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1. Definition 1: A game can be described by (i) the set of players, (ii)
the strategies of players, and (iii) the payoffs of players as functions
of their strategies. Players are assumed to maximize their payoffs and
payoffs are generally interpreted as von Neumann-Morgenstern utilities.
Players are rational in the sense that they will choose strategies to
maximize their (expected) payoffs. A game described in this way is
called a game in normal form, or a strategic game. (A game can also
be described in extensive form; see below.) An event is the players’
mutual knowledge if all players know the event, and an event is called
the players’ common knowledge if all players know it, all players know
that they all know it, all players know that they all know that they
know it, and so on and so forth. If the norm form of a game (and the
rationality of all players) is the players’ common knowledge, then the
game is one with complete information.
Example 1: Consider the Cournot game in normal form. The set
of players: two firms, i = 1, 2. The strategies: the two firms’ output
quantities: qi ∈ Si ≡ [0,∞), i = 1, 2. The payoff of each player i:

πi(qi, qj) = qi[P (qi + qj)− c]− F,

where P (·) is the inverse demand function, c and F are respectively
the variable and fixed costs.
Example 2: A two-player game with a finite number of actions (strate-
gies) is usually represented by a bimatrix:

player 1/player 2 L R
U 0,1 -1,2
D 2,-1 -2,-2
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where there are two players in the game, who simultaneously choose
actions, and action profiles (U,L), (U,R), (D,L) and (D,R) result in
respectively payoff profiles (0, 1), (−1, 2), (2,−1) and (−2,−2) for the
two players (where by convention the first coordinate in a payoff profile
stands for player 1’s payoff).

2. Our purpose of learning the non-cooperatitve game theory is practical.
In application, we shall first describe an economic or business problem
as a game in norm form (or more often in extensive form), and then
proceed to solve the game so as to generate useful predictions about
what the players involved in the original economic or business problem
may do. For this purpose, we need to adopt certain equilibrium concepts
or solution concepts. In the remainder of this note we shall review
the following solution concepts (and illustrate them using a series of
examples):

• Rational players will never adopt strictly dominated strategies;

• Common knowledge about each player’s rationality implies that
rational players will never adopt iterated strictly dominated strate-
gies;

• Rational players will never adopt weakly dominated strategies;

• Common knowledge about each player’s rationality implies that
rational players will never adopt iterated weakly dominated strate-
gies;

• Rational players will never adopt strategies that are never best
responses, or equivalently, rational players will adopt only ratio-
nalizable strategies;

• Rational players will adopt Nash equilibrium strategies;

• Rational players will adopt trembling-hand perfect equilibrium strate-
gies;

• Rational players will adopt subgame-perfect Nash equilibrium strate-
gies;

• Rational players will adopt proper equilibrium strategies;

• Rational players will adopt strong equilibrium strategies;
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• Rational players will adopt coalition-proof strategies.

In practice, the solution concepts of Nash equilibrium (NE) and subgame-
perfect Nash equilibrium (SPNE) are most widely accepted. In rare
cases only will we turn to other equilibrium concepts.

3. Definition 2: A pure strategy is one like U, R, D, or L in example 2. It
has to be a complete description of a player’s actions taken throughout
the game. A mixed strategy is a probability distribution over the set of
pure strategies. In a broad sense, a pure strategy is a mixed strategy.

4. Definition 3: Consider a game in normal form,

G = (I ⊂ ℜ; {Si; i ∈ I}; {ui : Πi∈ISi → ℜ; i ∈ I}),

where I is the set of players (we are allowing an uncountably infinite
number of players here), Si is the set of pure strategies feasible to
player i (also known as the pure strategy space of player i), and ui(·)
is player i’s payoff as a function of the strategy profile. If I and Si are
finite for all i ∈ I, then we call G a finite game. We shall represent
Πi∈ISi by S (the set of all possible pure strategy profiles). If Si has
cardinality m, then the set of feasible mixed strategies for player i,
denoted Σi, is a simplex of dimension m − 1. Each element of Σi is a
probability distribution over the set Si. We denote a generic element
of Si, Σi, S, and Σ ≡ Πi∈IΣi by respectively si, σi, s, and σ. Since
σi is a probability distribution over Si, we let σi(si) be the probability
assigned by σi to the pure strategy si. Note that being consistent with
the notion of non-cooperative games, the mixed strategies of players are
un-correlated. More precisely, given a mixed strategy profile σ, player
i’s payoff is

ui(σ) ≡
∑
s∈S

[ΠI
j=1σj(sj)]ui(s),

where note that we have abused the notation a little to let ui(σ) denote
the expected value of ui(s) under the joint probability distribution σ.

5. Definition 4: Let σ−i be some element of

Σ−i ≡ Σ1 × Σ2 × · · ·Σi−1 × Σi+1 × · · ·ΣI ,
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where I is the cardinality of I. Let ri(σ−i) ∈ Σi be the set of best
responses of player i against σ−i (i.e., such that ui(ri(σ−i), σ−i) ≥
ui(σi, σ−i) for all σi ∈ Σi). For any (mixed) strategies σi, σ

′
i ∈ Σi,

we say that σi is weakly dominated by σ′
i for player i if

ui(σi, σ−i) ≤ ui(σ
′
i, σ−i), ∀σ−i ∈ Σ−i,

with the inequality being strict for at least one σ−i; and we say that σi

is strictly dominated by σ′
i for player i if the above inequalities are all

strict.

Our first equilibrium concept is that rational players will not use strictly
dominated strategies. Consider the following normal form game, known
as the prisoner’s dilemma:

player 1/player 2 Don’t Confess Confess
Don’t Confess 0,0 -3,1

Confess 1,-3 -2,-2

In this game, “Don’t Confess” is strictly dominated by “Confess,” and
hence the unique undominated outcome is the one where both players
confess the crime. Note that unlike Walrasian equilibrium, this equi-
librium is Pareto inefficient. That equilibria in a game are generally
inefficient is the first lesson to be learned here (and various economic
theories start from here).

6. Based on the implicit assumption that the whole normal form game is
the players’ common knowledge, the above dominance argument can be
extended further so that we shall be looking at outcomes that survive
from the procedure of iterative deletion of strictly dominated strategies.
The following is an example.

player 1/player 2 L M R
U 0,-1 0,0 1,1
M 2,3 3,1 3

2
,-1

D 4,2 1,1 2, 3
2
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Note that M is not strictly dominated by L from player 2’s perspective,
but since U is strictly dominated by M from player 1’s perspective,
and in the absence of U, M is strictly dominated by L from player 2’s
perspective, we should not expect player 2 to use M. It follows that
player 2 will use L and hence player 1 will use D.

Observe that we have repeatedly used the assumption that rationality
of all players is the players’ common knowledge. Player 1 knows that
player 2 knows that player 1 is rational and would not use U, and hence
player 1 can deduce that player 2 would never use M or R (since player
1 knows that player 2 is rational). Thus player 1 chooses to use D,
which player 2 can deduce, and hence player 2 chooses to use L.

7. Mixed strategies that assign strictly positive probabilities to strictly
dominated pure strategies are themselves strictly dominated. A mixed
strategy that assigns strictly positive probabilities only to pure strate-
gies which are not even weakly dominated may still be strictly domi-
nated. Consider also the following example:

player 1/player 2 L R
U 1,3 -2,0
M -2,0 1,3
D 0,1 0,1

The mixed strategy (0.5, 0.5, 0) for player 1 is strictly dominated by D.

8. It can be shown that iterated deletion of strictly dominated strategies
will lead to the set of surviving outcomes which is independent of the
order of deletion. The same is not true for iterated deletion of weakly
dominated strategies. Consider the following normal form game:
Example 3:

player 1/player 2 L R
U 1,1 0,0
M 1,1 2,1
D 0,0 2,1
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If we delete U and then L, then we conclude that the payoff profile
would be (2, 1). If we delete D and then R, then we conclude that the
payoff profile would be (1, 1).

9. Definition 5: A normal form game is dominance solvable if all players
are indifferent between all outcomes that survive the iterative procedure
where all the weakly dominated actions of each player are eliminated
simultaneously at each stage. Is the game in example 3 dominance
solvable?1 (Hint: Player 1 is not indifferent about (M,R) and (M,L).)

10. Consider the following two-player game. They each announce a natural
number ai not exceeding 100 at the same time. If a1 + a2 ≤ 100, then
player i gets ai; if a1 + a2 > 100 with ai < aj, then players i and j get
respectively ai and 100 − ai; and if a1 + a2 > 100 with ai = aj, then
each player gets 50. Determine if this game is dominance solvable.

11. Consider example 1 with the further specifications that c = F = 0,
P (q1 + q2) = 1− q1 − q2. Like the game of prisoner’s dilemma, there is
a unique outcome surviving from the iterated deletion of strictly dom-
inated strategies. We say that this game has a dominance equilibrium.
To see this, note that the best response for firm i as a function of qj
(called firm i’s reaction function) is

qi = ri(qj) =
1− qj

2
.

Note that q1 > 1−0
2

= r1(0) is strictly dominated for firm 1.2 Since
rationality of firm 1 is the two firms’ common knowledge, firm 2 will re-

1Definition 5 can be found in Osborne and Rubinstein’s Game Theory. A related
definition is the following: A game is solvable by iterated strict dominance, if the iterated
deletion of strictly dominated strategies leads eventually to a unique undominated strategy
profile; see Fudenberg and Tirole’s Game Theory, Definition 2.2.

2Observe that (i) given any qj ∈ ℜ+, Πi(·, qj) is a strictly decreasing function on
[ri(qj),+∞); and (ii) ri(·) is a strictly decreasing function on ℜ+. Thus if qi >

1−0
2 = ri(0),

then for all qj ∈ ℜ+, we have

qi > ri(0) ≥ ri(qj) ⇒ Πi(ri(0), qj) > Πi(qi, qj),

proving that any such qi is strictly dominated by ri(0), regardless of firm j’s choice qj .
That is, firm i will never choose a qi that exceeds

1
2 .
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alize that any q2 <
1− 1

2

2
= r2(r1(0)) is strictly dominated by r2(r1(0)).

3

But then, common knowledge about rationality again implies that any

q1 >
1− 1

4

2
is strictly dominated for firm 1, which in turn implies that

q2 <
1− 3

8

2
is strictly dominated for firm 2. Repeating the above argu-

ment, we conclude that firm 1 will find any q1 >
1− 5

16

2
strictly domi-

nated. Thus we obtain a sequence qn1 = 4n−(1+4+42+···+4n−1)
2×4n

of undom-
inated output levels at the n-th stage of deleting strictly dominated
strategies. Since the sequence converges uniquely to 1

3
, we conclude that

the only output level surviving the above iterated deletion of dominated
strategies is 1

3
for both firms. Thus, (q∗1, q

∗
2) = (1

3
, 1
3
) is the (unique)

dominance equilibrium.

12. (Market Share Competition)

player 1/player 2 Don’t Promote Promote
Don’t Promote 1,1 0,2-c

Promote 2-c,0 1-c,1-c

In the above, two firms can spend c > 0 on promotion. One firm would
capture the entire market by spending c if the other firm does not do
so. Show that when c is sufficiently small, this game has a dominance
equilibrium.

13. Consider also the following moral-hazard-in-team problem: Two work-
ers can either work (s=1) or shirk (s=0). They share the output
4(s1 + s2) equally. Working however incurs a private cost of 3. Show
that this game has a dominance equilibrium.

3Note that Π2(·, q1) is a strictly increasing function on [0, r2(q1)]. Since by common
knowledge about firm 1’s rationality, firm 2 believes that any q1 chosen by firm 1 must
satisfy q1 ≤ r1(0), we must have

q2 < r2(r1(0)) ≤ r2(q1) ⇒ Π2(q2, q1) < Π2(r2(r1(0)), q1),

proving that any such q2 is strictly dominated by r2(r1(0)) from firm 2’s perspective, no
matter which q1 ≤ r1(0) chosen by the rational firm 1. That is, given that firm 1 will
never choose a q1 that exceeds 1

2 , firm 2 will never choose a q2 below 1
4 .
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14. Definition 6: A pure strategy Nash equilibrium (NE) for a game in
normal form is a set of pure strategies (called a pure strategy profile
from now on), one for each player, such that if other players play their
specified strategies, a player also finds it optimal to play his specified
strategy. In this case, these strategies are equilibrium strategies. For
instance, (U,R) and (D,L) are two pure strategy NEs for the game
in example 2. A mixed strategy NE is defined similarly, where the
equilibrium strategies are mixed strategies.4

More formally, a profile σ ∈ Σ is a (mixed strategy) NE if and only if

ui(σ) ≥ ui(si, σ−i), ∀i ∈ I, ∀si ∈ Si.

Observe that this definition asks us to check unilateral deviations in
pure strategy only! Show that, however, it implies that

ui(σ) ≥ ui(σ
′
i, σ−i), ∀i ∈ I, ∀σ′

i ∈ Σi.

Show that the following is an equivalent definition for (mixed strategy)
NE: a profile σ ∈ Σ is an NE if and only if for all i ∈ I, for all si, s′i ∈ Si,

ui(si, σ−i) < ui(s
′
i, σ−i) ⇒ σi(si) = 0.

This new equivalence condition says that if a pure strategy si is assigned
by σi with a strictly positive probability, then si has to be a best
response against σ−i.

15. A single auction consists of a seller facing more than one buyer (or a
buyer facing more than one seller) with some object(s) to sell (respec-
tively, to buy), where the multiple buyers (respectively, the multiple
sellers) submit bids to compete for the object(s). The object is of
private value if learning other bidders’ valuations for the object does
not change one’s own valuation, and it is of common value if bidders
have an (unknown) identical valuation. The four popular auction rules

4The following interpretation may be helpful. In example 2, if player 2 expects player
1 to play U, then his best response is to play R, and if player 1 correctly expects that the
above is player 2’s belief, then he cannot gain by picking an action that proves that player
2’s belief is incorrect. An NE is by definition a situation where, if the two players expect
their strategy profile, they cannot gain by making unilateral deviations.
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are English auction, Dutch auction, the first-price sealed-bid auction,
and the second-price sealed-bid auction. With an English auction, the
seller-auctioneer will start with a minimum acceptable price and raise
the price gradually to attain a situation where there is exactly one
bidder remains interested in the object, and in the latter situation the
object is rendered to that bidder in exchange for the price at which the
winning bidder is selected. With a Dutch auction, the seller-auctioneer
will start with a very high price and then reduce the price gradually
to attain a situation where at least one bidder shows interest in the
object at that price, and in the latter situation the object is sold to
the first bidder who reveals his interest. In the two sealed-bid auctions
mentioned above, all bidders must submit secretly their bids at the
same time to an auctioneer, and the object is delivered to the bidder
submitting the highest bid. The difference between the two sealed-bid
auctions is that in the first-price auction, the winning bidder must pay
his own bid, but in the second-price auction, the winning bidder will
pay the highest losing bid. See Milgrom and Weber (1982).

Now suppose that an indivisible object will be sold to one of the
N bidders whose private valuations for the object are respectively
v1, v2, · · · , vN . Show that a second-price sealed-bid auction with pri-
vate values for an indivisible object has an NE where all bidders bid
their valuations for the object. (Hint: Consider bidder 1’s problem.
Let the random variable B̃ denote the maximum of the bids submitted
by bidders 2, 3, · · · , N . Compare any bid b submitted by bidder 1 with
the bid v1 we suggest. Note that with the bidding strategy b, bidder
1’s expected payoff is

E[(v1 − B̃)1[b>B̃](b)],

where (i) we have assumed that B̃ is a continuous random variable and
so have ignored the probability of a tie, and (ii) 1A(x) is an indicator
function for event A, so that it equals one if x ∈ A and zero if otherwise.
Show that b and v1 make a difference only when v1 > B̃ > b or v1 <
B̃ < b (again ignoring the probability of a tie).5 Deduce that b is
weakly dominated by v1.)

5Consider the case where B̃ may be discrete. Submitting b or v1 makes no difference
in the event where v1 = B̃. Note that v1 dominates b in the events b = B̃ > v1 and
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16. Consider N bidders competing for one indivisible object, for which they
attach values v1 > v2 > · · · > vN respectively. Show that if the seller
adopts a first-price sealed-bid auction, then in all NE’s for this game,
player 1 gets the object.

17. A game is called a zero-sum game if
∑

i∈I ui(σ) is independent of σ ∈ Σ.6

A zero-sum game may have multiple NE’s, but players obtain the same
payoff profile in all the NE’s. To see this, suppose that there are two
players, and that σ and σ′ are both NE’s for the zero-sum game. It
must be that

u1(σ1, σ2) ≥ u1(σ
′
1, σ2)

and
−u1(σ

′
1, σ

′
2) = u2(σ

′
1, σ

′
2) ≥ u2(σ

′
1, σ2) = −u1(σ

′
1, σ2)

so that
u1(σ1, σ2) ≥ u1(σ

′
1, σ

′
2).

The same argument shows that

u1(σ1, σ2) ≤ u1(σ
′
1, σ

′
2)

and hence we conclude that

u1(σ1, σ2) = u1(σ
′
1, σ

′
2)

implying that
u2(σ1, σ2) = u2(σ

′
1, σ

′
2)

as well.

18. Unlike dominance equilibrium, which may not exist for a game, a Nash
equilibrium always exists for a finite normal form game. This is stated
in theorems 1 and 2 below.

b = B̃ < v1, because submitting b may win with a positive probability in the former event,
and submitting b may lose with a positive probability in the latter event. Winning is good
if B̃ < v1 but is bad if B̃ > v1.

6Thus we might better call it a constant-sum game. However, recall that a von
Neumann-Mogenstern utility function is determined only up to a positive affine trans-
form (see my note in Investments, Lecture 2), and hence deducting the payoffs by the
same number really changes nothing relevant.
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Theorem 1 (Wilson, 1971; Harsanyi, 1973): Almost every finite strate-
gic game has an odd number of NE’s in mixed strategies; more precisely,
with the set of players and their strategy spaces fixed, the set of pay-
off functions that result in a strategic game having an even number of
NE’s has zero Lebesgue measure.

Following theorem 1, we guess that there is at least one mixed strategy
NE for the game in example 2. Let us find them. The key observation
here is that, if a mixed strategy assigns strictly positive probabilities
to more than one pure strategy, then the player must feel indifferent
about these pure strategies. Let x be the prob. that player 1 uses U
and y the prob. that player 2 uses L. We must have

1 · x+ (−1) · (1− x) = 2 · x+ (−2) · (1− x) ⇒ x =
1

2
;

0 · y + (−1) · (1− y) = 2 · y + (−2) · (1− y) ⇒ y =
1

3
.

These mixed strategies are said to be totally mixed, in the sense that
they assign strictly positive prob.’s to each and every pure strategy.
Here we have only one mixed strategy NE. If we have two totally
mixed NE’s, then we naturally have a continuum of mixed strategy
NE’s (why?). From now on, we denote the set of totally mixed strate-
gies of player i by Σ0

i . Observe that Σ0
i is simply the interior of Σi,

when Σi is endowed with the usual Euclidean topology.

19. (Matching Pennies) Note that some games do not have pure strategy
Nash equilibrium:

player 1/player 2 H T
H 1,-1 -1,1
T -1,1 1,-1

20. Theorem 2 (Nash, 1950): Every finite game in normal form has a
mixed strategy equilibrium.
Theorem 2 is actually a special version of the following more general
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theorem (see Fudenberg and Tirole’s Game Theory, Theorem 1.2).
Theorem 2′: (Debreu-Glicksberg-Fan) Consider a strategic game

G = {I, S = (S1, S2, · · · , SI), (ui : S → ℜ; i ∈ I)}

with I being a finite set (the game has a finite number of players). If for
all i ∈ I, Si is a nonempty compact convex subset of some Euclidean
space, and if for all i ∈ I, ui is continuous in s and quasi-concave in si
when given s−i, then G has an NE in pure strategy.

21. Suppose that r : Σ → Σ′ is a correspondence (a multi-valued function),
where Σ and Σ′ are some subsets of ℜn. If r(σ) ̸= ∅ for all σ ∈ Σ, then
we say that r(·) is non-empty. If r(σ) is a convex subset of ℜn for all
σ ∈ Σ, then we say that r(·) is convex. If for all σ ∈ Σ, for all sequences
{σn;n ∈ Z+} in Σ converging to σ, each sequence {σ′

n ∈ r(σn);n ∈ Z+}
has a convergent subsequence converging to some element in r(σ), then
we say that r(·) is upper hemi-continuous (u.h.c.). If for all σ ∈ Σ and
for all σ′ ∈ r(σ), whenever {σn;n ∈ Z+} is a sequence in Σ converging
to σ there must be a sequence {σ′

n;n ∈ Z+} in Σ′ converging to σ′ such
that σ′

n ∈ r(σn), then we say that r(·) is lower hemi-continuous (l.h.c.).
The correspondence r(·) is said to be continuous if it is both upper and
lower hemi-continuous.

22. Here we give some examples of upper hemi-continuous correspondences.
First consider the following strategic game

player 1/player 2 L R
U 1,1 0,0
D 0,0 z,2

Let us consider all mixed strategy NE’s of this game. Any mixed strat-
egy NE can be represented by (p, q), where p is the probability that
player 1 adopts U and q the probability that player 2 adopts L. Simple
calculations give the following results. For z > 0, the game has three
NE’s, (p, q) = (1, 1), (p, q) = (0, 0), and (p, q) = (2

3
, z
1+z

); for z < 0,
iterated deletion of strictly dominated strategies implies that the game
has a unique NE, which is (p, q) = (1, 1); and for z = 0, the game has
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an (uncountably) infinite number of NE’s: besides (1, 1), (0, 0), and
(2
3
, 0), which are obtained from the above three NE’s by letting z ↓ 0,

any (p, 0) with 0 ≤ p ≤ 2
3
are also NE’s. The idea is that as long as

player 2 is willing to play R with probability one, given z = 0, player 1
is genuinely indifferent about U and D, and hence can randomize with
any probability p, and for p ≤ 2

3
, player 1 really prefers R to L.

Apparently, player 1’s equilibrium mixed strategy p depends on z (which
is the sole parameter here to distinguish one strategic game from an-
other). This dependence defines a correspondence p(z), called the Nash
equilibrium correspondence. This correspondence is easily seen to be
upper hemi-continuous (and if you draw the graph of p(·), then you
will realize why we also refer to upper hemi-continuity by the closed
graph property), but it fails to be lower hemi-continuous. Observe that
any p ∈ (0, 2

3
) is contained in p(0), but it is not the limit of a se-

quence p(zn) that corresponds to a sequence of zn that converges to
0. Note that except for the case where z = 0 (which is an event of
zero Lebesgue measure on ℜ), this game has an odd number of NE’s,
verifying Wilson’s theorem.

Next, consider the following strategic game

player 1/player 2 L R
U 1,1 0,0
D 0,0 z,z

Again, any mixed strategy NE can be represented by (p, q), where p is
the probability that player 1 adopts U and q the probability that player
2 adopts L. Simple calculations give the following results. For z > 0,
the game has three NE’s, (p, q) = (1, 1), (p, q) = (0, 0), and (p, q) =
( z
1+z

, z
1+z

); for z < 0, iterated deletion of strictly dominated strategies
implies that the game has a unique NE, which is (p, q) = (1, 1); and for
z = 0, the game has two NE’s: (1, 1) and (0, 0). Again, consider the
correspondence p(z). It is still upper hemi-continuous, although the
number of NE’s drops in the limit as z ↓ 0. Note also that this game
has an odd number of NE’s except when z = 0.
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23. Theorem 3 (Kakutani, 1941): Let r : Σ → Σ be a nonempty, convex,
upper hemi-continuous correspondence where Σ ⊂ ℜn is nonempty,
convex and compact. Then, there exists σ∗ ∈ Σ such that r(σ∗) = σ∗.

24. We now sketch the proof of theorem 2 using theorem 3. Let Si and
Σi be respectively player i’s pure strategy space and mixed strategy
space. Assume there are n players. Then, Σi is a simplex which is
compact. Denote Σ = Πn

i=1Σi. Let σi be a typical element of Σi,
and let σ = (σ1, σ2, · · · , σn) and σ−i = (σ1, σ2, · · · , σi−1, σi+1, · · · , σn).
Let ri(σ−i) be player i’s best response against other players’ mixed
strategies σ−i, and define r(σ) as the Cartesian product of ri(σ−i).
Now r : Σ → Σ is a correspondence defined on Σ! If we can show the
existence of a fixed point of r, then we are done.

Since players’ payoff functions are linear (hence continuous) in mixed
strategies, and since the simplex Σi is compact, there exist solutions
to players’ best response problems (Weierstrass theorem). That is, r is
nonempty. Moreover, if σi1, σi2 ∈ ri(σ−i), then clearly for all λ ∈ [0, 1],

λσi1 + (1− λ)σi2 ∈ ri(σ−i),

proving that ri is convex, which in turn implies that r is convex. Finally,
we claim that r is u.h.c. To see this, suppose instead that r fails to
be upper hemi-continuous at some profile σ ∈ Σ, then there must exist
some player i, a sequence {σ−i,n;n ∈ Z+} converging to σ−i in Σ−i,
and a sequence {σ′

i,n;n ∈ Z+} in Σi converging to some σ′
i ∈ Σi with

σ′
i,n ∈ ri(σ−i,n) for all n ∈ Z+ such that σ′

i is not contained in ri(σ−i).
This would mean that there exists some σ′′

i ∈ Σi such that ui(σ
′′
i , σ−i) >

ui(σ
′
i, σ−i). Since ui(·) is continuous, and since the sequence {σ′

n;n ∈
Z+} converges to σ′, this would mean that ui(σ

′′
i , σ−i,n) > ui(σ

′
i,n, σ−i,n)

for n sufficiently large, a contradiction to the fact that σ′
i,n ∈ ri(σ−i,n)

for all n ∈ Z+.

Now since r(·) is non-empty, convex, and u.h.c., and since Σ is non-
empty, convex, and compact in ℜn, by theorem 3 there must exists
some σ∗ ∈ Σ such that r(σ∗) = σ∗.

25. From the proof of theorem 2, it is understandable why discontinuous
payoff functions may result in non-existence of NE’s. When payoff
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functions fail to be continuous, it may happen that the best response
correspondence is not non-empty, or fails to be upper hemi-continuous.
For example, consider the single-player game where his payoff function
f : ℜ → ℜ is defined as f(x) = −|x| · 1[x̸=0] − 1[x=0], then the player
has no best response. Even if all best responses are well defined, the
best response correspondence my fail to be upper hemi-continuous, as
the following example shows. Suppose we have a two-player strategic
game where S1 = S2 = [0, 1], u1(s) = −(s1 − s2)

2, and

u2(s) = −(s1 − s2 −
1

3
)2 · 1[s1≥ 1

3
] − (s1 − s2 +

1

3
)2 · 1[s1< 1

3
].

Observe that in general lims1↓ 1
3
u2(s) ̸= lims1↑ 1

3
u2(s), proving that u2

is not continuous in s. However, r2(·) is a well-defined correspondence;
in fact, for all s1, r2(s1) is a singleton, and hence r2(·) is in fact a
(single-valued) function. Still, r2(·) is not upper hemi-continuous (when
the correspondence is single-valued, upper hemi-continuity becomes the
continuity of the single-valued function). You can check that r2(s1) and
r1(s2) do not intersect, and hence this two-player game has no NE at
all.

26. Example 1 (see the section on dominance equilibrium) can be used
to understand the above theorems 1 and 2. Define hi(·) ≡ ri(rj(·)).
Apparently, this function can be restricted to the domain of defintion
[0, 1

2
], which is a non-empty, convex, compact subset of ℜ, and more-

over, the functional value of hi is also contained in [0, 1
2
]. If this function

intersects with the 45-degree line, then the intersection defines a pure
strategy NE. (This game has no mixed strategy NE because a firm’s
profit is a strictly concave function of his own output level given any
output choice of its rival.) Now it follows from Brouwer’s fixed point
theorem (a special version of theorem 3) that if hi(·) is continuous7

then there exists an NE for the game, and moreover, as one can verify,
generically a continuous hi(·) will intersect the 45-degree line in an odd
number of times.8

7With the specification P (q1 + q2) = 1 − q1 − q2, hi(qi) =
1− 1−qi

2

2 , which is indeed a
continuous function of qi.

8Brouwer’s fixed point theorem says that if f : A → A is continuous, where A ⊂ ℜn is
non-empty, compact and convex, then there exists x ∈ A such that f(x) = x.
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27. Theorem 4: Consider a two-player game where each player i simul-
taneously chooses a number si in the unit interval, and where player
i’s payoff function ui(s1, s2) is continuous in (s1, s2). This game has a
mixed strategy NE.
Proof Call this game Γ. Consider a sequence of modified games {Γn}
in normal form where the set of players and the payoff functions are
the same as in Γ, but the players’ common pure strategy space is

Sn = {0, 1
n
,
2

n
, · · · , n− 1

n
, 1}.

Theorem 2 implies that for all n ∈ Z+, Γn has an NE (denoted σn)
in mixed strategy. Since the set of probability measures on [0, 1] is
weakly compact (see my note on “distribution functions” in the course
of stochastic processes), and the products of compact spaces are com-
pact (see my note on “basic ideas in topology” in the course of stochas-
tic processes), the sequence {σn} has a convergent subsequence in weak
topology, for which let σ be the limiting probability measure. Let the
convergent subsequence be {σnk ; k ∈ {Z}+}. We claim that σ is a
mixed strategy NE for Γ. The proof proceeds in two steps. First, every
prob. measure on [0, 1] is the limit (in weak topology) of a sequence of
prob. measures, where the k-th term in the sequence is a prob. mea-
sure on Snk

(recall Helly’s convergence theorem). Second, let σ′
i be any

prob. measure on [0, 1], then by step 1, there exists a sequence {[σnk
i ]′}

that converges weakly to it. Fix i ∈ {1, 2}. For each k ∈ Z+, we have
by definition,

ui(σ
nk
i , σnk

j )− ui([σ
nk
i ]′, σnk

j ) ≥ 0,

which, by the continuity of ui in (s1, s2) and the definition of weak
convergence of prob. measures on [0, 1], implies that

ui(σi, σj)− ui(σ
′
i, σj) ≥ 0,

proving that σ is an NE in mixed strategy for Γ.

28. Theorem 4 is a special case of the following theorem:
Theorem 4′: (Glicksberg, 1952) Consider a strategic game

G = {I, S = (S1, S2, · · · , SI), (ui : S → ℜ; i ∈ I)}
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with I being a finite set (the game has a finite number of players).
If for all i ∈ I, Si is a nonempty compact subset of some (common)
metric space M , and if for all i ∈ I, ui is continuous, then G has an
NE in mixed strategy.

29. A strategic game is symmetric if ui = uj and Si = Sj for all i, j ∈ I.
Theorem 5: A finite symmetric game has a symmetric Nash equilib-
rium in mixed strategy.
Proof Suppose that in an I-person finite game, Si = S1 and ui(·) =
u1(·) for all i = 1, 2, · · · , I. This implies that Σi = Σ1 for all i. We
show this game has a symmetric NE. For any profile σ, we write

ui(σ) = ui(σi, σ−i).

For any σ1 ∈ Σ1, define

Ri(σ1) = arg max
σi∈Σ1

ui(σi, σ−i)

subject to
σ−i = σI−1

1 .

It is clear that Ri(·) is independent of i. Since Σ1 and Ri : Σ1 →
Σ1 satisfy all the requirements for Kakutani’s theorem to apply, we
conclude that for some σ1 ∈ Σ1, σ1 ∈ Ri(σ1), where the profile σI

1 is
obviously an NE.

30. Definition 7: A game can be described in extensive form, which needs
to specify the timing of players’ moves and what they know when they
move, in addition to the things specified in normal form. A game in
extensive form is also known as an extensive game. Usually, a game in
extensive form is depicted as a game tree:

(I)—



Up— (II)—

 Right— (0, 1)

Left— (−1, 2)
...

Down— (II)—

 Right— (2,−1)

Left— (−2,−2)
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Note that player II’s information set is denoted by the two nodes con-
nected by a dotted line, which says that player II, when determining
her own moves, does not know whether player I has moved up or down.
Formally, an information set is a set of decision nodes for a player, who
cannot tell which node in the information set he is currently on. A
game where at least one player has incomplete knowledge about the
history of the game up to a point when he or she is ready to take a
move is called a game with imperfect imformation. Such a game has at
least one non-singleton information set in the game tree. In contrast,
a game where all the information sets appearing in its game tree are
singletons is a game with perfect information.

31. Because the extensive form specifies two more things than the normal
form, there does not exist a one-to-one correspondence between the
two. In fact, a normal form can correspond to more than one extensive
form. Consider the following extensive game. Player 1 first chooses
among pure strategies A, B, and C. If A is chosen, then player 1 gets 2
and player 2 gets 1. Otherwise, upon seeing player 1’s choice of action,
player 2 can react by choosing either L or R. The payoffs resulting from
these strategies are summarized in the following bimatrix.

player 1/player 2 L R
B 4,2 1,0
C 0,1 3

2
,0

Draw the extensive form for this game.

32. So, how do we construct the strategic form from its extensive coun-
terpart? The complication is that we need to define pure and mixed
strategies for the normal form game, while all we know is what each
player can do at each of his information sets in the extensive game.
First, we define a pure strategy for player i as a complete description
of which action player i will take (with probability one) at each of his
information sets. Second, if two pure strategies of player i always (“al-
ways” means when put together with any profile σ−i ∈ Σ−i) generate
the same payoff for player i, then they are said to be equivalent, and a
reduced normal form game is obtained from the original extensive game
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if for each player, equivalent pure strategies are identified (remove all
of them but one).9 A mixed strategy for player i is then defined as a
probability distribution over all feasible pure strategies in the reduced
normal form game. To fix terminology, mixed strategies in the original
extensive game are referred to as behavior strategies, and each behavior
strategy of player i specifies a set of probability distributions for player
i, where each probability distribution corresponds to one information
set of player i, indicating how player i may randomly choose among
the actions feasible at that particular information set.

33. What are the relations between mixed strategies in the strategic form
and behavior strategies in the extensive form? The answer is that,
each mixed strategy generates a unique behavior strategy, but a be-
havior strategy can be generated by more than one mixed strategy.
Kuhn’s theorem tells us that in any game of perfect recall, every mixed
strategy is equivalent to the behavior strategy that it generates, and
every behavior strategy is equivalent to all the mixed strategies that
generate it; see Fudenberg and Tirole’s Game Theory for details.10

34. Consider the Cournot game in example 1. Let

P (Q) = 1−Q, Q = q1 + q2, c = F = 0.

This is a game with simultaneous moves, and hence a game with imper-
fect information. Let us solve for the pure strategy NE.11 By definition,
it is a pair (q∗1, q

∗
2), such that given q∗2, q

∗
1 is profit maximizing for firm

1, and given q∗1, q
∗
2 is profit maximizing for firm 2. The procedure is

first to find the reaction function for firm i given any qj firm j might

9For example, consider an extensive game where player 1 first chooses between A and B,
and if A is chosen then the game ends; or else, following B, players 1 and 2 simultaneously
choose between a and b. Player 1 has four pure strategies, and two of them, (A,a) and
(A,b), are equivalent strategies; for another example, see the game Battle of Sex below.

10A game of perfect recall is an extensive game with special restrictions on its information
sets: players never forget what they knew in the past. In application, almost all games we
shall encounter are of perfect recall.

11For any mixed strategy σ of firm j, firm i’s payoff function πi(qi;σ) = qi(1−qi−Eσ[qj ])
is strictly concave. This implies that the set of best responses must be a singleton, and
hence this game has no mixed strategy equilibria.
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choose:
max
qi

f(q1) = qi(1− qi − qj),

where f(·) is concave and hence the first-order condition is necessary
and sufficient for optimal solution. This gives

q∗i =
1− qj

2
.

An NE, by definition, is the intersection of the two firms’ reaction
functions. Solving simultaneously

q∗1 =
1− q∗2

2

and

q∗2 =
1− q∗1

2

we have q∗1 = q∗2 = P ∗ = 1
3
.

35. Let us reconsider example 1 by assuming that firm 1 moves first by
setting q1, and firm 2 observes q1 before determining its q2. Now this
is a game with sequential moves, and hence a game with perfect infor-
mation. (This game has a name called Stackelberg game.) The key
difference here is that a pure strategy of firm 2 is not a quantity q2;
rather, it is a function q2(q1) which means that for different firm 1’s q1
observed, q2 may vary. Before we solve the pure strategy NE for this
game, we need a definition.

36. Definition 8: A subgame is the remainder of a game tree starting from
some singleton information set (an information set composed of only
one node).

37. Definition 9: (Selten, 1965) A subgame perfect Nash equilibrium
(SPNE) is an NE for a game in extensive form, which specifies NE
strategies in each and every subgame. (This definition is further gen-
eralized into sequential rationality by Kreps and Wilson (1982).)
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38. A game where all information sets are singletons is one of perfect in-
formation. Players must move sequentially in a game of perfect infor-
mation. The way to solve the SPNE’s of a finite game with perfect
information is referred to as backward induction: we first consider the
(last) subgames of which the immediate successors are the penultimate
nodes, and since each such subgame has a single player facing a finite
number of actions, there will be an optimal action for him in this last
subgame; then, we can move backward on the game tree to the imme-
diate predecessors of these last subgames, and in solving the NE’s for
the subgames starting from these predecessors, we should assume that
the players know which optimal actions will be taken if one of those
last subgames is reached; and then we move backward on the game
tree again, and so on and so forth. Because we are given a finite exten-
sive game with perfect information, with the above procedure we will
eventually reach the beginning of the game tree, thereby determining
an equilibrium path, which by definition is a pure strategy SPNE. This
procedure is usually referred to as Kuhn-Zermelo algorithm. Observe
that if no two terminal nodes give any player the same payoff, the ob-
tained SPNE is unique.
Example 4: Every NE in the extensive game depicted in section 30 is
also an SPNE.
Example 5: Chen is the owner-manager of a firm. The debt due one
year from now has a face value equal to $10. The total assets in place
worth only $8. But, just now, Chen found an investment opportunity
with NPV=x > 1, which does not need any extra investment other
than the current assets in the firm. Chen comes to his creditor and
asks the latter to reduce the face value of debt by $1. He claims (he
is really bad) that he will not take the investment project unless the
creditor is willing to reduce the face value as he wants.
(i) Suppose x > 2. Show that there is an NE in which the creditor
agrees to reduce the face value of debt and Chen makes the invest-
ment.
(ii) Show that the NE in (i) is not an SPNE, because it involves incred-
ible threat from Chen.
(iii) How may your conclusion about (ii) change if x ∈ (1, 2]?
(iv) Define bankruptcy as a state where the firm’s net worth drops
to zero. In case of (iii), conclude that Chen’s company has not gone
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bankrupt.

39. Example 5 shows that in a dynamic game, only SPNEs are reasonable
outcomes among NEs. Now we apply the procedure of backward induc-
tion to solve the SPNE for the Stackelberg game. First, consider the
subgame starting with firm 2’s decision. A subgame is distinguished
by firm 1’ choice of q1. Given q1, firm 2 has infinite possible strate-
gies q2(·), but which one is the best? Of course, the profit maximizing
strategy is the best, and hence

q2 =
1− q1

2
.

Now go back to firm 1’s problem. Firm 1 will

max
q1

q1(1− q1 − q2(q1)).

Check the concavity first and solve for the optimal q1. We have q∗1 = 1
2
,

q∗2 = 1
4
, P ∗ = 1

4
. Here some remarks are in order: (i) Committing to

be the leader (the one who moves first) is beneficial in quantity-setting
games; (ii) In Stackelberg game price is socially more efficient.

Note that with sequential moves firm 1 (the leader) can affect firm
2’s choice of q2 by committing to any q1 it wants, and since r2(q1) is
decreasing in q1 (when firm 1 expands output firm 2 will respond by
cutting back its own output level in order to prevent the price from
dropping too much; in this sense the firms’ output choices are strategic
substitutes), firm 1 has more incentives to expand output than in the
simultaneous (Cournot) game.12 This explains why the leader enjoys
a higher equilibrium supply quantity, and why the equilibrium price is
lower than that in the (simultaneous) Cournot game. More precisely,
observe that in the Cournot game firm 1 believes that the product price
it is faced with is 1−q1−q2, meaning that one unit of output expansion
will result in a dollar price reduction, while in the Stackelberg game,
firm 1 believes that the price it is faced with is 1− q1− r2(q1), meaning
that the price will drop less when it increases its output by one unit.

12Strategic substitutes and complements were first defined by Bulow, Geanakoplos, and
Klemperer (1985).
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40. Now consider the famous Bertrand game. Two firms produce a homo-
geneous good and sell it to homogeneous consumers. Producing one
unit of the good costs c, where 0 < c < 1. Each consumer is willing to
pay as much as 1 dollar to buy 1 unit of the good. The total population
of consumers is (normalized to) 1. The firms are competing in price.
Consumers maximize consumer surplus and firms maximize profits. A
pure strategy Nash equilibrium is (p1, p2), where pi is the price chosen
by firm i, i = 1, 2. Assume that firms get the same market share if they
choose the same price. Show that there is a unique Nash equilibrium
(called the Bertrand outcome) where p1 = p2 = c.
Proof Let F (p) and G(p) be the distribution functions for p1 and p2
chosen by firm 1 and firm 2 respectively.13 Thus F and G define com-
pletely a mixed strategy profile for this game. Note that given G, firm
1’s expected profit from using a pure strategy x is

(x− c){[1−G(x)] +
1

2
∆G(x)}.

That is, if firm 2 prices strictly above x, which occurs with probability
1 − G(x), then firm 1 may earn x − c with probability 1; but if firm
2 prices exactly at x also, which occurs with probability ∆G(x), then
firm 1 may earn x− c only with probability 1

2
.

We shall assume that (F,G) is an NE, and from here we shall derive
a series of necessary conditions on F and G (to be summarized in the
following steps). At first, let SF and SG be respectively the supports
of F and G.
Step 1: SF ⊂ [c, 1], SG ⊂ [c, 1], inf SF = inf SG = p, and supSF =
supSG = p.
Since pricing below c results in sure losses and pricing above 1 will
sure push consumers away, we have SF ⊂ [c, 1], SG ⊂ [c, 1]. We claim
that the two sets SF and SG have the same infimum (greatest lower
bound) and supremum (least upper bound). To see this, note that if

13A weakly increasing function F : ℜ → ℜ satisfying (i) (right-continuity)
limx<y,y→x F (y) = F (x) for all x ∈ ℜ; (ii) limx→−∞ F (x) = 0; and (iii) limx→+∞ F (x) = 1
is called a distribution function. It can have at most a countably infinite number of dis-
continuity points, and each such point is referred to as a point of jump. We denote by
∆F (x−) ≡ F (x)− limy<x,y→x F (y) ≡ F (x) = F (x−) the probability that F (·) assigns to
the point of jump x.
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F (P ) = 1 at P , then any price q > P is not a best response for G,
because facing q, regardless of p1, consumers would rather purchase
from firm 1. Similarly, if F (p) = 0 at p then there is no reason that
G will randomize over q < p: q is dominated by q+p

2
, because both q

and q+p
2

will attract all consumers for sure but apparently the price q+p
2

generates a higher profit. Thus for some p and p, we have

inf SF = inf SG = p, supSF = supSG = p.

In particular, we have SF ⊂ [p, p] ⊂ [c, 1] and SG ⊂ [p, p] ⊂ [c, 1].
To ease notation, let p = p and P = p.

Step 2: Fix any x ∈ (p, P ). Then neither F nor G can have a jump at
x.
To see this, suppose instead that x ∈ (p, P ) is a point of jump of F .
Thus firm 1 may randomize on the price x with a strictly positive prob-
ability δ > 0. In this case, there exists ϵ > 0 small enough such that
all prices contained in the interval [x, x + ϵ) are dominated for firm 2
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by some price q < x with q sufficiently close to x.14 Since (F,G) is
by assumption an NE, it must be that G assigns zero probability to
the interval [x, x + ϵ). Again, since F is the best response against G,
and since G(·) is flat on the interval [x, x + ϵ), this must imply that
x is not a best response for firm 1 (the price x + ϵ

2
, for example, is

strictly better than x), and firm 1 should not have assigned a strictly
positive probability to x, a contradiction. We conclude that F and G
are continuous except possibly at p and P (when p = c or P = 1).

14Write q = x − e for a tiny e > 0. Since F (·) has only a countably infinite number
of points of jump, we can find such a q at which F (·) does not jump. By choosing the
pure-strategy q, given firm 1’s mixed strategy F (·), firm 2’s expected payoff is

(x− e− c)[1− F (x− e)],

which we claim is greater than

(x+ d− c)[1− F (x+ d) +
1

2
∆F (x+ d)], ∀d ∈ [0, ϵ).

To see this, note that
1− F (x− e) = prob.(p̃1 > x− e),

and

1− F (x+ d) +
1

2
∆F (x+ d) ≤ 1− F (x+ d) + ∆F (x+ d) = prob.(p̃1 ≥ x+ d).

Since ∆F (x) = δ > 0, we know that

prob.(p̃1 > x− e)− prob.(p̃1 ≥ x+ d) > δ,

implying that

[1− F (x− e)]− [1− F (x+ d) +
1

2
∆F (x+ d)] > δ.

Now, for very small e > 0 and ϵ > 0,

(x+ d− c)− (x− e− c) = e+ d < e+ ϵ

is very small relative to the fixed δ. Hence we conclude that

(x− e− c)[1− F (x− e)] > (x+ d− c)[1− F (x+ d) +
1

2
∆F (x+ d)], ∀d ∈ [0, ϵ),

showing that no pure strategy lying in the interval [x, x+ϵ) can be a best response against
F (·) from firm 2’s perspective, which implies that G(·) must be flat on this interval.
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Step 3: If P > p then F and G are both continuous and strictly
increasing on the interval (p, P ).
That F and G are continuous has been proved in Step 2. Suppose
instead that, say, F is flat on an interval [a, b] ∈ (p, P ). Since p is
the infimum of SF , F (b) > 0.15 Moreover, since b < P , F (b) < 1.16

There exists a smallest x ∈ [p, P ] such that F (x) = F (b) = F (a) so
that 0 < F (x) < 1: By the right continuity of F , we have x = inf{y ∈
(p, P ) : F (y) = F (b)}. We claim that x is a best response for firm
1. Either x = p so that F (x) > 0 implies that p is a point of jump,
or x > p but for all ϵ > 0, F (x − ϵ) < F (x) (by definition of x)17 so
that there exists a best response yn in each interval contained in the
sequence of intervals {(x − 1

n
, x];n ∈ Z+} with limn→∞ yn = x. In the

former case, where x is a point of jump for F (·), x = p is clearly a best
response. We claim that the same conclusion holds in the latter case.
In the latter case, note that each best response yn gives rise to the same
expected profit Π1 for firm 1. Since by Step 2 G(·) is continuous on the
interval (p, P ), and since the sequence of yn converges to x, we have

(x− c)[1−G(x)] = lim
n→∞

(yn − c)[1−G(yn)] = lim
n→∞

Π1 = Π1,

implying that, given G(·), the pure strategy x also yields for firm 1 the
expected profit Π1, proving that x itself is a pure-strategy best response
for firm 1.

On the other hand, given that F (·) is flat on (x, b), firm 2 would never
randomize over (x, b), because each p2 ∈ (x, b) is dominated by, say,
p2+b
2

from firm 2’s perspective. However, given that G(·) is also flat on
(x, b), x itself is weakly dominated by, say, b+x

2
, and hence x cannot

be a best response for firm 1, which contradicts our earlier conclusion
that x must be a best response for firm 1. Hence we conclude that F (·)

15If F (b) = 0 = F (p), then b is a lower bound for SF , and b > p, which is a contradiction
to the fact that p is the greatest lower bound of SF .

16If instead F (b) = 1 then b is an upper bound of SF and yet b < P , a contradiction to
the fact that P is the least upper bound of SF .

17If there exists ϵ > 0 such that F (x− ϵ) = F (x), then F (x− ϵ) = F (b) and x− ϵ < x,
which is a contradiction to the definition of x.
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cannot be flat on any sub-interval contained in (p, P ). Together with
Step 2, this says that F and G are strictly increasing and continuous
on (p, P ), implying that each point in (p, P ) is a best response for both
firms.

We have just reached the conclusion that SF = SG = [p, P ]. We next
show that p = P .
Step 4: p = P .
Suppose instead that P > p, and consider any x ∈ (p, P ) for firm 1.
We claim that G cannot have a jump at P if P > p: If instead G does
jump at P , then P must be a pure-strategy best response for firm 2,
and we claim that in this case P cannot be a best response for firm 1
(pricing slightly below P is a better response than pricing at P from
firm 1’s perspective), implying by definition that firm 1 must price
below P with probability one, which in turn implies that pricing at P
will lose customers for sure (and hence yields zero profits) for firm 2,
while picking any price in the interval (p, P ) can yield a strictly positive
expected profit for firm 2, a contradiction to the assumption that P is
a best response for firm 2.

Thus G(·) is continuous at P . Now, since all x ∈ (p, P ) are pure-
strategy best responses for firm 1 and they generate the same expected
profit Π1 for firm 1, we must have

(x− c)[1−G(x)] = Π1, ∀x ∈ (p, P ).

Let {xn} be any increasing sequence contained in the interval (p, P )
and converging to P . We have for all n,

(xn − c)[1−G(xn)] = Π1

implying that

lim
n→∞

(xn − c)[1−G(xn)] = lim
n→∞

Π1 = Π1,

where note that

lim
n→∞

(xn − c)[1−G(xn)] = (P − c)[1−G(P )] = 0,
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following the fact that, by definition, G(P ) = 1. Thus Π1 = 0. But
then, for all x ∈ (p, P ),

(x− c)[1−G(x)] = 0,

which implies that
G(x) = 1, ∀x ∈ (p, P ).

By the fact that G(·) is right-continuous and weakly increasing, we
have

G(p) = G(p+) = inf{G(x) : x ∈ (p, P )} ⇒ G(p) = 1!

This implies that p = P , so that SF = SG and they are a singleton
set. Thus this game only has symmetric pure strategy Nash equilibria.
It is now easy to show that such an equilibrium is unique, in which
p = P = c. To sum up, the unique (mixed-strategy) NE for this game
can be written as F (x) = G(x) = 1[c,+∞)(x), ∀x ∈ ℜ+.

18

41. Continue with the Bertrand game discussed in the preceding section
but with the following modifications. Suppose that the two firms can
first announce a “best price in town” policy, which promises their cus-
tomers that they will match the lowest price a consumer can find in
this town. For example, if p1 = 1

3
> p2 = 1

4
, then everyone having

bought the product from firm 1 will receive an amount 1
3
− 1

4
from firm

1. Assume that both firms have announced the “best price in town”
policy. Reconsider the price competition between the two firms. Show
that in one NE the best-price-in-town policy gives rise to the worst
price for the consumers: In equilibrium the consumers are left with no
surplus.
Proof Let pm be the optimal price chosen by a monopolistic firm
(which is equal to 1 with the previous specifications). Then setting
price at pm by both firms forms an NE in the presence of the best-
price-in-town policy: Apparently, no firm can gain from unilaterally
raising the price (which implies that the transaction is still pm!), but if
one firm unilaterally lowers the price to below pm, it does not increase

18What do you think may happen if the two firms must move sequentially? Show that
the Bertrand outcome is again the unique SPNE.
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sales volume because consumers purchasing from the other firm will
automatically get compensated with the difference in the two firms’
prices, and so those consumers have no incentives to switch to the firm
charging the lower price. This proves that no firms can benefit from a
unilaterally deviation from the price pm, and hence pm defines a sym-
metric NE.

This game has other pure strategy NE’s as well. In fact, any price
contained in the interval [c, pm] defines a symmetric NE. The NE where
both pick the price pm is the Pareto undominated equilibrium for the
two firms. In that NE, consumers have the lowest possible consumer
surplus (as if they were faced with a monopolistic firm, or a perfectly
colluding cartel).

42. Continue with the above extensive game. Assume now that the two
firms can first simultaneously choose to or not to announce the best-
price-in-town policy, and then upon observing the two firms’ announce-
ments, the two firms engage in the price competition. Show that if the
firms will reach only Pareto undominated equilibria in a subgame, then
in equilibrium at least one firm will announce the best-price-in-town
policy in the first stage, and then both firms price at pm in the second
stage.19

43. Suppose there are two firms, 1 and 2, with symmetric demand func-
tions:

q1 = 1− p1 + 0.5p2, q2 = 1− p2 + 0.5p1.

Assume no costs for either firm. Suppose firms compete in price. Find
the NE for the cases of (i) simultaneous moves; and (ii) sequential
moves. The firms’ prices are strategic complements, and hence with
sequential moves the equilibrium output level will be less efficient; see
the previous discussions about the relationship between the Cournot
game and the Stackelberg game and argue analogously.

44. Two heterogeneous goods are produced by firm 1 and firm 2 respec-

19Committing to the best-price-in-town policy essentially allows a firm to convince its
rival that it will react to the latter’s price cut in no time. This removes its rival’s incentive
to lower the price, and hence both firms can benefit from pricing high.
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tively, and the demands for the two goods are

Di(pi, pj) = max(0, 1− api + bpj), a, b > 0, i ̸= j, i, j ∈ {1, 2}.

Find the pure strategy NE for this game assuming that the firms are
competing in price. What restrictions do you need to impose on the
parameters a, b so that firms will not get unbounded profits? Now we
solve the prices from the above system of equations to get the inverse
demands for the two firms:

Pi(qi, qj) = max(0,
1 + b

a

a− b2

a

− 1

a− b2

a

qi −
b
a

a− b2

a

qj), i ̸= j, i, j ∈ {1, 2}.

Now suppose instead that the two firms are competing in quantity. In
which case (competing in price or quantity) do the two firms obtain
higher profits in an NE? Why?
Solution Suppose that the two firms are competing in quantity. In an
NE of this quantity setting game, a firm considering raising its quantity
always assumes that its rival will not react. Since the game is really one
of price-setting, what the quantity-setting conjectural variation says is
really that when a firm lowers its price (so that its quantity is expanded)
it expects its rival to move the latter’s price in such a manner that with
the new prices the rival’s quantity does not change. This implies that
one’s lowering its price is expected to be reacted right away by its rival
by also lowering the latter’s price. Thus the firms in a quantity-setting
game (again, they are really playing the price-setting game) have less
incentives of lowering prices and expanding outputs. As a consequence
firms have higher profits in equilibrium.20

20We can provide a similar argument for a price-setting game in the context where the
two firms are really playing the quantity setting game given Pi(qi, qj). We claim that
the two firms have more incentives to expand outputs in the price-setting game. To see
this, note that in the quantity-setting game a firm i that considers expanding its output
qi believes that its rival j will not react by changing qj , and consequently one unit of
increase in qi reduces the firm’s own price Pi by 1

a− b2

a

. In the price-setting game, on

the other hand, a firm i that considers expanding its output qi believes that its rival j
will react immediately by reducing qj in such a manner that Pj will stay unchanged, and
this implies that one unit of increase in qi results in a reduction in Pi by less than 1

a− b2

a

.

Consequently, the two firms have more incentives to expand outputs in the price-setting
game, and therefore obtain lower equilibrium profits.
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45. Having considered firms’ imperfect competition in quantity and price,
let us consider location (or spatial) competition. (Think of product
positioning.) Two firms must each choose (simultaneously) a location
on the Hotelling main street (the [0, 1] interval). Thus S1 = S2 = [0, 1].
For any pure strategy profile (xl, xr), where 0 ≤ xl ≤ xr ≤ 1, the firm
choosing xl has payoff

xl +
xr − xl

2
;

and the firm choosing xr has payoff

xr − xl

2
+ (1− xr).

Show that the unique pure strategy NE of this game is (1
2
, 1
2
). Show that

the same is true if the two firms move sequentially. Now consider the
same game but assume that there are three firms. A profile (xl, xm, xr)
generates xl +

xr−xl

2
for the firm choosing xl,

xm−xl

2
+ xr−xm

2
for the

firm choosing xm, and
xr−xm

2
+ (1− xr) for the firm choosing xr. Show

that this game has no pure strategy NE. What if the three firms move
sequentially?

Let Li ∈ [0, 1] be the location of firm i. An innocuous assumption is
that L3 =

1
2
(L1 + L2) whenever firm 3 decides to locate at somewhere

between L1 and L2. (This assumption does matter, because firms 2 and
3 when deciding their own locations must form expectations about how
firm 3 will locate. It is innocuous because firm 3 should be indifferent
about any locations in between L1 and L2 once staying in between L1

and L2 is its decision. This seems to be the natural choice of firm 3.)
In the following, LR ≡ max(L1, L2), LL ≡ min(L1, L2).

By backward induction, we should first consider firm 3’s reaction func-
tion L∗

3(L1, L2). Firm 3’s payoff is (nearly)

max(1− LR, LL,
LR − LL

2
),
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and its best response is

L∗
3 =



LR + ϵ, if max(1− LR, LL,
LR−LL

2
) = 1− LR;

LL − ϵ, if max(1− LR, LL,
LR−LL

2
) = LL;

LR+LL

2
, if max(1− LR, LL,

LR−LL

2
) = LR−LL

2
.

Note that

max(1− LR, LL,
LR − LL

2
) = 1− LR

⇔ 1− LR ≥ LR − LL

2
, 1− LR ≥ LL ⇔ LR ≤ min(

2 + LL

3
, 1− LL).

Re-arranging the conditions max(1−LR, LL,
LR−LL

2
) = LL and max(1−

LR, LL,
LR−LL

2
) = LR−LL

2
analogously, we obtain

L∗
3(L1, L2) =



LR + ϵ, if LR ≤ min(2+LL

3
, 1− LL) (3− 1)

LR+LL

2
, if LR ≥ max(3LL,

2+LL

3
) (3− 2)

LL − ϵ, if LR ∈ [1− LL, 3LL] (3− 3).

Note that (3-3) says that firm 3 will never choose L3 = LL − ϵ unless
LL ≥ 1

4
.

Moving backwards, we now derive L∗
2(L1) using firm 2’s correct expec-

tations regarding L∗
3(L1, L2). Since possible L1 and L2 are ∈ [0, 1], we

must consider the following six regions:
(a) L2 ≥ L1, L2 ≤ min(2+L1

3
, 1− L1) (so that L1 ∈ [0, 1

2
]);

(b) L2 ≥ L1, L2 ≥ max(2+L1

3
, 3L1); (so that L1 ∈ [0, 1

3
])

(c) L2 ≥ L1, L2 ∈ [1− L1, 3L1] (so that L1 ∈ [1
4
, 1));

(d) L2 ≤ L1, L1 ≤ min(2+L2

3
, 1− L2) (so that L1 ∈ [0, 3

4
]);

(e) L2 ≤ L1, L1 ≥ max(2+L2

3
, 3L2) (so that L1 ∈ [2

3
, 1]);

(f) L2 ≤ L1, L1 ∈ [1− L2, 3L2] (so that L1 ∈ [1
2
, 1)).

Note that from firm 3’s perspective, in (a),(b), and (c) L1 = LL and
L2 = LR, and in (d), (e), and (f), L1 = LR and L2 = LL.

We shall first compute regionally optimal Li
2(L1) for each region i ∈ {

a,b,c,d,e,f}, and then obtain the globally optimal L∗
2(L1) from the six

regionally optimal Li
2(L1)’s.
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• First consider firm 2’s optimal choice in region (a). Given L1, if
firm 2 chooses L2 such that L2 ≥ L1 and L2 ≤ min(2+L1

3
, 1− L1),

then (3-1) holds with L2 = LR and L1 = LL, and hence L∗
3 =

L2 + ϵ, which implies that L1 ≤ L2 < L∗
3, and firm 2’s payoff is

Πa
2 =

L2 − L1

2
,

which is increasing in L2, so that firm 2 should choose L2 as large
as possible. The largest L2 that satisfies L2 ≥ L1 and L2 ≤
min(2+L1

3
, 1− L1) is exactly firm 2’s regionally optimal choice

La
2(L1) = min(

2 + L1

3
, 1− L1).

With this choice, firm 2’s payoff becomes

Πa
2 =

La
2(L1)− L1

2
=

min(2+L1

3
, 1− L1)− L1

2
.

• Next, consider firm 2’s optimal choice in region (b). Given L1, if
firm 2 chooses L2 such that L2 ≥ L1 and L2 ≥ max(2+L1

3
, 3L1),

then (3-2) holds with L2 = LR and L1 = LL, and hence L∗
3 =

L1+L2

2
, which implies that L1 < L∗

3 < L2, and firm 2’s payoff is

Πb
2 =

L2 − L1

4
+ (1− L2),

which is decreasing in L2, so that for firm 2 the smaller L2 is
the better. The smallest L2 that satisfies L2 ≥ L1 and L2 ≥
max(2+L1

3
, 3L1) is exactly firm 2’s regionally optimal choice

Lb
2(L1) = max(

2 + L1

3
, 3L1).

With this choice, firm 2’s payoff becomes

Πb
2 =

Lb
2(L1)− L1

4
+ 1− Lb

2(L1) = 1− L1

4
− 3

4
max(

2 + L1

3
, 3L1).
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• Next, consider firm 2’s optimal choice in region (c). Given L1 ≥ 1
4
,

if firm 2 chooses L2 such that L2 ≥ L1 and L2 ∈ [1−L1, 3L1], then
(3-3) holds with L2 = LR and L1 = LL, and hence L∗

3 = L1 − ϵ,
which implies that L∗

3 < L1 ≤ L2, and firm 2’s payoff is

Πc
2 =

L2 − L1

2
+ (1− L2),

which is decreasing in L2, so that for firm 2 the smaller L2 the
better. The smallest L2 that satisfies L2 ≥ L1 ≥ 1

4
and L2 ∈

[1− L1, 3L1] is exactly firm 2’s regionally optimal choice

Lc
2(L1) = max(1− L1, L1) ≥

1

2
.

With this choice, firm 2’s payoff becomes

Πc
2 =

Lc
2(L1)− L1

2
+ 1− Lc

2(L1) = 1− L1

2
− 1

2
max(1− L1, L1).

• Following a similar procedure, we can obtain

Ld
2(L1) = min(1− L1, L1) ≤

1

2
, Πd

2 =
L1 +min(L1, 1− L1)

2
;

Le
2(L1) = min(3L1 − 2,

L1

3
), Πe

2 =
L1 + 3min(3L1 − 2, L1

3
)

4
;

and

L1 ≥ Lf
2(L1) = max(1−L1,

L1

3
) ≥ 1

4
, L1 ≥

1

2
, Πf

2 =
L1

2
−1

2
max(1−L1,

L1

3
).

Now, to obtain firm 2’s best response from the above six regional op-
tima, we compare the six corresponding payoffs for firm 2, which are
summarized in the table below (where an asterisk indicates the maxi-
mum payoff).

L1 ∈ [0, 1
4
] L1 ∈ [1

4
, 1
2
] L1 ∈ [1

2
, 2
3
] L1 ∈ [2

3
, 3
4
] L1 ∈ [3

4
, 1]

Πa
2

1−L1

3
1
2
− L1 — — —

Πb
2

1−L1

2

∗
1− 5

2
L1 1− 5

2
L1 1− 5

2
L1 1− 5

2
L1

Πc
2 — 1

2

∗
1− L1 1− L1 1− L1

Πd
2 L1 L1

1
2

∗ 1
2

∗
—

Πe
2 — — — 5L1−3

2
L1

2

∗

Πf
2 — — L1 − 1

2
L1 − 1

2
1
3
L1
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From the table we obtain

L∗
2(L1) =



2+L1

3
, if L1 ≤ 1

4
; (2− 1)

1− L1, if L1 ∈ [1
4
, 3
4
]; (2− 2)

L1

3
, if L1 ≥ 3

4
(2− 3).

Now, we consider firm 1’s optimal decision, L∗
1. For L1 such that (2−1)

holds, from the above analyses,

L∗
2(L1) =

2 + L1

3
, L∗

3(L1, L
∗
2(L1)) =

1 + 2L1

3
,

which implies that firm 1’s payoff is L1+
1
2
(1+2L1

3
−L1) =

1+5L1

6
, which

is increasing in L1, and hence the best L1 in this region is 1
4
. On the

other hand, if firm 1 chooses any L1 such that (2− 2) holds, then

L∗
2(L1) = 1− L1, L∗

3(L1), L
∗
2(L1)) = L1 − ϵ,

which implies that firm 1’s payoff is decreasing in L1. Once again the
regionally optimal L1 is 1

4
. How about those L1 that satisfy (2 − 3)?

In this case, (3 − 2) holds, and hence firm 1’s payoff is (1 − L1) +
L1−

L1
3

4
, decreasing in L1. Hence, the regionally optimal L1 =

3
4
, which

is obviously a strategic equivalent of L1 =
1
4
. Thus, this game has two

subgame perfect Nash equilibria (assuming that firm 3 always locates
itself right in the middle between firms 1 and 2 whenever applicable):21

21Let us examine these equilibria using a more intuitive argument. Without loss of
generality, let us confine attention to the SPNEs where L1 ∈ [0, 1

2 ].

• Can it be that L1 > 1
4 in equilibrium, given that L1 ∈ [0, 1

2 ]?

Following such a choice of L1 by firm 1, firm 2 can either choose L2 = L1 − ϵ or
L2 > L1. In the former case, L3 = L1 + ϵ, which yields nearly a zero payoff for
firm 1. In the latter case, firm 2 in choosing L2 must decide whether to induce
L3 = L1+L2

2 or L3 = L1 − ϵ or L3 = L2 + ϵ. If in equilibrium L2 > L1 > 1
4 , then

it is impossible that L3 = L2 + ϵ: this would mean that, from firm 3’s perspective,
choosing L3 = L2+ ϵ is better than choosing L3 = L1− ϵ, and hence 1−L2 > L1, so
that firm 2’s payoff would be L2−L1

2 < 1−L1−L1

2 < 1
4 , but firm 2 could have chosen
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L2 = L1 − ϵ > 1
4 and induced firm 3 to choose L3 = L1 + ϵ! Thus if in equilibrium

L2 > L1 > 1
4 , then either L3 = L2 + ϵ or L3 = L2+L1

2 . Note that firm 3 prefers
the latter to the former if and only if 2(1 − L2) ≤ (L2 − L1): choosing the latter
would generate for firm 3 a payoff equal to one half of the length between L1 and
L2, and choosing the former would generate for firm 3 a payoff equal to the length
between L2 and 1. When firm 3 feels indifferent between these two choices, or when
2(1 − L2) = (L2 − L1), firm 2 would like firm 3 to choose the latter: firm 2 would
get L2−L1

2 if firm 3 chooses the former, but firm 2 would get L2−L1

4 + (1 − L2) if
firm 3 chooses the latter. Hence firm 2’s optimal choice for L2 is such that 2(1−L2)
slightly falls short of (L2 − L1), and firm 3’s payoff is essentially 1−L1

3 , which is
less than 1

4 . However, firm 3 could have deviated and chosen L3 = L1 − ϵ, which
generates for firm 3 a payoff strictly higher than 1

4 . To sum up, there is no SPNE in
which L2 > L1 > 1

4 . The only possible SPNE with L1 > 1
4 must have L2 = L1 − ϵ

and L3 = L1 + ϵ, implying that firm 1 will get nearly zero payoff if it chooses some
L1 ∈ ( 14 ,

1
2 ]. In what follows, we show that firm 1 can ensure itself a payoff of nearly

1
4 by choosing some L1 ≤ 1

4 . Hence there can be no SPNE in which L1 > 1
4 given

that L1 ∈ [0, 1
2 ].

• Can it be that L1 < 1
4 in equilibrium, given that L1 ∈ [0, 1

2 ]?

We claim that in such an SPNE, it can never happen that L2 = L1 − ϵ. If the latter
did happen, then firm 3 must choose L3 = L1 + ϵ, so that firm 2’s payoff would be
L1 < 1

4 , but firm 2 could have chosen L2 = 1
4 , which would have induced firm 3

to choose L3 = L1+L2

2 , thereby yielding a payoff for firm 2 which is strictly greater
than 1

4 ! Now, if there is an SPNE in which L2 > L1, and L1 < 1
4 , then again it

cannot happen that L3 = L1 − ϵ. For the latter to happen, it is necessary that firm
3 prefers L3 = L1 − ϵ to L3 = L2 + ϵ, implying that 1− L2 < 1

4 also, but then firm

3 can get a payoff that is strictly greater than 1
4 by choosing L3 = L1+L2

2 ! Thus,
if there an SPNE with L1 < 1

4 , then it is necessary that L2 > L1 and L3 > L1.

Again, firm 2 would induce firm 3 to feel almost indifferent about L3 = L1+L2

2 and

L3 = L2+ϵ but to slightly prefer the former. This implies that L2 = L1+
2(1−L1)

3 +ϵ

and L3 = 2L1+1
3 , and hence when L1 ∈ [0, 1

4 ), firm 1’s payoff is increasing in L1.

This implies that no single L1 < 1
4 can be a best response for firm 1; choosing

L1+
1
4

2
is always better. The bottom line is that there can be no SPNE in which L1 < 1

4
given that L1 ∈ [0, 1

2 ].

The above discussions explain why in an SPNE firm 1 must choose L1 = 1
4 (given

that L1 ≤ 1
2 ). Given this choice made by firm 1, firm 2 then correspondingly chooses

L2 = L1 +
2(1−L1)

3 + ϵ, which is (essentially) equal to 3
4 . Finally, firm 3’s optimal choice

is then L3 = 2L1+1
3 , which is (essentially) equal to 1

2 .
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(L∗
1, L

∗
2, L

∗
3) = (

1

4
,
3

4
,
1

2
),

and

(L∗
1, L

∗
2, L

∗
3) = (

3

4
,
1

4
,
1

2
).

46. Find all mixed strategy NEs for the following strategic game:

Player 1/Player 2 L M R
U 4, 0 0, 1 −1,−100
D 2, 2 1, 1 0, 3

Solution It is easy to show that (D,R) is a pure strategy NE. Consider
mixed strategy NE’s. Let π be the equilibrium probability that player
1 chooses U, and p and q respectively the equilibrium probabilities that
player 2 chooses L and M. It is easy to verify that there are two mixed
strategy NE’s of this game, which are

(π, p, q) = (
1

2
,
1

3
,
2

3
), (π, p, q) = (

1

101
,
1

3
, 0).

Note that in the first mixed strategy NE, given player 1’s mixed strat-
egy, R is not a best response for player 2, and that is why player 2
only randomizes over L and M. In the second mixed strategy NE, given
player 1’s mixed strategy, M is not a best response for player 2, and
that is why player 2 randomizes only over L and R.

47. Mr. A and B are asked to simultaneously name a number in {1, 2, · · · , 100},
and if the two numbers are identical they each get 1 dollar, or else
they get zero. Find all the NE’s. (Hint: Each non-empty subset
E ⊂ {1, 2, · · · , 100} defines a mixed strategy NE where A and B both
assign probability 1

#(E)
to each and every element in E, where #(E) is

the number of elements in E.)

48. Consider the following strategic game:
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Player 1/Player 2 L M R
U 5, 5 −1, 6 −2,−2
M 6,−1 0, 0 −2,−2
D −2,−2 −2,−2 −6,−6

Now assume this game is played twice, and each player maximizes the
sum of his payoffs in the two rounds of play. Each player observes ev-
eryone’s first-period action before the second-period game starts. This
is called a repeated game, where the above stage game is played twice.
(a) What are the highest symmetric payoffs in any NE?
(b) What are the highest symmetric payoffs in any SPNE?
(Hint: For part (b), the only SPNE of this game consists of the two
players playing (M,M) in both rounds.22 For part (a), note first that
each player has 3×39 pure strategies, and in each pure strategy a player
must specify which among (U,M,D) (or (L,M,R)) will be chosen at the
first stage, and at the beginning of stage 2, in each of the 9 possible
subgames which among (U,M,D) (or (L,M,R)) will be chosen. Now
show that the following pure strategy profile constitutes an NE, which
is not subgame-perfect: player 1 plays U at the first stage and will play
M at the second stage if (U,L) is the outcome of the first stage and he
will play D at the second stage if the first-stage outcome is not (U,L);
player 2 plays L at the first stage and will play M at the second stage if
(U,L) is the outcome of the first stage and he will play R at the second
stage if the first-stage outcome is not (U,L).)

49. Consider two firms engaged in Cournot competition. The inverse de-
mand is

p = 3− q1 − q2.

Assume that both firms have marginal cost equal to 1, but only firm
1 has the chance to spend F and brings the marginal cost down to

22The reader may get the wrong impression that an SPNE of a finitely repeated game
is nothing but a repetition of the NE in the stage game. In fact, strategic games that have
a unique NE are quite unusual. If the stage game has more than one NE, then a repeated
game will have a lot of SPNE’s which differ from any series of NE’s obtained from the
static game, as long as the number of repetitions is large enough. We shall have more to
say on this in a subsequent Lecture.
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zero. Firm 1 moves first by deciding to invest F or not to, which is
unobservable to firm 2 (imperfect information). The two firms then
play the Cournot game by selecting their own outputs. Compute the
set of pure strategy Nash equilibria for this imperfect information game
for F ∈ R+. (Hint: for different ranges of F , the equilibria may differ.)
Solution Suppose that firm 2 believes (correctly) that in equilibrium
firm 1 makes the investment with probability 1− π, where 0 ≤ π ≤ 1.
Let the equilibrium quantity of firm 1 be q∗1(c) if firm 1’s marginal cost
is c ∈ {0, 1}. Let q∗2 be firm 2’s equilibrium quantity. Then, as part of
the Nash equilibrium, we must have

q∗1(1) = argmax
q1

q1(3− q1 − q∗2 − 1),

q∗1(0) = argmax
q1

q1(3− q1 − q∗2 − 0),

q∗2 = argmax
q2

q2(3− E[q∗1]− q2 − 1),

where
E[q∗1] = πq∗1(1) + (1− π)q∗1(0).

The (necessary and sufficient) first-order conditions of these three max-
imizations give three equations with three unknowns. Solving, we have

q∗1(1) =
5− π

6
, q∗1(0) =

8− π

6
, q∗2 =

1 + π

3
.

Let Yi(c;π) be the equilibrium profit of firm i before subtracting the
expenditure on F , given that firm 1’s marginal cost is c and firm 2’s
beliefs are such that firm 1 spends F with probability 1−π. Then, one
can show that

Y1(1; π) = [
5− π

6
]2, Y1(0; π) = [

8− π

6
]2.

Suppose that there exist pure strategy NE’s. In a pure strategy NE,
firm 1 either spends F with prob. 1 or does not spend F with prob. 1.
Suppose first that there is a pure strategy NE in which firm 1 invests.
Then this is expected correctly by firm 2, and hence π = 0. From the
preceding discussion, this requires, for firm 1 to follow its equilibrium
strategy,

Y1(0; 0)− F ≥ Y1(1; 0),
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or F ≤ 39
36
.

Next, suppose instead that there is a pure strategy NE in which firm
1 does not invest. The earlier discussion implies that π = 1 and in
equilibrium it must be that

Y1(0; 1)− F ≤ Y1(1; 1),

or F ≥ 33
36
.

Finally, consider mixed strategy NE’s. For firm 1 to randomize between
to and not to invest with respectively prob. (1− π) and π,23

Y1(0; π)− F = Y1(1; π),

which, after recognizing π ∈ (0, 1), implies that F ∈ (33
36
, 39
36
). Note that

for all F ∈ R+, this game has an odd number of NE’s.24

50. Two firms are competing in a declining industry in continuous time. If
at time t ∈ [0,+∞) both stay, firm i gets profit density πi

d(t); if only

23Note again that neither firm 1 nor firm 2 can randomize in the quantity-setting stage
(why?), and hence a mixed strategy NE can at most involve firm 1 randomly making
investment decisions.

24Let us solve in detail the pure strategy NE where firm 2 chooses q∗2 and firm 1 spends
F with probability one and then choose q∗1 . In this equilibrium, firm 2 correctly expects
firm 1’s equilibrium strategy, and hence firm 2 correctly expects that firm 1’s marginal
cost becomes 0 when firm 1 is ready to choose q∗1 . If firm 1 has chosen to spend F in the
earlier stage, then its choice q∗1 should be optimal against firm 2’s q∗2 ; that is,

q∗1 = argmax
q

q(3− q − q∗2 − 0),

which requires that

q∗1 =
3− q∗2

2
.

Similarly, firm 2’s q∗2 must be a best response against firm 1’s q∗1 , so that

q∗2 = argmax
q

q(3− q∗1 − q − 1),

which requires that

q∗2 =
2− q∗1

2
.

Solving, we obtain

q∗1 =
4

3
, q∗2 =

1

3
.
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firm i stays, it gets πi
m(t). (d and m stand for respectively ‘duopoly’

and ‘monopoly’.) It is given that

π1
d = 2− 2t,

π2
d = 1− 2t,

π1
m =

11

4
− t,

π2
m =

7

4
− t.

Show that there is a unique SPNE for this game. (Hint: Let Ti be
the equilibrium point in time firm i chooses to exit. First observe that
T1 ∈ [1, 11

4
] and T2 ∈ [1

2
, 7
4
]. Now repeatedly apply common knowledge

about the two firms’ rationality to make the following inferences: if at
any t ∈ [5

4
, 11

4
] firm 1 is still operating, then firm 1 will stay till 11

4
, and

knowing this, if at any t ∈ [5
4
, 11

4
] firm 2 is still operating, then firm 2

should leave immediately at t. Firm 1, knowing that firm 2 is rational
and is able to make the above inference, will not leave until 11

4
if it is

still operating at any t ∈ [1, 5
4
]. Being able to make this last inference,

firm 2 will leave immediately at t = 1
2
. Conclude thereby that T1 =

11
4

and T2 =
1
2
constitute the unique SPNE.)25

It follows that firm 1’s equilibrium profit is 4
3 (3 −

4
3 − 1

3 − 0) − F = 16
9 − F , which must

be greater than the profit that firm 1 would make by choosing not to spend F in the first
place. The latter deviation would result in the following profit for firm 1:

max
q

q(3− q − 1

3
− 1) =

25

36
.

(Note that following firm 1’s deviation, firm 2’s output choice is still q∗2 , because firm 2
must choose its output without actually seeing firm 1’s investment decision.) Hence such
an equilibrium exists if and only if

16

9
− F ≥ 25

36
⇔ 39

36
≥ F.

The other pure-strategy NE where firm 1 does not spend F in equilibrium can be derived
in a similar fashion.

25This game does have other NE’s which are not subgame perfect. Show that T1 = 1
and T2 = 7

4 constitute one such NE. To see that this NE is not subgame perfect, note
that in the subgame at time t ≥ 5

4 where neither firm has exited, T1 = 11
4 is a dominant

strategy for firm 1, to which firm 2’s best response is not T2 = 7
4 . That is, the NE does

not specify NE strategies for firm 2 in each and every subgame!
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51. Three cowboys A, B, and C will take turn to shoot at one of their
opponents (everyone can take one shot; A first, and then B, and then C,
and then A (if still alive), and so on). The shooter’s feasible strategies
consist of deciding his targets. With probability 0.8, 0.2 and zero,
A, B, and C may respectively miss their targets. Assume that if the
target is hit, he dies. The game ends when there is exactly one cowboy
remaining alive. The last survivor gets payoff 1, and others get zero.
Find an SPNE.
Solution We shall look for a special kind of SPNE’s, called a stationary
equilibrium. In such an equilibrium, a player’s strategy in a subgame
depends only on the state at the current stage, but not on the history
that reaches this subgame. In this game, the state of the current stage
concerns how many opponents of the shooter are still alive. In such an
equilibrium, in all the subgames where it is A’s turn to shoot and both
B and C are alive, A will adopt the same equilibrium strategy.

(a) In every subgame where there are two cowboys alive, the shooter’s
strategy is, trivially, to aim at his last opponent.

(b) Consider the subgame where a shooter is facing two opponents. If
the shooter is C, then after C shoots the preceding (a) will apply,
and hence in C’s interest, C prefers taking out B rather than A.

(c) Consider the subgame where the shooter is B and B is facing two
opponents. After B shoots, if the target is missed, then the above
(b) will apply, and B will be dead regardless who B’s current target
is. On the other hand, if the target is not missed, then B is better
off facing A. The conclusion is therefore B should aim at C.

(d) Consider the subgame where the shooter is A and A is facing two
opponents. Again, we do not have to discuss the case where A
misses his target. In case the target is hit, then A would rather
let the last surviving opponent be B (so that A has the chance to
shoot again). The conclusion is again that A should shoot at C.

Thus our conclusion is that both A and B should try to shoot at C,
and C should try to shoot at B, until someone is hit and dead, and
from then on the remaining two start shooting at each other.
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52. Consider the following voting game. An incumbent manager I is cur-
rently managing an all-equity firm. The firm’s earnings will be YI under
manager I’s control, and manager I himself will receive a private ben-
efit ZI if he has the control. A raider C appeared just now to compete
with I. The firm’s earnings under C’s control will be YC and manager
C will receive a private benefit ZC if he defeats I and becomes the new
manager. There are two classes of stocks issued by the firm. Class i
stockholders are entitled to a fraction Si of the firm’s earnings, and are
given a fraction Vi of the votes in managerial election, where i = A,B.
Assume that investors do not hold both stocks A and B at the same
time. Investors are rational and can predict the outcome of control
contest correctly. There are many small shareholders for each class of
stock, so that no shareholder considers himself privotal. Suppose that
the firm’s charter states that the rival C gets control if he obtains a
fraction α of the votes. For simplicity, assume that α = 1.

The game proceeds as follows. The rival C first makes an offer to stock-
holders, and then the incumbent manager can make another offer given
C’s offer. Given the two offers, the stockholders then make tendering
decisions.
(i) Suppose that SA = SB = 50%, VA = 100%, VB = 0%. Suppose that
it is common knowledge that YI = 200, YC = 180, and ZI = 0 < ZC .
Suppose that offers must be in integers. Show that if ZC ≥ 11, C can
purchase all class A stock at the price of 101, and the market value of
the firm becomes 191.
(ii) Suppose that SA = 75%, SB = 25%, VA = 100%, VB = 0%. More-
over, YI , YC , ZI , ZC are as assumed in part (i). Show that the market
value of the firm becomes 196 in equilibrium if ZC ≥ 16; or else the
firm value is 200.
(iii) Suppose that SA = 100%, SB = 0%, VA = 100%, VB = 0%. More-
over, YI , YC , ZI , ZC are as assumed in part (i). Show that the market
value of the firm becomes 201 in equilibrium if ZC ≥ 21; or else the
firm value is 200.
(iv) From now on, assume ZI , ZC > 0. Suppose that SA = 100%,
SB = 0%, VA = 100%, VB = 0%. Moreover, YI = 10, YC = 100,
ZI = 0 < 1 < ZC . Show that the market value of the firm becomes 100
in equilibrium.
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(v) Suppose that SB = 100%, SA = 0%, VA = 100%, VB = 0%. More-
over, YI = 10, YC = 100, ZI = 0 < 1 < ZC . Show that the market
value of the firm becomes 101 in equilibrium.26

53. Players 1 and 2 are bargaining over 1 dollar. The game proceeds in
2N periods. In period i, where i is odd, player 1 can make an offer
(xi, 1 − xi) to player 2, where xi is player 1’s share, and player 2 can
either accept or reject that offer. If the offer is accepted, then the dollar
is so divided; or else, the game moves on to the i+1st period. In period
j, where j is even, player 2 can make an offer (xj, 1 − xj) to player 1,
where xj is again player 1’s share, and player 1 can either accept or
reject that offer. The game ends here if acceptance is player 1’s decision
(with the dollar divided as player 2 proposed); or else, the game moves
on to the j + 1st period. The dollar will be gone if agreement is not
reached by the end of period 2N . We assume that waiting is costly,
because both players have a (common) discount factor δ ∈ (0, 1). Show
that this game has a unique subgame perfect Nash equilibrium (SPNE)

where player 1 proposes (1−δ2N

1+δ
, δ+δ2N

1+δ
) and player 2 accepts it in the

26Thus one-share-one-vote scheme is optimal except in the case where one management
team has higher values in both Y and Z! The idea here is that the managerial position
typically gives a team private benefits which the investors of the firm cannot obtain, but
via the design of a voting scheme the investors can force a management team to disgorge
those benefits. When the voting scheme is not one-share-one-vote, as in parts (i) and (ii),
the team with a lower earnings performance may still win (by paying a part of their private
benefits to the vote-holding investors); this happens because the votes they purchase do
not represent 100% of the cash-flow rights (and hence the differential performance between
this team and a high-performance team is under-estimated by the vote-holding investors).
The total firm value may not attain the maximal level because the securities without voting
rights may receive less cash flows under the management of the winning team. When one
team is better than the other team in both earnings performance and private benefits,
forcing the former to buy purely voting securities can best extract that winning team’s
private benefits. Of course, ex-ante the firm in designing the voting scheme cannot tell
whether there will be a team that dominates other teams in both Y and Z, and so the
voting scheme must be chosen to be optimal against an “average” future situation.

44



first period.27 28

54. Now reconsider Example 5, and modify the game by assuming that
Chen will first optimally choose y, where y is the amount that Chen
will ask the creditor to reduce from the face value of debt, and then
Chen and the creditor play the game stated in Example 5. What is the
optimal y chosen by Chen in the SPNE?29

27By backward induction, we have x2N = 0, x2N−1 = 1 − δ(1 − x2N ), x2N−2 =
δx2N−1, x2N−3 = 1 − δ(1 − x2N−2), and so on. Define y(n) ≡ x2N−1−2(n−1), for all
n = 1, 2, · · · , N . Then we have y(1) = x2N−1, y(2) = x2N−3, · · · , y(N) = x1. Observe
that y(·) satisfies the following difference equation:

y(n+ 1) = 1− δ + δ2y(n),

with the seed value y(1) = 1 − δ. Note that the adjoint homogeneous equation
y(n + 1) = δ2y(n) has the general solution bδ2n for some constant b, and that the in-
homogeneous part is a constant, which induces us to guess a particular solution a for
y(n), where a is a constant independent of n. Solving a = 1− δ + δ2a, we have a = 1

1+δ .

Now since the general solution for the difference equation y(n + 1) = 1 − δ + δ2y(n)
has to be the sum of the general solution for the adjoint homogeneous difference equa-
tion and the particular solution a for the original inhomogeneous difference equation (see
http://en.wikipedia.org/wiki/Difference equations), we have

y(n) = a+ bδ2n.

Finally, using y(1) = 1− δ, we obtain b = −1
1+δ , so that x1 = y(N) = 1−δ2N

1+δ .
28Thus our theory predicts that if N = 1 then player 2, when he gets the chance to move,

will offer player 1 with zero payoff. This prediction is at odds with existing experimental
evidence. Usually, the player who makes the offer behaves a lot more generous in those
experiments than our theory would describe. One possibility is that player 1 (in the
experiment) is not an expected utility maximizer; rather, his behavior may be consistent
with Kahneman and Tversky’s (1979) prospect theory (see my note in Investments, Lecture
2, Part II). Say player 1 thinks that it is simply fair that he receives at least 0.3 dollars
(called a reference point), and he is ready to reject any offer that gives him a payoff less
than 0.3 dollars. If player 2 recognizes this, then player 2’s optimal strategy is to offer
player 1 0.3 dollars. This example does not necessarily imply any flaws of the game theory
per se (I am not saying that the game theory is flawless though); rather, it points out the
importance of specifying correctly the payoffs for the players. Mis-specified payoffs lead to
incorrect predictions about the final outcome of the game. Since our purpose of learning
the game theory is essentially to make correct predictions, the importance of specifying
correctly the normal form for the game cannot be overstated.

29Show that if x > 2, the choice of y no longer matters, for the creditor will always turn
down Chen’s offer. Show that if x ≤ 2, the creditor will turn down any y > 2, and Chen
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55. Two firms are asked to deliver respectively A > 0 and B > 0 units of
a homogeneous good at time 1. They do not have inventory at time 0.
At each point in time, holding one unit of inventory incurs a cost α > 0
(respectively β > 0) for firm A (respectively, firm B). Purchasing one
unit of the good at time t incurs a unit cost

c(t) = 1 + a(t) + b(t),

where a(t) and b(t) are respectively quantities ordered by firms A and
B at time t. The inventory as a function of time must be continuously
differentiable. Each firm seeks to minimize the total costs of making
the delivery at time 1 (without discounting). Assume that

A >
1

6
(2α− β), B >

1

6
(2β − α),

and
2α > β >

α

2
> 0.

Find an (open-loop) NE for this game.30 (Hint: Suppose that the two
firms have inventory x(t) and y(t) at time t, where x(0) = y(0) = 0,
and x(1) = A, y(1) = B. Then x′(t) = a(t) and y′(t) = b(t), so that
the total cost facing the two firms are respectively∫ 1

0
(αx(t) + x′(t)[1 + x′(t) + y′(t)])dt

and ∫ 1

0
(βy(t) + y′(t)[1 + x′(t) + y′(t)])dt.

An open-loop pure strategy NE is a pair ((x(·), y(·)) such that (i) given
y′(·), x(·) minimizes

∫ 1
0 (αx(t)+x′(t)[1+x′(t)+y′(t)]dt subject to x(0) =

0 and x(1) = A; and (ii) given x′(·), y(·) minimizes
∫ 1
0 (βy(t)+ y′(t)[1+

x′(t)+y′(t)]dt subject to y(0) = 0 and y(1) = B. Conjecture that both
x(·) and y(·) are quadratic. See my note on “continuous-time calculus

will never offer any y ≤ x− 2. Show that if x ≥ 2, the optimal choice for Chen is y = 2.
30In an open-loop NE, strategies are functions of time alone. By contrast, in a closed-

loop or feedback control NE, strategies can be made contingent upon the history up to
any time t. Which equilibrium concept is more proper for this problem?

46



of variations” for the necessary and sufficient Euler equation.)
Solution Define

F (x, x′, t; y′) ≡ αx(t) + x′(t)[1 + x′(t) + y′(t)],

and
G(y, y′, t;x′) ≡ βy(t) + y′(t)[1 + x′(t) + y′(t)],

and one can verify that F is convex in (x, x′) and G is convex in (y, y′).
Thus, from the Euler equation, we have

α =
d

dt
[1 + 2x′(t) + y′(t)], β =

d

dt
[1 + 2y′(t) + x′(t)],

implying that in equilibrium,

α = 2x′′(t) + y′′(t), β = x′′(t) + 2y′′(t).

Integrating and using the boundary conditions, we have

x(t) =
2α− β

6
t2 + (A− 2α− β

6
)t,

and

y(t) =
2β − α

6
t2 + (B − 2β − α

6
)t.

Finally, conditions must be imposed so that the inventories are positive
at all times.

56. Let us review the notion of forward induction using the following two-
player game (Kohlberg and Mertens, 1986). Player 1 first chooses to
read a book or to go to a concert. If he chooses to read a book, then the
game ends with a payoff profile (2,2). If he chooses to go to a concert,
then he and his girlfriend play the following subgame called Battle of
Sex (BoS from now on). There are two concerts available for the night,
on Bach (B) and on Stravinsky (S). Going to the same concert is per-
ferred by the couple, but the boy and the girl prefer different music.
Specifically, the normal form of this “BoS” subgame is as follows.
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player 1/player 2 B S
B 3,1 0,0
S 0,0 1,3

First, let us write down the normal form for the entire game.

player 1/player 2 B S
Reading,B 2,2 2,2
Reading,S 2,2 2,2
Concert,B 3,1 0,0
Concert,S 0,0 1,3

Note that with reading, B is never reached by player 1, but the def-
inition of a pure strategy requires that we write down what player 1
would do whenever he is called upon to make a move. Now, note that
(Reading,B) and (Reading,S) are equivalent strategies for player 1, in
the sense that the two always generate the same payoff for player 1 re-
gardless of player 2’s move. Removing one of them leads to the reduced
normal form of the game as follows.

player 1/player 2 B S
Reading 2,2 2,2
Concert,B 3,1 0,0
Concert,S 0,0 1,3

Now, we demonstrate the connection between weakly dominated strat-
egy and the notion of forward induction. Note that giving up “Reading”
and then choosing “Concert,S” is weakly dominated by “Reading” for
player 1. What should player 2 think if nonetheless player 1 chooses to
give up “Reading?” At this moment, the subgame has 2 pure strategy
NE’s and one mixed strategy NE. The payoffs of player 1 in these equi-
libria are respectively 3, 1 and 3

4
. Player 2 should conclude that player

1 is prepared to reach the NE ((Concert,B),B) if he gave up “Read-
ing:” or else, player 1 could have done better by choosing “Reading!”
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In other words, a leader’s move in a sequential game serves to influence
the follower’s beliefs regarding which NE will probably prevail.31

Consider the following game, known as Burning Money (Ben-Porath
and Dekel, 1992). Suppose that player 1 can first choose to or not
to give away 1 util before playing the BoS game (note that we have
removed his option of staying home and doing some reading). The nor-
mal form of this new game is as follows.

player 1/player 2 BB BS SB SS
0B 3,1 3,1 0,0 0,0
0S 0,0 0,0 1,3 1,3
DB 2,1 -1,0 2,1 -1,0
DS -1,0 0,3 -1,0 0,3

In the above bimatrix, for example, (BS) stands for “go to Bach if
player 1 did not discard the util but go to Stravinsky if player 1 did”,
and (0B) stands for “do not discard the util, and simply go to Bach.”
Note that allowing player 1 to have an opportunity of making a silly
commitment actually is beneficial to player 1. Now he can be sure that
(3,1) will be the outcome of the game. To see this, note that DS is
(weakly) dominated by 0B; hence SS by SB; hence BS by BB; hence 0S
by DB; hence SB by BB; hence DB by 0B. The single strategy profile
that remains is (0B,BB)! The intuition is that, player 1 can always get a
payoff equal to or greater than 3

4
if he does not throw away the util, and

hence his playing D (discarding utility) and then playing S makes no
sense to player 2. Playing D should signal that player 1 is prepared to
play B! This means that player 2’s best response is to play B, yielding 2
for player 1. Realizing that player 2 would reason this way after seeing
D, player 1 will not play 0 (playing 0 means not to throw away the
util) unless he is prepared to play B afterwards. Knowing this, player
2 will then react by playing B, yielding 3 for player 1. Without this
commitment, player 1 must run the risk that the NE may be (S,B), in

31The literal interpretation of the game is not very sensible, however. The couple cer-
tainly can communicate with each other, without having to guess what is on the other’s
mind. They are lovers, aren’t they?
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which he receives only 1 instead of 3, or the mixed strategy NE, where
his payoff is 3

4
.

At first glance, the above reasoning may seem odd: discarding the util
together with any feasible strategy in the game of BoS is dominated
by not discarding the util and then playing that feasible strategy. The
crucial idea here is, however, that these decisions are made sequen-
tially: discarding the util need not be a weakly dominated move if it
successfully affects player 2’s belief about what player 1 will play in the
subsequent game of BoS. Without this seemingly redundant stage, all
three NE’s for BoS look likely to player 2, and player 1 may run the risk
of getting a payoff less than or equal to 1; but with the burning money
stage, player 2, upon seeing player 1 discard the util, must conclude
that player 1 believes that he and player 2 will subsequently play the
outcome (Bach, Bach): discarding the util and then reaching either the
mixed strategy NE or the pure strategy NE (Stravinsky, Stravinsky)
will generate a non-positive payoff for player 1, and hence is definitely
worse than not discarding the util (in the latter case player 1 will get
no less than 3

4
> 0). Thus in view of the role that burning money

plays in helping player 2 rule out the mixed strategy NE and the pure
strategy NE (Stravinsky, Stravinsky), burning money is not a weakly
dominated strategy for player 1 (recall that it ensures a payoff of 2).

57. (Value of Commitment) Recall the prisoner’s dilemma:

player 1/player 2 Don’t Confess Confess
Don’t Confess 0,0 -3,1

Confess 1,-3 -2,-2

Suppose that the two players both commit to give away 2 utils to a third
party if ex-post they are found to have played the strategy “Confess.”
Now neither can profitably deviate. A smaller strategy space leads to
a higher welfare for both.

One problem pertaining to this arrangement is that the commitment,
in order to be credible, must be irreversible. Suppose that player 1 can
secretly come back and talk to the guy to whom he commits to transfer
his utility. Suppose player 1 offers to give a tiny payoff e > 0 if the
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guy is willing to forget about the aforementioned commitment. It is
easy to see that the guy should accept the offer: if he refuses, then the
commitment is still binding for player 1, and since player 1 will never
play “Confess” in this case, the guy will get nothing. The question is
then, “Can player 1 benefit from sneaking back and renegotiating with
the guy?” The answer is positive, for e > 0 small enough. If player 2
will not play “Confess” then player 1 gets 1 by playing “Confess,” and
since

1− e > 0,

where 0 would be player 1’s payoff if player 1 does not play “Confess,”
player 1 does benefit from the above renegotiation. Always remember
that nobody is fool. If we can deduce all this, so can player 2. Ra-
tionally expecting (although not seeing directly) player 1’s incentive of
sneaking back, player 2 will not take player 1’s “commitment” seriously
in the first place. (The argument goes from player 1’s perspective too.)
Thus the game remains the same as before even if the two players are
allowed to make the announcements that they are willing to give away
payoffs if they play the undesired strategies.32

Although making arrangements with a third party is not credible when
a player can renegotiate those arrangements with the third party with-
out being seen by the rival, committing with the rival directly is credi-
ble. (Think of deposits.) By committing with the rival, re-negotiation
of the commitment will be detected directly, and there is actually no
room for such re-negotiation. Since we have assumed that contracting
is feasible (or else how did player 1 commit with the third party in

32Recall the Stackelberg game where two firms compete in quantity to maximize revenues
(no production costs) given the inverse demand p = 1 − q1 − q2. Recall that the leader
(firm 1) has q∗1 = 1

2 and the follower (firm 2) has q∗2 = 1
4 . Note that if firm 1 could

secretly change q1 after announcing q∗1 = 1
2 , then it would prefer q1 = 3

8 instead. Why?
Simply because 3

8 rather than 1
2 is the best response for firm 1 against firm 2’s quantity

1
4 . However, rationally expecting this, firm 2 will not take q∗1 = 1

2 as “given” any more! In
fact, if firm 2 believes that firm 1’s announcement q∗1 = 1

2 can be secretly reversed, then
the game becomes simultaneous again, and the only possible NE is where q1 = q2 = 1

3 .
This example shows that for q∗1 = 1

2 to be taken seriously by firm 2, firm 1 must have
commitment power; that is, it must be able to somehow convince firm 2 that q∗1 , once
announced, can never be altered. Commitment power actually explains why firm 1 rather
than firm 2 may get to be the leader in the Stackelberg game: if firm 1 has commitment
power while firm 2 does not, then firm 1 gets to be the leader of the game.
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the above scenario?), we can allow the two players to write a binding
contract, saying that a player that is found to have played “Confess”
ex-post will be liable to paying the rival 2 (units of utility). To imple-
ment the contract, one player can draw it, and write explicitly that the
contract is valid if and only if it has both players’ signatures on it. It
is easy to see that with this explicit statement both players will sign it,
and given it, both players are better off.33

In decision theory, a single decision maker’s welfare always increases
when the feasible set of choices is enlarged. The non-cooperative game
theory essentially treats multiple decision makers’ decision-making prob-
lems. The example we present here shows that, with multiple decision
makers, enlarging their strategy spaces need not raise their welfare;
they may become worse off actually.

With a single decision maker, he is always better off with more infor-
mation. In a game-theoretic context with multiple agents, the same
need not be true. This is the famous Hirshleifer effect; see the follow-
ing example. Suppose that A and B will consume a single commodity
at date 2, while their endowments in the commodity in the two equally
probable states at date 2 are summarized in the following table:

endowments/ states state 1 state 2
player A’s endowments 2 0
player B’s endowments 0 2

Suppose that A and B are endowed with an increasing, strictly concave
von Neumann-Morgenstern utility function u(·) for date-2 consump-
tion. The current time is date 0, and A and B can sign an insurance
contract at date 1.

33In reality, explicit binding contracts may not be feasible, since the two players may
be considered collusive, which is illegal and detrimental to other people’s welfare; imagine
that two players are the two firms in the preceding game of market share competition. In a
subsequent Lecture on repeated games, we shall demonstrate the possibility of sustaining a
commitment between two self-interested players by allowing the latter to tacitly coordinate
their intertemporal strategies. The basic idea is that relationship has value: with a long-
term relationship, a short-term move against the two-players’ common interest will be
retaliated in the future, and this threat helps the players attain Pareto improved outcomes
even if signing binding contracts is not feasible.
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First suppose that no new information arrives at date 1. It is clear that
A and B can benefit from the following insurance contract: if state 1
occurs at date 2, then A should give B one unit of the commodity;
and if state 2 occurs at date 2, then B should give A one unit of the
commodity. Jensen’s inequality implies that

1

2
u(1) +

1

2
u(1) = u(1) = u(

0 + 2

2
) >

1

2
u(0) +

1

2
u(2),

and hence both A and B are better off (have a higher expected utility) at
date 0, in anticipation of the opportunity to sign an insurance contract
at date 1.

Now suppose instead that some public information arrives at date 1,
which reveals completely the state at date 2. If state 1 will prevail at
date 2, A will refuse to trade with B; and if state 2 will prevail at date
2, then B will refuse to trade with A. This information destroys the
possibility of insurance! With this information A and B are worse off
at date 0.
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