
Finance Theory

A Quick Review of Game Theory

Instructor: Chyi-Mei Chen
Room 1102, Management Building 2
(02) 3366-1086
(email) cchen@ccms.ntu.edu.tw

1. Static Game with Complete Information. A game can be de-
scribed by:

• Who are the players?

• What strategies are available to each player?

• What does each player get given players’ choices of strategies?

A game described by (i) the set of players, (ii) the strategies available
to each player, and (iii) the payoff of each player as a function of
the vector of all players’ strategic choices is called a game depicted in
normal form.

2. Example 1. The following is a two-player normal-form game.

player 1/player 2 L R
U 0,1 -1,2
D 2,-1 -2,-2

• Who are the players? Players 1 and 2.

• What strategies are available to player 1? U and D. What strate-
gies are available to player 2? L and R.

• What does each player get given players’ choices of strategies?
Players 1 and 2 get respectively 0 and 1, if the vector of the two
players’ strategies is (U,L); that is, if player 1 plays U and player
2 plays L. Let us write

u1(U,L) = 0, u2(U,L) = 1. (1)
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Similarly, we have

u1(U,R) = −1, u2(U,R) = 2, u1(D,L) = 2, (2)

u2(D,L) = −1, u1(D,R) = −2, u2(D,R) = −2. (3)

The functions u1(·, ·) and u2(·, ·) are referred to as the two players’
payoff functions.

3. Example 2. Consider the following Cournot game: firms 1 and 2
producing the same product must compete in supply quantities. The
inverse demand curve is

P (Q) = 1−Q,

where
Q = q1 + q2

is the total supply of the product. For simplicity, assume that firms
have no costs.

• Who are the players? Firms 1 and 2.

• What strategies are available to player 1? Any non-negative real
number q1, standing for the supply quantity chosen by firm 1.
What strategies are available to player 2? Any non-negative real
number q2, standing for the supply quantity chosen by firm 2.

• What does each player get given players’ choices of strategies
(q1, q2)? Firm 1 gets profit u1(q1, q2) = q1(1− q1 − q2), and firm 2
gets profit u2(q1, q2) = q2(1− q1 − q2). (We generally will write π1

and π2 instead of u1 and u2, if the latter actually represent firms’
profits.)

4. Nash Equilibrium (NE). A (pure strategy) Nash equilibrium (NE)
for a two-player normal-form game where the set of player 1’s strategies
is X (hereafter referred to as player 1’s strategy space) and the set of
player 2’s strategies is Y (hereafter referred to as player 2’s strategy
space) is a pair (x∗, y∗) such that x∗ ∈ X, y∗ ∈ Y , and

u1(x
∗, y∗) ≥ u1(x, y

∗), ∀x ∈ X, (4)
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u2(x
∗, y∗) ≥ u2(x

∗, y), ∀y ∈ Y. (5)

(The last two inequalities are called incentive compatibility conditions.)

More generally, given y ∈ Y , we say that x∗ ∈ X is player 1’s best
response against y if

u1(x
∗, y) ≥ u1(x, y), ∀x ∈ X. (6)

If for all y ∈ Y , there exists a unique player 1’s best response against
y, then we can write x∗ = r1(y), and refer to r1(·) as player 1’s reaction
function. Similarly, given x ∈ X, we say that y∗ ∈ Y is player 2’s best
response against x if

u2(x, y
∗) ≥ u1(x, y), ∀y ∈ Y. (7)

If for all x ∈ X, there exists a unique player 2’s best response against
x, then we can write y∗ = r2(x), and refer to r2(·) as player 2’s reac-
tion function. Apparently, if the two-player game has a unique Nash
equilibrium (x∗, y∗), then it must be that

r1(y
∗) = x∗, y∗ = r2(x

∗). (8)

That is, the unique NE must appear at the intersection of the two
reaction functions.

5. Example 3. (How to solve a mixed-strategy NE?) Now we look
for the NE of the game described in Example 2. By definition, it is a
pair (q∗1, q

∗
2), such that given q∗2, q

∗
1 is profit maximizing for firm 1, and

given q∗1, q
∗
2 is profit maximizing for firm 2. The procedure is first to

find the best response ri for firm i given any possible qj, for i, j = 1, 2,
i ̸= j. Then, the NE can be obtained by finding the intersection of the
two reaction functions. So, consider step 1. To solve for ri(·), given
any qj, consider firm i’s problem of finding its profit-maximizing supply
quantity:

max
qi

qi(1− qi − qj),

and the (necessary and sufficient) first-order condition gives

ri(qj) =
1− qj

2
.

3



(The reaction function is well-defined because given each qj, there exists
exactly 1 optimal qi for firm i.) Now, consider step 2. By definition,
an NE (q∗1, q

∗
2) is located at the intersection of the two firms’ reaction

functions. Thus (q∗1, q
∗
2) must satisfy

r1(q
∗
2) = q∗1, r2(q

∗
1) = q∗2. (9)

Solving, we obtain the Nash equilibrium for the above Cournot game:

(q∗1, q
∗
2) = (

1

3
,
1

3
).

6. Recall Example 1, where player 1 can play U or D, and player 2 can
play L or R. A mixed strategy for player 1 is a probability distribution
over U and D, and a mixed strategy for player 2 is a probability distri-
bution over L and R. For example, playing U and D with probabilities
1
2
and 1

2
is one mixed strategy for player 1, and playing U and D with

probabilities 1
3
and 2

3
is another mixed strategy for player 1. Appar-

ently, each player has an infinite number of different mixed strategies.
A mixed strategy Nash equilibrium (p, q) of this game is a pair of the two
players’ mixed strategies, such that player 1 plays U with probability
p ∈ (0, 1) and player 2 plays L with probability q ∈ (0, 1), and such
that player 2’s mixed strategy makes player 1 feel indifferent about U
and D, and player 1’s mixed strategy makes player 2 feels indifferent
about L and R; that is, the following incentive compatibility conditions
hold:

qu1(U,L) + (1− q)u1(U,R) = qu1(D,L) + (1− q)u1(D,R), (10)

pu2(U,L) + (1− p)u2(D,L) = pu2(U,R) + (1− p)u2(D,R). (11)

There is an obvious reason for the above two equations: if given his
rival’s mixed strategy, a player strictly prefers one pure strategy to
the other, then he will assign zero probability to the latter; that is, a
mixed strategy can never be his best response. Thus in a mixed strategy
Nash equilibrium, where each player assigns a positive probability to
every pure strategy, a player has to feel indifferent about his two pure
strategies.1

1Consider a two-player game, where the two must pick an integer from the set
{1, 2, · · · , 100} at the same time. If they pick the same number, then they each get 1;
or else, they each get zero. Find the pure strategy NE’s. Find the mixed strategy NE’s.
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7. (Dynamic Game with Complete Information.) The games ap-
pearing in Examples 1 and 2 are called simultaneous games, because
players move at the same time in those games. In a sequential game,
on the other hand, players take turns to move. Sequential games are
usually described in extensive form and represented by a game tree. A
game tree is composed of a collection of decision nodes (with one player
being assigned to each decision node) and a set of branches connecting
those nodes, where the branches leaving a decision node represent the
actions available to the decision maker residing at that decision node.
For example, consider the following game tree:

(1)—



Up— (2)—

 Right— (0, 1)

Left— (−1, 2)
...

Down— (2)—

 Right— (2,−1)

Left— (−2,−2)

In this game tree, the first mover’s (player 1’s) decision node is the
root of the tree, and each of the two pure strategies available to the
first mover is represented by a branch emanating from that decision
node. These branches, labeled up and down respectively, lead to the
second mover’s decision nodes. Note that player 2’s two decision nodes
are connected by a dotted line, which says that player 2, when deter-
mining her own moves, does not know whether player 1 has moved up
or down. Thus these two decision nodes define player 2’s information
set at the time player 2 must choose between right and left. Formally,
an information set is a set of decision nodes for a player, who, while
knowing that he is sitting on one of those nodes contained in the infor-
mation set, cannot tell which node in the information set he is exactly
sitting on.

The remaining game tree starting from a singleton information set is
called a subgame of the original game. In the above game tree, only
the root of the tree is a singleton information set, and hence the only
subgame in this game tree is the original game itself. If we modify
that game tree by removing the dotted line connecting player 2’s two
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decision nodes, then we obtain two more singleton information sets, and
hence the game would contain three subgames (including the original
game) following the modification.

From each player’s perspective, a feasible pure strategy must prescribe
one feasible action at each information set where the player is called
upon to make a move. Thus a pure strategy can be very complex when
a player must move more than once in a sequential game. Again, the set
of feasible pure strategies for a player is then called the player’s strat-
egy space, and a mixed strategy for the player is simply a probability
distribution over the player’s strategy space.

A subgame-perfect Nash equilibrium (SPNE) is an NE for a game
in extensive form, which specifies NE strategies in each and every sub-
game. The following example clarifies the difference between an NE
and an SPNE.

8. (Difference between NE and SPNE). M is the owner-manager of a
firm which is protected by limited liability against its creditor(s). The
debt due one year from now has a face value equal to $10. There is a
single debtholder, referred to as C. The total assets in place are worth
only $8 in one year. Just now, a new investment opportunity with
NPV=x > 1 + e > 1 became available, which requires that M make
an unobservable effort but no addition investment. Making the effort
would incur a disutility e > 0 to M. M has told C that he will make
the effort for the new investment project only if C agrees to reduce the
face value of debt by $1. The extensive game proceeds as follows. First
C can accept (A) or reject (R) M’s request. Then, M can choose to (I)
or not to (N) make the effort. Both M and C are risk-neutral without
time preferences.
(i) Suppose x > 2 + e. Show that there is an NE in which the creditor
agrees to reduce the face value of debt and M makes the investment.
(ii) Show that the NE in (i) is not an SPNE. Find an SPNE.
(iii) How may your conclusion about (ii) change if x ∈ (1 + e, 2 + e]?
(iv) Define bankruptcy as a state where the firm’s equity value drops
to zero. Explain why bankruptcy does not take place in (iii).

Solution. Note that M can choose one action following A and another
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action following R. Hence C has 2 pure strategies, A and R, but M has
4 pure strategies (

A → I
R → I

)
,

(
A → N
R → N

)
,

(
A → I
R → N

)
,

and (
A → N
R → I

)
.

The normal-form bimatrix is as follows.

M/C A R(
A → I
R → I

)
(x− 1− e, 9) (max(x− 2, 0)− e,min(8 + x, 10))(

A → N
R → N

)
(0, 8) (0, 8)(

A → I
R → N

)
(x− 1− e, 9) (0, 8)(

A → N
R → I

)
(0, 8) (max(x− 2, 0)− e,min(8 + x, 10))

In part (i), the strategy profile

(

(
A → I
R → N

)
, A)

is indeed a pure strategy Nash equilibrium. However, it is not an
SPNE: given that C has chosen R, M would be better off choosing
I over N. Things are different in part (iii), where the above strategy
profile becomes an SPNE.

9. (Repeated Game and a Folk Theorem.) Consider the following
strategic game G(1), which is referred to as the Prisoner’s Dilemma:
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player 1/player 2 C D
C 1,1 -3,2
D 2,-3 0,0

This game has a unique NE, where both players choose to play D.
Note that the outcome (D,D) is Pareto dominated by the outcome
(C,C). Suppose that G(1) is repeated for an infinite number of times,
and let us call this dynamic game G(∞). A player’s payoff in G(∞) is∑∞

k=1 ρ
k−1u(k), where u(k) is the player’s payoff from playing G(1) for

the k-th time in G(∞), and ρ ∈ (0, 1) is a constant representing the
player’s discount factor.

Our main point here is that when the two players get to play G(1) for
an infinite number of times, then it is possible that in an SPNE the
two players play (C,C) in each and every stage of G(∞), as long as
ρ is sufficiently close to 1. Indeed, imagine that they will continue to
play (C,C) until one of them has played D in the past, and after the
latter event, they then play the NE (D,D) in G(1) forever (the latter
is referred to as the trigger strategy). It can be verified easily that this
does constitute an NE for G(∞), and since it specifies NE strategies
for the two players in each and every subgme in G(∞), it is not only
an NE, but also an SPNE!

To get a lower bound for ρ so that (C,C) can be sustained in an SPNE,
let π denote a player’s equilibrium payoff

∑∞
k=1 ρ

k−1u(k). Then, we
have

π = 1 + ρπ ⇒ π =
1

1− ρ
.

In order that a player does not wish to deviate, we need

π > 2 +
ρ · 0
1− ρ

⇒ ρ ≥ 1

2
.

The idea is that, as long as ρ is big enough, the two players will take
future retaliation into serious account when they are considering uni-
lateral deviations from the tacit agreement that they should play (C,C)
in each and every stage. This idea has been formalized and given the
name Folk Theorem by game theorists, and the folk theorem will be
useful for us to understand Dinc (2000).
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10. The preceding section has considered infinitely repeated games. Now,
let us consider finitely repeated games. Call the game in Example 1
G(1), and consider G(2) and G(3), where for simplicity let us assume
that ρ = 1. It can be verified that (U,L) cannot be sustained as an
equilibrium outcome in any stage of G(2), but it can appear in the first-
stage equilibrium of G(3). Indeed, suppose that in an SPNE of G(3),
the two players will play (U,L) in stage 1, and then (U,R) in stage 2,
and then (D,L) in stage 3. If instead (U,R) was played in stage 1, then
(D,L) would be played in the remaining 2 stages; and if instead (D,L)
was played in stage 1, then (U,R) would be played in the remaining 2
stages. It can be verified that neither player 1 nor player 2 wishes to
deviate in the first stage from playing (U,L). The lesson here is that, in
order for the threat of future retaliation to influence the two players’
current behavior, the two players must expect to interact in the future
for a sufficiently large number of times.

11. (Static Game with Incomplete Information.) In the above we
have assumed that players know the payoff functions of each other.
Such a game is a game with complete (or symmetric) information.
What if at least one player in the game does not know for sure another
player’s payoff function? We call it a game with information asym-
metry, or a game with incomplete information, or simply a Bayesian
game. In a Bayesian game, at least one player Z has more than one
possible payoff function. We say that this player Z has more than one
type. At least one other player W cannot be sure which type player
Z has. In this case, we shall look for an equilibrium called Bayesian
equilibrium (BE). This is nothing but a Nash equilibrium of an en-
larged version of the original game, where each different type of Z is
treated as a distinct player.

To give a concrete example, suppose that we have a two-player game
where player 1’s strategy space is X and player 2’s strategy space is Y ,
and player 2 has two possible types (or two possible payoff functions),
θ1 and θ2, which, from player 1’s perspective, may occur with probabili-
ties π1 and π2 respectively. Certainly, player 2 knows his own type. For
all x ∈ X, y ∈ Y , and θ ∈ {θ1, θ2}, let u1(x, y) be player 1’s payoff, and
u2(x, y; θ) the type-θ player 2’s payoff. (This is referred to as a private-
value model. If u1 also depends on θ, then this is a common-value
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model.) A Bayesian equilibrium for this two-player game is nothing
but the Nash equilibrium of the three-player game where the two types
of player 2 are treated as two different players. Thus a Bayesian equi-
librium is a triple (x∗, y∗1, y

∗
2) such that x∗ ∈ X, y∗1 ∈ Y , y∗2 ∈ Y , and

the following three incentive compatibility conditions hold:

π1u1(x
∗, y∗1) + π2u1(x

∗, y∗2) ≥ π1u1(x, y
∗
1) + π2u1(x, y

∗
2), ∀x ∈ X; (12)

u2(x
∗, y∗1; θ1) ≥ u2(x

∗, y; θ1), ∀y ∈ Y ; (13)

u2(x
∗, y∗2; θ2) ≥ u2(x

∗, y; θ2), ∀y ∈ Y. (14)

In words, x∗ is player 1’s best response, which is on average the optimal
strategic choice of player 1. It is not really player 1’s best response
against player 2 if player 1 is sure that player 2 will use y∗1. Neither is
it player 1’s best response against player 2 if player 1 is sure that player
2 will use y∗2. Since player 1 can only choose one x in X to play against
two possible types of player 2, given his conjecture of (y∗1, y

∗
2), the choice

x∗ must be on average optimal. On the other hand, player 2 knows
his own type, and his best response against player 1’s average optimal
choice x∗ depends on his type. Note that θ denotes player 2’s type, and
it determines u2(x, y)! This is why we say that incomplete information
in this game is equivalent to player 1 not knowing player 2’s payoff
function. Again, player 1’s average optimal choice x∗, player 2’s best
response y∗1 when his type is θ1, and player 2’s best response y∗2 when his
type is θ2, must altogether form a Nash equilibrium. This three-player
Nash equilibrium is what we defined as the Bayesian equilibrium.

12. Example 4. (How to solve for a BE?) Let us modify Example 2
by assuming a random demand curve. More precisely, let the inverse
demand curve be

P (q1 + q2) = ã− q1 − q2, (15)

where only firm 1 knows the outcome of the random variable ã. Firm
2 only knows that ã may be 2 with prob. 1

3
or 4 with prob. 2

3
. Find a

BE.
Solution. First observe that firm 1 has two possible types. Firm 2
has only one type (no private information). So, we should consider
a three-firm game, where the two types of firm 1 will be regarded as
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two different players, and then we look for the NE of the new 3-player
game. By definition, we must find three strategies q∗1(2), q

∗
1(4), and q∗2.

These 3 strategies are such that, given any two of them, the third one
is the corresponding player’s best response!

In other words, for firm 2,

q∗2 = argmax
q2

1

3
[q2(2− q∗1(2)− q2)] +

2

3
[q2(4− q∗1(4)− q2)].

Similarly, for the firm 1 that has seen ã = 2,

q∗1(2) = argmax
q1

q1(2− q1 − q∗2);

and for the firm 1 that has seen ã = 4,

q∗1(4) = argmax
q1

q1(4− q1 − q∗2).

Each of the above three maximization problems is concave, and so
the 3 first-order conditions are necessary and sufficient. Each first-
order condition gives a reaction function for one of the player. Again,
the NE must appear at the intersection of the 3 reaction functions.
Solving, the NE of the 3-player game, or the BE of the original game
with information asymmetry, is the following:

(q∗1(2), q
∗
1(4), q

∗
2) = (

4

9
,
13

9
,
10

9
).

13. Example 5. Two players, 1 and 2, are playing the following Bayesian
game. Player 1 knows which normal form game he is playing, but player
2 thinks that both normal forms are equally likely. Find a BE.

1/2 a b
A 0,0 1,2
B 2,1 0,0

1/2 a b
A 0,0 0,0
B 2,1 0,0
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Solution Let us look for pure strategy BE’s first. Call the player
1 knowing for sure that he is playing the first normal form game the
“type-1” player 1. Similarly, call the player 1 knowing that he is playing
the second normal form game the “type-2” player 1.
First we ask, “Is there a BE where player 2 plays a with probability
one?” Suppose that such a BE exists. Then in the BE, player 2 plays
a, and given a, it can be easily verified that player 1’s best response is
B regardless of his type. On the other hand, given that both types of
player 1 will play B, it can be easily verified that a is indeed player 2’s
best response. Thus such a BE does exist, where both types of player
1 play B and player 2 plays a.
Next we ask, “Is there a BE where player 2 plays b with probability
one?” If such a BE exists, then in equilibrium player 1 plays A if he is
of type 1 and he feels indifferent about A and B if he is of type 2. One
can check that given the two types of player 1’s strategies, playing b is
indeed a best response for player 2. Thus such a BE also exists, where
player 2 plays b, the type-1 player 1 plays A, and the type-2 randomizes
in any way over A and B.
Finally, let us determine if there are BE’s where player 2 randomizes
over a and b. Suppose that player 2 plays a with prob. π ∈ (0, 1). Then
the type-2 player 1’s best response is B for sure, but the type-1 player
1’s best response is A if π < 1

3
; B if π > 1

3
; and A and B if π = 1

3
. On

the other hand, player 2 will not feel indifferent about a and b unless
the type-1 player 1 also randomizes over A and B. Let η be the prob.
that the type-1 player 1 chooses A. It can be easily shown that π = 1

3

and η = 2
3
together with the type-2 player 1’s playing B constitutes the

unique BE in this remaining case.

14. Now we give a formal defintion of Bayesian game.
(Common Knowledge and Private Information.) Given a game,
an event is mutual knowledge if every player knows it. Given a game, an
event is called the players’ common knowledge if every player knows it,
everyone knows that everyone knows it, everyone knows that everyone
knows that everyone knows it, and so on. (When there is uncertainty,
then an event may be mutual or common knowledge in one state but not
in another state, and hence we must specify the state of nature when
we talk about mutual knowledge or common knowledge.) Anything
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which is not common knowledge is some player’s private information.
A player’s private information is also called his type. A game where no
players have private information (everything relevant is common knowl-
edge) is a game with complete information. Otherwise, the game is one
with incomplete information, or one with information asymmetry.

15. Dynamic Games with Incomplete Information. An incomplete-
information game where the uninformed players can move after observ-
ing the informed players’ moves is called a dynamic game, and otherwise
a static game.

16. Signaling Game. A dynamic Bayesian game is called a signalling
game if there are only two players, informed and uninformed, and the
uninformed moves after seeing the informed’s move, and the game ends
once the uninformed makes his move.

17. (The Signaling Game of Beer and Quiche.) Two cowboys A and
B meet in a bar, and A may be weak (w) or strong (s), which is A’s
private information. The game proceeds as follows. A first decides to
order either a beer (b) or a quiche (q), and upon observing A’s order,
B decides to or not to fight A. We assume that in the absence of B, A
prefers beer (b) to quiche (q) if he is (s), otherwise he prefers (q) to
(b). The prior beliefs of B are such that A is (s) with probability 0.9.
Now the payoffs: if A orders and eats something he dislikes, he gets 0,
or else he gets 1, if B does not fight A, A gets an additional payoff of
2. On the other hand, B gets 1 if he has no chance to fight, gets 2 if
he fights A and A is of the weak type, and gets zero if he fights A and
A is of the strong type.

This game has two pooling PBE’s:
(1) Equilibrium (B): Both types of A order a beer and B’s strategy
is to fight A if and only if he sees A order a quiche. What are the
supporting beliefs? Let f(s) =pro.(A is strong| A orders s), for all
s ∈ {b, q}. Then of course f(b) = 0.9. Note that s = q is a zero
probability event. Recall that Bayes Law says

P (E|F )P (F ) = P (E
∩

F ),
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where E and F are two random events. From the probability theory,
we know that for any two events C and D,

C ⊂ D ⇒ P (C) ≤ P (D).

Thus we have
P (F ) = 0 ⇒ P (E

∩
F ) = 0,

since E
∩
F ⊂ F . Thus given P (F ) = 0, Bayes Law requires

P (E|F ) · 0 = 0,

and hence P (E|F ) can be anything contained in [0, 1]. Let E be the
event that A is of the strong type, and F the event that B has observed
that A ordered a quiche. We conclude that any f(q) ∈ [0, 1] will be
consistent with Bayes Law in this case. We must find at least one
f(q) ∈ [0, 1] so that the above strategy profile does constitute the two
players’ best responses against each other. Note that for B to fight A
after seeing A order a quiche, it is necessary that

1 ≤ f(q) · 0 + [1− f(q)] · 2 ⇒ f(q) ≤ 1

2
.

Now we show that given the beliefs f(b) = 0.9 and f(q) being anything
in [0, 1

2
], the aforementioned A’s and B’s strategies are respectively the

two players best responses. For A, if his type is (s), he gets 1+2 = 3 if
he orders a beer, and if he deviates and orders a quiche, then not only
he eats something he hates but he also must fight B, yielding a payoff
of 0 + 0 = 0. Thus A will not deviate if he is of type (s). What if A is
of type (w)? If he orders a beer, then he must eat something he hates,
but the good news is that he can avoid fighting B, so that his payoff
is 0 + 2 = 2; and if he deviates and orders a quiche, then he will have
to fight B, so that his payoff is 1 + 0 = 1. We conclude that the weak
type of A does not want to deviate either. What about B? We have
shown that given f(q) ≤ 1

2
, fighting A if A dares to order the quiche is

really optimal for B. On the other hand, if A orders a beer, then since
B expects both types of A to do so, ordering the beer really does not
tell B anything new, and B’s posterior beliefs are identical to his prior
beliefs (A is of the strong type with prob. 0.9), and so not to fight A
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is optimal for B.
To sum up, we have shown that the following is a PBE (check if it
corresponds to our definition of a PBE!):
(i) The strong type of A orders a beer;
(ii) The weak type of A also orders a beer;
(iii) B’s strategy must describe what he will do in every possible con-
tingency: B will fight A if A ordered a quiche, and B will not fight A
if A ordered a beer;
(iv) The supporting beliefs fully describe what B thinks of A in every
possible contingency: B thinks that A is of the strong type with prob.
0.9 if he sees A order a beer; and B thinks that A is of the strong type
with prob. f(q) if he sees A order a quiche, where f(q) is any real
number contained in [0, 1

2
].

(2) Equilibrium (Q): Both types of A order a quiche and B’s strategy
is to fight A if and only if he sees A order a beer. What are the support-
ing beliefs? Let f(s) =pro.(A is strong| A orders s), for all s ∈ {b, q}.
Then of course f(q) = 0.9. Now for f(b) to induce B to fight A after
seeing A order a beer, it is necessary that

1 ≤ f(b) · 0 + [1− f(b)] · 2 ⇒ f(b) ≤ 1

2
.

Now we show that given the beliefs f(q) = 0.9 and f(b) being anything
in [0, 1

2
], the aforementioned A’s and B’s strategies are respectively the

two players best responses. For A, if his type is (w), he gets 1+2 = 3 if
he orders a quiche, and if he deviates and orders a beer, then not only
he eats something he hates but he also must fight B, yielding a payoff
of 0 + 0 = 0. Thus A will not deviate if he is of type (w). What if A
is of type (s)? If he orders a quiche, then he must eat something he
hates, but the good news is that he can avoid fighting with B, so that
his payoff is 0+2 = 2; and if he deviates and orders a beer, then he will
have to fight B, so that his payoff is 1 + 0 = 1. We conclude that the
strong type of A does not want to deviate either. What about B? We
have shown that given f(b) ≤ 1

2
, fighting A if A dares to order the beer

is really optimal for B. On the other hand, if A orders a quiche, then
since B expects both types of A to do so in equilibrium, ordering the
quiche really does not tell B anything new about A, and B’s posterior
beliefs are identical to his prior beliefs (A is of the strong type with
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prob. 0.9), and so not to fight A is optimal for B.
To sum up, we have shown that the following is a PBE (check if it
corresponds to our definition of a PBE!):
(i) The strong type of A orders a quiche;
(ii) The weak type of A also orders a quiche;
(iii) B’s strategy must describe what he will do in every possible con-
tingency: B will fight A if A ordered a beer, and B will not fight A if
A ordered a quiche;
(iv) The supporting beliefs fully describe what B thinks of A in every
possible contingency: B thinks that A is of the strong type with prob.
0.9 if he sees A order a quiche; and B thinks that A is of the strong
type with prob. f(b) if he sees A order a beer, where f(b) is any real
number contained in [0, 1

2
].

18. According to Cho and Kreps, some PBEs may involve implausible sup-
porting beliefs and should be disregarded. To demonstrate Kreps’ idea,
consider Equilibrium (Q) in the previous section. There, B knows that
ex-ante A may be strong with prob. 0.9 and A hates the quiche if he is
strong, and yet B still thinks that A is more likely to be the weak type
when he sees A deviate by ordering the beer. Consider the speech that
the strong-type of A would have made to B if he were allowed to: I am
having beer, so I am the strong type. To see this, note that if I were
the weak type, I would have got 3 by having the quiche, and a weak
type could never get a payoff of 3 by having beer, which is so no matter
how you may respond after the beer is ordered! Moreover, if this speech
can convince you that I am strong, then I expect you to not fight me,
so that, as a strong type, I have the beer that I like and I do not have
to fight you. In fact, I expect to get 3 if this communication works,
and that is why I am having beer.....

These two suppositions
(i) the weak type of A is absolutely better off by not deviating; and
(ii) if supposition (i) is accepted then the strong type of A is expected to
be treated in a better way by B that justifies the strong type’s deviation
in the first place,
comprises the so-called intuitive criterion.

19. Cho-Kreps Equilibrium. Those PBE’s survive the intuitive criterion
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are called intuitive equilibria. (A formal treatment will be given
below when we introduce the divine equilibria.)

20. We now show that in the game of beer and quiche, only Equilibrium
(B) is intuitive. By definition, a PBE is intuitive, if either (i) we can-
not find a deviation which certain types of the informed player would
never make; or (ii) we can find a deviation which certain types of the
informed player would never make, but by restricting to the supporting
beliefs that assign zero prob. to these types, we still cannot find a type
of the informed player that strictly prefers to deviate.
Take equilibrium (Q) for example. The equilibrium, by assumption, in-
volves both types of A playing the strategy (q), but as we stated above,
by having beer, the weak type of A can at best get the payoff 2 (which
occurs if B decides not to fight A following an order of beer). Thus the
weak type of A strictly prefer his equilibrium action to strategy (b).
Now all reasonable beliefs should assign zero prob.’s to the weak type
of A following an order of beer from A. That means that there is only
one reasonable belief, the belief that assigns prob. 1 to the strong type
of A after beer is ordered. Given this belief, B is expected to behave
optimally, which is not to fight A. But then the strong type of A can get
the payoff 3 by deviating from (q), while he gets 2 by ordering quiche.
Thus the strong type of A would strictly prefer to deviate from (q),
proving that equilibrium (Q) is not intuitive. This shows that both of
the suppositions defined above hold for this equilibrium, so that this
PBE fails the intuitive criterion, and it is not an intuitive equilibrium.

21. Next let us ask if equilibrium (B) is intuitive. Having observed the
deviation (q), can we conclude that at least one type of A would never
have done this? Apparently, the strong type has obtained a payoff
of 3 on the equilibrium path, and by deviating and ordering (q), he
could get no more than 2. Thus the strong type of A strictly prefers
his equilibrium payoff to what he could get by deviating and ordering
quiche. In this case, any reasonable beliefs after quiche is ordered
should assign prob. 1 to the weak type of A. Now what is the best
response of B given this reasonable belief? Of course B should fight A!
But then, even the weak type of A could not gain by deviating from
(b) to order (q)! To sum up, Cho-Kreps’ first supposition holds but
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the second supposition fails for this PBE, and hence this PBE survives
from Cho-Kreps’ intuitive criterion. Thus this PBE is an intuitive
equilibrium.

22. Classification of games. So far, we have been able to classify games
into 4 groups according to whether they are one-shot (static) or dy-
namic games, and whether there are privately informed players in the
games. The following table summarizes the appropriate equilibrium
concepts:

information/time horizon static dynamic
complete NE SPNE
incomplete BE PBE

23. Let us now practice PBE and intuitive equilibrium. In each game
that follows, player 1 has two equally likely types, denoted by t1 and
t2, and given his type, player 1 must send a signal. There are three
possible signals that player 1 can choose, which are m1,m2, and m3.
Upon seeing the signal selected by player 1, player 2 must then form
a posterior belief about player 1’s type, and given her belief, player 2
must take an action. There are three feasible actions for player 2, which
are a1, a2, or a3. The game ends after player 2 chooses her action.

Each signalling game below is depicted by three tables. The k-th ta-
ble gives the two players’ payoffs in the event that player 1 chooses to
send signal mk; k = 1, 2, 3. As you can see, player 1’s payoff not only
depends on the two players’ actions, it also depends on player 1’s type.
For example, in the first table appearing in Problem 1 below, player 1
gets 2 and player 2 gets 1 if player 1 is of type t1 and he sends signal
m1, and player 2 responds by taking action a1; and in the second table,
player 1 gets 0 and player 2 gets 6 if player 1 is of type t2 and he sends
signal m2, and player 2 responds by taking action a3.

2

2Recall that a PBE is defined as:
(A) a strategy for player 1, which specifies one mk for each type ti;
(B) a strategy for player 2, which specifies one aj for each mk; and
(C) a posterior belief for player 2, which specifies one probability distribution on the set
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(a) Find the PBEs:

m1 a1 a2 a3
t1 (2, 1) (2, 0) (0, 2)
t2 (1, 3) (2, 0) (2, 1)

m2 a1 a2 a3
t1 (3, 1) (1, 0) (0, 0)
t2 (2, 1) (0, 0) (0, 6)

m3 a1 a2 a3
t1 (1, 2) (1, 1) (3, 0)
t2 (0, 2) (3, 1) (1, 1)

(b) Find the PBEs:

m1 a1 a2 a3
t1 (1, 2) (2, 2) (0, 3)
t2 (2, 2) (1, 4) (3, 2)

m2 a1 a2 a3
t1 (1, 2) (1, 1) (2, 1)
t2 (2, 2) (0, 4) (3, 1)

m3 a1 a2 a3
t1 (3, 1) (0, 0) (2, 1)
t2 (2, 2) (0, 0) (2, 1)

(c) Find intuitive equilibria:

m1 a1 a2 a3
t1 (0, 3) (2, 2) (2, 1)
t2 (1, 0) (3, 2) (2, 1)

{t1, t2} for each mk, and moreover, (A), (B) and (C) must also satisfy:
(1) the aj specified in (B) after player 2 sees mk must be expected-utility-maximizing for
player 2 given player 2’s posterior belief specified in (C); and
(2) the mk specified in (A) for type ti must be expected-utility-maximizing for player 1 of
type ti, given that player 2’s strategy is specified in (B).
This is a complicated definition. However, a definition is a definition. So, when you report
that a PBE is found, you must make sure that you report (A),(B) and (C), and you must
also verify that (A), (B) and (C) satisfy (1) and (2)!
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m2 a1 a2 a3
t1 (1, 2) (2, 1) (3, 0)
t2 (0, 1) (3, 1) (2, 6)

m3 a1 a2 a3
t1 (1, 6) (4, 1) (2, 0)
t2 (0, 0) (4, 1) (0, 6)

24. Now we consider a sequence of applications in corporate finance and
security trading.

25. (Seasoned Equity Offering.) Firm A has a single owner-manager Mr.
A, who needs to raise $100 in order to take a positive NPV project.
There are two possible states, called G and B. In state G, the assets in
place of firm A worth $150 and the new project’s NPV equals $20. In
state B, the assets in place worth only $50 and the NPV is accordingly
$10. The state is Mr. A’s private information. The public investors
think that the state is G with prob. a, and they are Bertrand com-
petitive. The game proceeds as follows. The firm chooses to or not to
issue new equity. If new equity is issued, the public investors ask for
a proportion of ownership with value equal to $100. Find all the pure
strategy PBE’s of this signaling game.
Solution. We first look for separating equilibria. Suppose there were
a separating PBE where only type G issues new equity. Then in ex-
change of the $100 raised, the outsiders ask for a share α = 100

150+20+100

of the ownership. The type B firm will deviate: By issuing, the insider
gets

(1− 100

150 + 20 + 100
)(50 + 10 + 100) = 100.74,

which is greater than 50, the value of type B firm if passing on the
new project. Hence, there is no such separating equilibrium. Now,
suppose there were a separating PBE where only type B issues new
equity. Then, the public investors would ask for a share of ownership
equal to 100

10+50+100
. Type B insider would indeed want to issue: By

issuing, he gets

(1− 100

10 + 50 + 100
)(100 + 50 + 10) = 60,
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greater than 50. On the other hand, type G insider would not issue if
and only if

(1− 100

10 + 50 + 100
)(100 + 150 + 20) = 101.25 < 150,

which indeed is true. Thus this separating equilibrium does exist.

Next, we look for pooling equilibria. Suppose that in equilibrium nei-
ther type issues new equity. But then type B wants to deviate: By
issuing, type B cannot do worse than being identified, but even in that
case, issuing is preferred to not issuing. Therefore there is no such
pooling equilibrium. Suppose now that in equilibrium both types is-
sue. The fair share of ownership that outsiders would ask for (assuming
risk neutrality of outsiders), α, solves

α[a(150 + 20 + 100) + (1− a)(50 + 10 + 100)] = 100,

and hence

α =
100

160 + 110a
.

Type G insider must be willing to issue in equilibrium:

(1− 100

160 + 110a
)(100 + 150 + 20) > 150;

and so must type B insider:

(1− 100

160 + 110a
)(100 + 50 + 10) > 50.

(Note that the outsiders’ beliefs following the off-equilibrium signal
“not issuing” is irrelevant here.) Thus the pooling equilibrium exists
if a > 13

22
. In this game, both pure strategy PBE’s are robust against

Cho and Kreps’ intuitive criterion.

Remark. This example shows several things. First, financing does
interfere with investment. If the firm is financed by retained earnings
(internal equity), then it will accept the new project for sure. External
financing involves the problem of adverse selection, and the high-quality
firm is hurt by the presence of low-quality firm. In equilibrium, issu-
ing new equity either has no information content about firm quality,
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or it is interpreted as bad news. Second, note that in a separating
equilibrium, the efficiency is not the same as the full-information equi-
librium. Although information is symmetrized in a separating equi-
librium, the high-quality firm has to go through a painful signaling
process, so painful that it may have to give up the new investment
opportunity completely.

26. (Share Repurchase.) Firm YGO is all-equity financed, and it has
three shareholders, the manager M and two outside investors O and
Z, each holding one share of the equity. All investors are risk neutral
without time preference.

It is common knowledge that the firm has 20-dollar cash at date 0,
and the firm will generate cash x̃ at date 1, which is either 40 dollars
(with probability π) or 25 dollars. At date 0, M privately learns the
realization of x̃.

At date 0, O and Z both know that M is considering buying back one
share from O and Z. The game proceeds as follows. First, M decides
to or not to repurchase 1 share from either O or Z (signaling with
two possible signals!). If M announces the share repurchase program,
then O and Z compete in price to tender one share to M. Competition
between O and Z ensures that the stock price P equals one-third of the
expected value of the firm (expectation is taken using the information
revealed by M’s announcement). Clearly, in any PBE, P ≤ 20 (why?).
(i) Show that before this signaling game gets started at date 0, the
stock price is P−1 = 15 + 5π.
(ii) Show that this game has a unique separating PBE. Find the date-0
stock price P0(j) in the separating equilibrium, where j = r (denoting
the event that M announces a share repurchase program) or j = nr
(denoting the event that M does not announce the share repurchase
program). Show that P0(r) > P−1 > P0(nr).
(iii) Show that this game has a unique pooling PBE where M does not
repurchase shares regardless of M’s type.
(iv) Explain why P−1 > P0(nr), when apparently no public information
arrives at the stock market at date 0. (The finance literature has raised
the question why no bad news was found to arrive at the U.S. stock
market before the 1987 crash.)

22



Solution.
Since the total cash at date 1 cannot exceed 20+40=60, we know that
P ≤ 20. Consider part (i). At date 0, when all three investors are
equally uninformed, the stock price is

1

3
[π(20 + 40) + (1− π)(20 + 25)] = 15 + 5π.

Consider part (ii). First consider the separating PBE where the type-
40 firm announces share repurchase but the type-25 firm chooses not
to. In such a PBE, announcing share repurchase is taken by O and
Z as direct evidence that the firm is of type 40, and hence the share
price is 20. Since the share is fairly priced for the type-40 M, he has
no incentive not to announce share repurchase: paying 20 to either O
and Z, and dividing the date-1 cash flow 40 between the remaining two
shares, M will get 20, which is also his payoff if he just sits back and
does nothing. Will the type-25 M want to announce share repurchase
also? If he does not, then he waits to get his share of cash flow at date
1, which is 1

3
[20 + 25] = 15; but if he announces share repurchase and

gets accepted by either O or Z, then he gets

1

2
[20 + 25− 20] = 12.5 < 15.

Thus such a separating PBE does exist.

Next consider the other type of separating PBE. If share repurchase
announcement is taken as evidence that the firm is of type 25, then the
transaction price will be 1

3
[20+ 25] = 15, following O and Z’s Bertrand

competition. But then the type-40 firm has an incentive to deviate:
M’s payoff would become

1

2
[20 + 40− 15] = 22.5 > 20,

where 20 is what the type-40 M would get if M follows his supposed
equilibrium strategy of announcing nothing. We conclude that the
separating PBE of this game is unique.

Consider part (iii). Consider the pooling PBE where M never an-
nounces share repurchase. If deviation occurs, let µ be the probability

23



that O and Z assign to the type-40 M. Then the transaction price fol-
lowing O and Z’s Bertrand competition would be

P =
1

3
[60µ+ 45(1− µ)] = 15 + 5µ.

Apparently, the type-40 M would deviate unless µ = 1. This defines a
pooling PBE. Is there the other PBE where M always announces share
repurchase? The answer is negative, for if otherwise the equilibrium
transaction price will again be 15+5π < 20, so that the type-40 M will
deviate.

Finally, consider part (iv). When “trapped” in the above separating
PBE, no news is taken as bad news by the stock market, and hence the
date-0 stock price P0(nr) drops below P−1. The investors (O and Z in
our example) believe that the firm will repurchase shares if and only if
M receives good news. Game theory and information economics have
offered one useful explanation to the documented phenomenon that no
bad news was known to arrive in the U.S. stock market during the week
before the 1987 crash.

27. (Screening Game.) A monopolistic commercial bank is facing two
types of borrowers: with probability πi, the borrower is of type θi, and
by investing qi dollars today, that borrower will generate θiV (qi) dollars
(for sure) tomorrow.

The bank’s problem can be stated as

(P) max
(qi,Ti), i=1,2,···,n

n∑
i=1

πi[Ti − cqi]

subject to{
(IC) ∀i, j ∈ {1, 2}, θiV (qi)− Ti ≥ θiV (qj)− Tj;
(IR) ∀i ∈ {1, 2}, θiV (qi)− Ti ≥ 0.

In plain words, the bank will lend qi dollars to the type-θi borrower,
and require a repayment Ti tomorrow; we are assuming that nobody
has a time preference.
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It can be shown that, if

V ′(0) >
c

θi
> V ′(+∞) ≡ lim

y↑+∞
V ′(y),

then the socially efficient level of lending q∗i for the type-θi borrower,
which maximizes θiV (q)− cq, is such that

θiV
′(q∗i ) = c.

If the bank has full information about the borrower’s parameter θi,
then the bank’s optimal (q∗i , T

∗
i ), which is termed the first-best scheme,

is such that T ∗
i = θiV (q∗i ), so that the bank extracts all the surplus

from the borrower. In this case, q∗i must maximize the social benefit
from serving the type-θi borrower, which is θiV (q)− cq. It follows that
θiV

′(q∗i ) = c if

V ′(0) >
c

θi
> V ′(+∞);

and if instead V ′(0) ≤ c
θi
, then q∗i = T ∗

i = 0.

It is easy to show that under information asymmetry, the bank’s op-
timal scheme, which is termed the second-best scheme, is such that
q∗∗2 = q∗2 but q∗∗1 < q∗1. The former called the property of efficiency at
the top. On the other hand, we have θ1V

′(q∗∗1 ) > c, implying the bank
lends too little to the type-θ1 borrower.

Note that The θ2-type borrower’s surplus is

(θ2 − θ1)V (q∗∗1 ),

which increases with the difference between θ2 and θ1 and with the
amount borrowed by the θ1-type borrower. This creates an incentive
for the bank to reduce q1 to below q∗1. If q∗∗1 = 0, then the θ2-type
borrower’s surplus is also zero. Note that the latter remains positive
whenever q∗∗1 > 0.

Recall that the bank chooses to fulfill social efficiency in the full infor-
mation case. Here, with information asymmetry, the bank in choosing
q∗∗1 > 0 cannot exhaust the θ2-type borrower’s surplus, and this implies
that the bank’s producer surplus is less than the social benefit. From
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this perspective, it is not surprising that the bank wants to distort the
lending scheme in the presence of information asymmetry.

There is another implication from the above analysis. Note that the
type-θ2 borrower has rent exactly because he has private information.
Thus the borrower has an incentive to over-invest in activities that help
maintain his information advantage.

28. Now we review the classic agency theories developed in Jensen and
Meckling (1976) and Myers (1977).

29. (Jensen and Meckling, 1976, JFE) Suppose A is the owner-manager
of a firm whose value is

V = 1− L,

where L ∈ [0, 1] is A’s on the job leisure. A has utility function

U(V, L) = V
4
5L

1
5 .

(i) Compute the optimal leisure for A. What is the corresponding value
of the firm?
(ii) Now suppose A wants to sell 1

3
of his ownership to outsiders. The

game proceeds as follows. A first sells his partial ownership to outsiders
in exchange for money M . Then, after the transaction, A chooses his
leisure L. Assume that outside investors are competitive and have per-
fect foresight, so that M is exactly the worth of the partial ownership
they obtain in equilibrium. What is the equilibrium value of the firm?
Suppose there is no portfolio effect between ownership and money for
A, determine if A should make this ownership transaction in the first
place. What if there is a portfolio effect?
Solution. First, part (i). Recall the following consumption problem:
with constants a, b > 0, a+ b = 1, and px, py, I > 0 given, the solution
to

max
x,y

U(x, y) = xayb,

s.t. pxx+ pyy ≤ I

is simply

x∗(px, py, I) =
aI

px
, y∗(px, py, I) =

bI

py
.
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(The above utility function is called a Cobb-Douglas utility function.)
Using this fact, we have for part (i),

V ∗ =
4

5
, L∗ =

1

5
.

That is, the firm value is 4
5
. In the following, we continue to denote the

manager’s monetary wealth by V . Consider part (ii). In the subgame
where M has been given, the manager’s problem is to choose L to max-
imize her utility. Let V be the manager’s monetary wealth including
the cash M . Then, the value of the firm will be

V −M
2
3

.

Thus, the manager seeks to

max
V,L

V
4
5L

1
5

s.t.
V −M

2
3

= 1− L.

Using the above result for the Cobb-Douglas utility function, we have

L∗ =
1

5
(1 +

3

2
M).

Observe that two things happen here. First, the price of ownership
(V ) relative to leisure (L) has increased from 1 to 3

2
. Second, before

choosing the optimal L, the manager has received M (as part of his
V ), which implies by the concavity of U in V that L has become more
desirable than in part (i). Thus it is not surprising that L∗ > 1

5
, where

1
5
is the optimal leisure in part (i), and moreover, the difference L∗ − 1

5

increases with M and the fraction of ownership held by the outside
investors.

Now, using backward induction, we can infer what M must be in equi-
librium: With rational expectations, the M outsiders are willing to pay
to the manager is exactly 1

3
the value of the firm:

M =
1

3
(1− L∗) =

1

3
(1− 1

5
(1 +

3

2
M)).
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Solving, we have

M∗ =
8

33
,

which implies that L∗ = 3
11
, and the value of the firm becomes 8

11
(which

was originally 8
10
). How about the manager’s utility in equilibrium? It

is

(
2

3
× 8

11
+

8

33
)
4
5 (

3

11
)
1
5 < (

4

5
)
4
5 (
1

5
)
1
5 .

This has assumed that there is no portfolio effect in the manager’s
utility function, and we conclude that in this case the manager will
not sell the partial ownership willingly in the first place. On the other
hand, if the manager considers cash different from ownership of the
firm, then selling the ownership may still enhance her satisfaction. In
other words, an owner-manager may be hit by a liquidity shock and
must sell a fraction of equity to get cash. This however raises the
following question, “why can’t the owner-manager simply borrow some
money, if after all getting some cash will resolve his problem?” A likely
answer is that borrowing also creates agency costs; see the following
two sections.

30. (Jensen and Meckling, 1976, JFE) At date 0, Mr. B is the owner-
manager of a firm protected by limited liability. The firm is endowed
with $50 in cash. There are two mutually exclusive investment projects
available to B at date 0. Alternative 1 is a riskless project which incurs
an immediate $100 cash outflow and generates $105 at date 1. Alterna-
tive 2 is a risky project which incurs an immediate cash outflow of $100
and generates a random cash inflow $X̃, where X̃ has two equally likely
outcomes, 0 and 180. Note that alternative 1 generates a positive NPV
of $5, but alternative 2 leads to an expected loss of $10. Since taking
alternative 1 is productively efficient, we assume that Mr. B will take
alternative 1 whenever he feels indifferent about the two investment
alternatives.

Mr. B decides to come to Mr. C for a loan of $50. The game proceeds
as follows. B offers a debt contract with face value F to C, which C
can either accept or reject. If C rejects the contract, no investment is
made and both B and C get zero payoffs. If C accepts the contract,
then B must choose between alternative 1 and alternative 2. After the
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investment decision is made, the state of nature is realized, and B and
C get paid according to the debt contract. Find the subgame perfect
Nash equilibrium of the game.
Solution. First consider the subgame where F is given and the loan is
made (or else the game has ended). If B chooses alternative 1, she is
sure that she will get max(0, 105−F ). If B chooses alternative 2, then
her payoff is random: with prob. 1

2
, she gets 0; and with prob. 1

2
, she

gets max(180− F, 0). Thus, B chooses alternative 2 over alternative 1
if and only if

1

2
· 0 + 1

2
·max(180− F, 0) ≥ max(105− F, 0). (16)

The following table summarizes the investment behavior of B given
different values of F :

F alternative chosen
∈ [0, 30] 1

∈ (30, 105] 2
∈ (105, 180) 2
∈ [180,+∞) 1

Now we consider the subgame where C must decide whether to accept
B’s debt contract. According to the above table, B would subsequently
invest in alternative 1 if and only if F ≤ 30 or F ≥ 180, but C is sure
to lose money if she accepts any offer with F ≤ 30 or with B choosing
alternative 2. Thus, C accepts B’s offer if and only if F ≥ 180. Now
consider B’s problem of making an offer to C. Given the above analysis,
B can expect her offer to be accepted by C only if F ≥ 180, but B would
be better off giving up the new investment and keeping her 50 dollars
at hand.

Our conclusion is that, in the unique subgame perfect Nash equilibrium
of this game, B does not make any offers to C in the first place, and
the game ends at the very beginning with the firm passing on the good
investment opportunity (alternative 1).

This kind of shareholders’ incentive problems is referred to as risk shift-
ing or asset substitution in the finance literature. There are other kinds
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of incentive problems involving shareholders or creditors which we shall
review later on. These incentive problems lead to investment inefficien-
cies and hence reductions in firm value.
Remarks. Implicitly assumed in the above extensive game is that B’s
investment decision cannot be observed by C, or it can be observed by
C but cannot be verified by the contract enforer (usually the court of
law). For if the choice of the investment alternative is both observable
and verifiable (which will be referred to as contractible), then B can
sign a contract with C saying that B will choose the riskless project,
or else C can, say, break B’s arms. This is called a forcing contract,
which apprently removes the agency problem, as long as B cares enough
about his arms. The problem is then, “Why can’t C observe B’s in-
vestment decision?” One may argue that, B, as the CEO, makes the
decision in his office, and may not be observed by C. The problem
is more delicate than that! Note that if ex-post cash flows are con-
tractible, then by observing the cash flows C can prove whether B has
invested the riskless project or not, and hence a forcing contract seems
possible. (Of course, breaking somebody’s arms may not be legal, and
hence itself unenforceable; this could create a new problem: penalizing
B in a monetary manner may not work as well as breaking arms, for
B may not have enough money to implement a monetary penalty on
him!) Therefore, it seems necessary to assume that the ex-post cash
flows are not contractible. Alas! This is again not the end of the prob-
lem. One must then ask, “Why can’t cash flows be observable?” Is it
a reasonable assumption? As we shall see, a large body of literature
in optimal design of financial contracts has assumed that cash flows
can be costlessly observed only by the insiders of the firm (here, B).
However, it has also been assumed that by spending some money, C
may be able to verify the true cash flows. Of course this money, paid
to an accountant for example, is a deadweight loss, and should be by
all means avoided or minimized in an optimal contract, but allowing C
an opportunity to verify is indeed a more reasonable assumption. The
bottom line here is that, the above conclusion that external financing
leads to the asset substitution problem actually stems from the some-
what arbitrary assumption that Mr. B can only use a standard debt
contract when raising funds from outside investors. If B and C are
rational, they should be able to use Pareto optimal contracts, and one
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of them is clearly equity contract.

31. (Myers, 1977, JFE) A growth firm may be more vulnerable to an
agency problem (known as debt overhang) than a firm with no growth
opportunities. The following is an example. A firm finances the date-
0 cost g > 0 for its search for a valuable investment opportunity by
borrowing, and it promises to repay the debtholder F > 0 at date 2.
(The cost g can be viewed as an R&D expense.) It is known at date 0
that , some public information will arrive at date 1, which will reveal
how much cash inflow the project will generate at date 2. Suppose
that it is investors’ common knowledge that the date-2 cash inflow is
equally likely to be either 20 or 10. To generate that cash flow, an
additional I dollars must be spent at date 1. However, The firm has
no cash at date 1, and must issue junior debt at date 1 to raise the
I dollars. Now, assume that competitive investors are all risk neutral
without time preferences (recall that this implies that asset prices are
all marginales). At date 1, if the state is that the date-2 cash inflow is
C, then the new investor (debtholder) will get min(C − F, F ′) at date
2, where F ′ is the face value of junior debt. Thus the new investor will
lend I to the firm if and only if I ≤ min(C − F, F ′), and since F ′ ≥ I,
this equivalent to C ≥ F + I. In case

20 > F + I > 10 > I,

the new investor will refuse to lend to the firm, if C = 10 at date 1.
Since I < 10, this creates a deadweight loss, and is referred to as an
agency cost pertaining to debt.

Thus, solving the SPNE of this game, we conclude that when 20 >
2g + I > 10 > I, then in equilibrium, F = 2g, so that the date-0 firm
value is 1

2
(20−I) > g, which justifies the firm’s inital R&D effort. Note

that if the firm were to have enough cash earnings at date 1, the date-0
firm value would be 1

2
(20− I) + 1

2
(10− I).

It is not surprising that the standard debt contract is Pareto suboptimal
in this example. Let us derive a Pareto optimal financial contract for
the initially raised g dollars, assuming more generally that C = 20 and
10 with probability π and 1 − π (in the above we have assumed that
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π = 1
2
). Assume correspondingly

20 > I +
g

π
> I + g > 10 > I > 0. (Θ)

Before solving the optimal financial contract at date 0, let us first con-
sider the equilibrium F associated with the (asserted suboptimal) stan-
dard debt contract written at date 0. Quickly deduce that F ≤ 20− I.
(Why?) Similarly, we claim that F ≥ 10 − I. Thus given F , the firm
can raise I at date 1 if and only if C = 20. Rationally expecting this,
the F can be obtained by solving the zero expected profit condition of
the senior debtholder:

πF = g ⇒ F =
g

π
.

This result is consistent with assumption (Θ). Thus at date 0, the value
of debt is exactly g, showing that trading financial assets yields zero
NPV at date 0. The date-0 value of equity is then π(20 − I). What
happens at date 1? It depends on C. In case C = 20, then the date-1
equity value is 20−F − I, and the date-1 value of the senior (old) debt
is F (the junior debt is fairly priced, and hence is worth I); and in case
C = 10, then all securities are worthless.

Now we consider the Pareto optimal financial contracts at date 0. Such
a contract must allow the firm to maximize its date-0 value (allowing
the firm to adopt as many positive-NPV projects as possible) while
allowing all investors to at least break even of the time financing is
granted. Let f(C) be the initial investor’s payoff at date 2 when C is
the date-2 cash inflow. We must look for f(10) and f(20) such that

10− f(10) ≥ I; 20− f(20) ≥ I;

0 ≤ f(20) ≤ 20− I; 0 ≤ f(10) ≤ 10− I.

We shall maintain the assumption that

0 < g ≤ 20π + 10(1− π)− I,

so that establishing the firm by spending g in the first place makes
sense to the entrepreneur. Note that this assumption implies that

g − 10π ≤ 10− I.
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It is easy to show that (i) if g < 10π, then

f(10) = 0, f(20) =
g

π
;

and (ii) if g ≥ 10π, then

f(10) = g − 10π, f(20) = 10 + g − 10π,

are optimal contracts. (There are other optimal contracts, all leading
to the same date-0 value.) Compared to the long-term debt maturing
at date 2, these contracts allow the date-2 repayments to the date-0
investor to be indexed by the net present value of the date-1 project.
Recall that the above debt overhang problem occurs because the firm
promises to repay the senior debtholder too much in the poor state
C = 10. Thus, by indexing the face value of debt to the realization of
C, the problem is solved; see a profound analysis based on this idea in
Froot, K., D. Scharfstein, and J. Stein, 1989, LDC Debt: Forgiveness,
Indexation, and Investment Incentives, Journal of Finance, 44, 1335-
1350.

There is also a second resolution to the above debt overhang problem:
at date 0, issuing a properly designed convertible bond instead of the
straight bond. This will give the initial bondholder has an option to
convert the senior debt into a fraction α of equity right before the firm
tries to raise I at date 1.

How does this work? Note that the firm fails to raise I at date 1 if
and only if the senior debt was not converted and the face value of the
senior debt is F > C − I. In this event the senior debt will also be
worthless, while by converting and holding a fraction α of the equity,
the senior debtholder’s payoff will be strictly positive: the new investor
will be happy to lend I, as he will be the sole debtholder at date 2, and
will hence be sure to get back the I dollars he invests at date 1. Thus
investment efficiency is attained at date 1.3

3The point here is to make sure that the new investor holds the senior claim at date 2,
if it is known that C = 10 at date 1. Thus, one even simpler solution is to issue outside
equity at date 0. That is, in exchange of g dollars raised at date 0, the firm gives the
initial investor a fraction g

20π+10(1−π)−I+g of equity. Can you give a story that justifies

the seniority of the financial claim issued at date 0?
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It remains to compute the pair (F, α), which completely describes the
CB issued at date 0. The zero expected profit condition requires only
that

πF + (1− π)α(10− I) = g,

and hence there is more than one solution. For the bondholder to
optimally convert in the date-1 subgame where C = 10, we need α > 0,
so that F < g. If we do not want the initial investor to convert the
bond in the state C = 20, then we should choose F > α(20− I).

Finally, we must re-consider Myers’ reasoning that leads to the debt
overhang problem. At date 1, when C = 10, what prevents the equi-
tyholder (assuming there is only one) and the senior debtholder from
renegotiating the inefficient debt contract? This is a legitimate ques-
tion, for both of them will get zero if they choose to do nothing. On the
other hand, imagine that the equityholder says to the senior debtholder
that, “if you can just reduce the face value to x < 20 − I, then you
know that you will receive x > 0 for sure at date 2 instead of getting
nothing.” Of course, any x ≤ 20− I will do, and which x ∈ [0, 20− I]
will actually prevail at date 1 must depend on the relative bargaining
power between the equityholder and the senior debtholder, but as you
can see, renegotiation should occur, as long as renegotiation is costless
(Coase, 1937, Economica).

Can renegotiation be costly anyway? Imagine that the senior debt is
a corporate bond diffusely held by a large number of small investors.
Renegotiation can be costly, although the equityholder may have more
bargaining power, in this case. On the other hand, if the initial investor
is a commercial bank, then renegotiation may not be very costly, al-
though the equityholder may not enjoy as much bargaining power as
when he is faced with a large number of small creditors. Thus the type
of the debt instrument (bond or bank loan) and the ownership structure
of the debt (diffuse or concentrated) may both affect the possibility of
ex-post renegotiation.

Notice that unlike issuing CB or outside equity, the outcome of ex-post
renegotiation is not guaranteed. Both the equityholder and the initial
investor must form expectations about how much they may respectively
get in the stage of renegotiation, and based on these expectations, the
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terms of the initial debt can be determined at date 0 (via backward
induction). Although we are assuming risk neutrality for everyone in
this model, it is important to notice the risk involved in the ex-post
renegotiation.
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