 1 for sure; (2) firm 1 accomodates
at date 1 for sure; and (3) firm 1 randomizes over P and A at date 1.
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Solution. Consider the SPNE described in (1). Firm 1 will choose A
at date 2 if firm 2 stays. Thus firm 1 chooses P at date 1 only if firm
2 may leave at date 2. This needs

bH + (1− b)L ≤ 0.

That is, rationally expecting firm 1’s action P at date 1, firm 2’s poste-
rior belief is still that it is of type G with probability b, and since firm
1 will always choose A at date 2, leaving is optimal for firm 2 if and
only if the above inequality holds. Now, if the above inequality holds,
firm 1 must find it optimal to prey at date 1, and this requires that

−c+M ≥ 0 + [b · 0 + (1− b) ·M ].

This condition says that if firm 1 deviates and chooses A at date 1, then
although firm 2 still believes that firm 1 chooses P, after seeing its date-
1 profit being H, the type-G firm 2 will learn its type immediately and
decide to stay at date 2. In that case, firm 1 will have to accomodate
at date 2, so that firm 1’s date-2 profit is zero. Thus firm 1’s deviation
at date 1 implies that its date-1 profit is zero rather than −c, and that
its date-2 profit is 0 with probability b and M with probability (1− b).
The above inequality ensures that firm 1’s equilibrium payoff −c+M is
greater than what it is expected to make by deviation. Thus the SPNE
described in (1) exists if and only if bM ≥ c and bH + (1− b)L ≤ 0.22

Does signal jamming raise the chance that firm 2 exits at date 2? It

22One may wonder why firm 2 enters in the first place if bH + (1 − b)L ≤ 0. Even if
firm 1 is sure to choose A at both dates, it does not seem worthwhile for firm 2 to enter.
This reasoning is correct if firm 1 preys at date 1 in equilibrium, but it is in general in
correct; see our solution for part (2). What is involved here is a real option that firm 2
can obtain by entering: by entering the industry and running the risk of getting L at date
1, firm 2 obtains a real option of staying at date 2 if and only if staying is profitable. For
example, in case that firm 1 will choose A (which is exactly the equilibrium described in
(2)) at date 1, then firm 2’s expected profit is not 2 × [bH + (1 − b)L] ≤ 0; rather, it is
b × 2H + (1 − b) × L. Returning to the SPNE in (1), although firm 1’s signal jamming
activities do not fool firm 2, these activities may destroy firm 2’s opportunity of getting
the aforementioned real option: by choosing P at date 1, which is correctly expected by
firm 2 in equilibrium, firm 1 can make sure that firm 2’s posterior belief about its own type
remains the same at the beginning of date 2. Facing no such real option, firm 2 should
really stay out in the first place. Fudenberg and Tirole’s model, which we shall review
below, suggests that firm 1’s preying at date 1, although failing to fool firm 2, usually
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does, although firm 2 is not fooled by firm 1’s date-1 action. As we
explained in the above footnote, without firm 1’s interference, firm 2
will leave at date 2 with probability 1− b, but in this equilibrium, firm
2 will leave at date 2 for sure.

Similarly, for the SPNE described in (2), firm 1’s date-1 equilibrium
action is A, which generates perfect information for firm 2 about the
latter’s type. Firm 2 will leave at date 2 if and only if it finds out that
its type is B. Thus in equilibrium firm 1 gets zero at date 1, and it
expects to get [b · 0 + (1 − b) ·M ] at date 2. What happens if firm
1 secretly deviates at date 1 and chooses to prey? Without changing
its belief about firm 1’s date-1 action, firm 2 will leave for sure after
firm 1 preys at date 1. Thus firm 1’s payoff following this deviation is
−c+M . We conclude that the SPNE described in (2) can be sustained
if and only if

−c+M ≤ 0 + [b · 0 + (1− b) ·M ] ⇔ c ≥ bM.

Finally, consider the SPNE described in (3). Let p > 0 be the prob.
that firm 1 preys at t = 1. Then conditional on its date-1 profit being
L, firm 2 thinks that its type is B with prob.23

1− b

p+ (1− p)(1− b)
=

1− b

pb+ (1− b)
> 1− b,

where the inequality explains why firm 1 would like to prey at date 1.
However, in case

pbH + (1− b)L

pb+ (1− b)
> 0,

implies a lower profit for firm 2 at date 1, and thereby discouraging (credibly because it
is an equilibrium) firm 2 from entering in the first place as long as entering incurs a fixed
cost. In fact, Fudenberg and Tirole consider a situation where firm 1 cannot destroy firm
2’s opportunity of getting the real option by preying at date 1. In equilibrium preying
may still benefit firm 1 because before entering firm 2 realizes that its profits may be low
because firm 1 always wants to manipulate its belief by preying at date 1, and preying
(which is credible) lowers both firms’ profits.

23To see this, note that firm 2’s date-1 profit is always L if its type is B (occurring with
probability 1− b), and its date-1 profit is L with probability p if its type is G (occurring
with probability b).
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firm 2 would choose to stay at date 2 even if its date-1 profit is L, and
in that case firm 1 would have no reason to prey at date 1. Therefore
for firm 1 to prey at date 1, it is necessary that

pbH + (1− b)L

pb+ (1− b)
≤ 0.

In case
pbH + (1− b)L

pb+ (1− b)
< 0,

we have

pbH + (1− b)L < 0 ⇒ p <
(b− 1)L

bH
< 1.

When this condition is met, firm 2 will leave at date 2 for sure if and
only if its date-1 profit is L. On the other hand, firm 1 must feel
indifferent about P and A at date 1. For this to happen, we claim that
it is necessary that c = bM . To see this, suppose that c < bM , then by
preying at date 1 firm 1 gets−c+M which is greater than what it makes
by accomodating at date 1, which is 0 + (1− b)M . Thus firm 1 should
assign zero probability to action A, a contradiction. The case c > bM
is similar. Our conclusion is therefore that when bH+(1−b)L > 0 and
c = bM , the game has a continuum of SPNE where firm 1 randomizes
between P and A with respectively prob. p ∈ (0, (b−1)L

bH
) and 1 − p at

date 1.

Next, consider the case where

pbH + (1− b)L

pb+ (1− b)
= 0,

or

p =
(b− 1)L

bH
,

where p < 1 if and only if bH+(1− b)L > 0. In this case, a first-period
profit L makes firm 2 feel indifferent about leaving and staying. Let q
be its probability of leaving. Then firm 1 must feel indifferent about P
and A, that is,

−c+ b · 0 + (1− b) · (q ·M + (1− q) · 0)

44



= (q ·M + (1− q) · 0),

or equivalently,

q =
c

bM
,

where q < 1 if and only if c < bM . Hence when bH + (1− b)L > 0 and
c < bM , we have a mixed-strategy equilibrium where firm 1 chooses P
with probability (b−1)L

bH
and firm 2 stays after seening H in period 1,

and firm 2 leaves with probability c
bM

after seeing L in period 1.

Note that in the above mixed-strategy equilibria, firm 2 does exit more
often than in the case where P is not a feasible action for firm 1.

31. Example 12. (Riordan, 1985, Rand Journal of Economics.) Suppose
that there are n firms competing in quantity at dates 1 and 2. Each
firm has unit cost c, and is facing a capacity constraint (per date) of k.
(That is, unit cost jumps to +∞ for any extra quantity over k.) The
inverse demand (on the relevant range) at date t is

pt = at −
n∑

j=1

qjt.

Assume that
a1 = e1, a2 = ρa1 + (1− ρ)e2,

where ρ ∈ [0, 1] and e1 and e2 are i.i.d. (identically and independently
distributed) with common density f(·) on the support [e, E], where
e > 0. Define a ≡ E[et]. Riordan imposes the following simplifying
assumption

min(e− c, e+ c− a) > k >
E − c

n
> 0.

Each firm maximizes πj1 + δπj2, where δ ∈ (0, 1) is a discount factor,
and πjt = (pt − c)qjt.

Riordan assumes that at the beginning of date 2, firm j only observes qj1
and p1, but neither a1 nor the date-1 outputs chosen by other firms. A
symmetric SPNE (in pure strategy) is a pair (q∗1, σ

∗
2(p1)), such that σ∗

2(·)
assigns a qj2 for firm j given each and every possible realization of p1.
(Note that in a symmetric equilibrium, σ∗

2(·) must be measurable to the
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common knowledge information set of all firms, and hence it can only
depend on the commonly observable p1.) More precisely, (q∗1, σ

∗
2(p1))

must solve the following constrained maximization problem:

max
(q1,σ2(p1))∈[0,k]2

E[(p1 − c)q1 + δ(p2 − c)σ2(p1)]

subject to
p1 = a1 − (n− 1)q∗1 − q1,

p2 = a2 − (n− 1)σ∗
2(p1)− σ2(p1).

Let us solve this problem by backward induction. At the beginning
of date 2, a firm with date-1 output q1 upon seeing p1, can infer the
intercept of the date-1 inverse demand function (given its belief that
other firms chosen q∗1 at date 1):

a∗1(q1, p1) = p1 + (n− 1)q∗1 + q1.

Thus this firm believes that the (random) date-2 price would be

p2 = ρa∗1(q1, p1) + (1− ρ)e2 − (n− 1)σ∗
2(p1)− q2

= ρ[p1 + (n− 1)q∗1 + q1] + (1− ρ)e2 − (n− 1)σ∗
2(p1)− q2,

and we define

p∗2(q2; p1, q1) ≡ E[p2] = ρa∗1(q1, p1) + (1− ρ)a− (n− 1)σ∗
2(p1)− q2.

At date 2 the firm seeks to

max
q2∈[0,k]

[p∗2(q2; p1, q1)− c]q2.

The solution is

q2 = ψ∗(p1, q1) ≡
1

2
[ρa∗1(q1, p1) + (1− ρ)a− c− (n− 1)σ∗

2(p1)]

=
1

2
[ρ(p1 + (n− 1)q∗1 + q1) + (1− ρ)a− c− (n− 1)σ∗

2(p1)].

In equilibrium, we must have

σ∗
2(p1) = ψ∗(p1, q

∗
1),
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which gives

σ∗
2(p1) =

ρ(p1 + nq∗1) + (1− ρ)a− c

n+ 1
.

Using
p1 = e1 − (n− 1)q∗1 − q1,

we have
dσ∗

2(p1)

dp1

dp1
dq1

= − ρ

n+ 1
;

that is, from each firm’s perspective, increasing its date-1 output by
one unit will lead to ρ

n+1
units of reduction in the date-2 output of

each rival. The idea is that imperfect information does not allow a firm
to distinguish a reduction in a1 from an expansion of its rivals’ date-1
outputs, and since a2 is positively correlated with a1, upon seeing a low
p1 the firm must partially attribute this low price to a low realization
of a1, and hence reduce its date-2 output accordingly. Realizing this, a
firm cannot resist the temptation of expanding its date-1 output as an
attempt to mislead its rivals and discourage the latter from choosing
high outputs at date 2. Since all firms are expanding outputs (relative
to the full-information case), the firms are actually worse off.

Now, consider a firm’s date-1 problem. It seeks to

max
q∈[0,k]

E{(p1 − c)q + δ[p∗2(ψ
∗(p1, q); p1, q)− c]ψ∗(p1, q)},

subject to
p1 = a− (n− 1)q∗1 − q.

The first-order condition, upon replacing p1 into the objective function,
is

[a− c− (n− 1)q∗1 − 2q] + δρ
n− 1

n+ 1
E[ψ∗(p1, q)] = 0,

where

E[ψ∗(p1, q)] =
a− c

n+ 1
− ρ

2

n− 1

n+ 1
(q∗1 − q).

Solving, and then letting q = q∗1, we have

q∗1 =
(a− c)[(n+ 1)2 + δρ(n− 1)]

(n+ 1)3
,
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and

σ∗
2(p1) =

ρ(p1 + nq∗1) + (1− ρ)a− c

n+ 1
.

The bottom line here is that σ∗
2(p1) coincides with the static Cournot

symmetric output when a1 = p1 + nq∗1; that is, no firms are fooled
by their rivals’ output expansion activities. Still, q∗1 is greater than
the static Cournot output level: the firms cannot resist trying to fool
their rivals at date 1. In this sense, we conclude that with imperfect
information about demand and the rivals’ outputs, the date-1 efficiency
is lower for the firms, but the date-2 efficiency is unchanged. Of course,
if we discuss efficiency from the perspective of social benefit, then the
date-1 efficiency is actually higher!

32. Example 13. (Fudenberg and Tirole, 1986, Rand Journal of Eco-
nomics.) Suppose that two firms are located at the two ends of the
Hotelling main street [0, 1], facing consumers uniformly located on the
street with a total population of one. Each consumer is willing to pay
v = 2 dollars for one unit of the product produced by either firm 1
(located at the left endpoint of the Hotelling main street) or firm 2 (lo-
cated at the right endpoint of the Hotelling main street). Firm 1 has no
production costs, but firm 2 is faced with a random fixed cost F̃ , which
is uniformly distributed on [0, 1

2
]. A consumer located at t ∈ [0, 1] must

pay tθ and (1 − t)θ respectivley if he wants to visit firm 1 and firm
2, where we shall assume for simplicity that θ = 1. The firms must
compete in price at periods 1 and 2, and they seek to maximize the
sum of profits over the two periods.

At the beginning of period 2, firm 2 can only observe its period-1 profit,
but not its own fixed cost or firm 1’s period-1 price.

To start the analysis, first verify that in the static counterpart of the
model, the two firms will set price at p1 = p2 = 1, and divide the
market equally, ending up with profit 1

2
each. If firm 1 is a monopoly,

then it will again choose p1 = 1, enjoying a profit of 1.

With imperfect information, firm 2 will use its period-1 profit to infer
its fixed cost, and this encourages firm 1 to predate: by lowering p1 in
period 1, firm 1 can lower firm 2’s period-1 profit, hoping to convince
firm 2 that its fixed cost is high and it should leave the market in period
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2. If that works, then firm 1 will become a monopolist in period 2, and
as we showed just now, its period-2 profit will increase by 1

2
! (Note that

as long as firm 2 chooses to stay in period 2, the period-2 equilibrium
prices depend on neither the realized F or firm 2’s estimate about F .)

In equilibrium, firm 1’s signaling-jamming attempt can be rationally
expected by firm 2, and the latter will not be fooled. In period 1,
suppose that firm 1 chooses p∗1 and firm 2 chooses r2(p

∗
1). Then, given

p∗1, we have24

r2(p
∗
1) =

1 + p∗1
2

.

From firm 1’s perspective, if firm 1’s period-1 price is p1, then firm 2’s
period-1 profit π2 will be, given that firm 2 will price at r2(p

∗
1) in period

1,

π2 =
[1 + p1 − r2(p

∗
1)]r2(p

∗
1)

2
− F,

where F is the realized fixed cost of firm 2. However, believing that
firm 1 has chosen p∗1, firm 2 would then believe that its realized fixed
cost is, given π2,

F̂ ≡ [1 + p∗1 − r2(p
∗
1)]r2(p

∗
1)

2
− π2.

Since firm 2 would get the period-2 payoff of 1
2
− F̂ if firm 2 chooses to

stay, firm 2 will optimally leave the market before period 2 if and only
if

1

2
≤ F̂ =

[1 + p∗1 − r2(p
∗
1)]r2(p

∗
1)

2
− π2

⇔ π2 ≤
[1 + p∗1 − r2(p

∗
1)]r2(p

∗
1)− 1

2

⇔ [1 + p1 − r2(p
∗
1)]r2(p

∗
1)

2
− F ≤ [1 + p∗1 − r2(p

∗
1)]r2(p

∗
1)− 1

2

⇔ F ≥ 1

2
+
p1 − p∗1

2
· 1 + p∗1

2
,

24Note that firm 2’s period-1 price choice does not affect firm 1’s period-2 equilibrium
behavior, and hence r2(·) is firm 2’s static reaction function. In the static Hotelling game,
when θ is sufficiently smaller than v, firm i’s demand function is Di(pi, pj) =

1
2 +

pj−pi

2θ ,

so that firm i’s reaction function is ri(pj) =
pj+θ

2 .
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and the latter event occurs with probability

2[
1

2
− (

1

2
+
p1 − p∗1

2
· 1 + p∗1

2
)] =

(p∗1 − p1)(1 + p∗1)

2
,

given that F is uniformly distributed over [0, 1
2
].

Thus, firm 1’s period-1 problem is to

max
p1

p1(1− p1 + r2(p
∗
1))

2
+

1

2
+

1

2
[
(p∗1 − p1)(1 + p∗1)

2
].

In the above objective function, p1 is firm 1’s period-1 price,
1−p1+r2(p∗1)

2

is firm 1’s period-1 sales volume given that firm 2 will price at r2(p
∗
1) in

period 1, the third term (1
2
) is firm 1’s period-2 profit if firm 2 chooses

to stay in period 2, and the last term is the probability that firm 2 may

leave before period 2 (which is
(p∗1−p1)(1+p∗1)

2
) times the additional profit

that firm 1 can make in period 2 in the event that firm 2 chooses to
leave before period 2 (which is 1

2
).

In equilibrium, p∗1 must solve the above maximization problem for firm
1. The first-order condition yields

p∗1 =
1

2
,

which implies that

r2(p
∗
1) =

3

4
.

Thus firm 1 does try to lower price in period 1 as an attempt to fool
firm 2, but firm 2 is not fooled in equilibrium. In equilibrium, both
firm 1 and firm 2 price below 1 in period 1. Again, period 2’s pricing
equilibrium is unaffected.

Note that we have thus far assumed that firm 2 is already present
in period 1. If in addition to the fixed operating cost F that firm 2
needs to incur in each period, firm 2 must spend another fixed cost
G to enter before period 1, then since signal-jamming reduces firm 2’s
period-1 profit, it tends to reduce the likelihood that firm 2 may be
present in period 1 also.
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