
Game Theory with Applications to Finance and

Marketing

Lecture 2: Multistage Games with Observable Actions and
Repeated Games

1. A multistage game is an extensive game where the game tree can be
naturally divided into stages t = 0, 1, 2, · · ·. A multistage game with
observable actions is a multistage game where at the beginning of any
stage t, all the actions taken by the players in earlier stages are com-
mon knowledge. A special class of multistage games with observable
actions are repeated games, in which a stage game is repeated for a
finite or infinite number of times. Our agenda here is as follows. First,
we shall analyze two special multistage games with observable actions
with an infinite time horizon, one being Rubinstein’s (1982) infinite-
horizon bargaining game and the other the war of attrition. There
does not exist a “last period” in these games, and hence the back-
ward induction technique that we learned in Lecture 1 cannot be used
to solve for the SPNE of such games. We shall demonstrate a proce-
dure to solve such games. Second, we shall consider infinitely repeated
games, and introduce the folk theorems that have been used to solve
such games, which require understanding of such concepts as minmax
strategy, trigger strategy, and so on. We shall then apply the theory
to collusive pricing of imperfectly competitive firms and to strategic
cooperation between upstream and downstream firms in a distribution
channel. We shall also apply the theory to study the role of forward
transactions in changing imperfectly competitive firms’ profits. Third,
we consider finitely repeated games, and introduce a new equilibrium
concept called renegotiation-proof equilibrium. We shall demonstrate
the ideas using a series of examples. Finally, we consider a series of
multistage games with observable actions in corporate finance. Issues
to be examined include bank runs, corporate agency problems, strategic
default of debt, and so on.

2. (Rubinstein’s Bargaining Game) Consider Rubinstein’s (1982) bar-
gaining model with alternating offers. Players 1 and 2 are bargaining
over 1 dollar. In period i, where i is odd, player 1 can make an offer
(xi, 1 − xi) to player 2, where xi is player 1’s share, and player 2 can
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either accept or reject that offer. If the offer is accepted, then the dollar
is so divided; or else, the game moves on to the i+1st period. In period
j, where j is even, player 2 can make an offer (xj, 1 − xj) to player 1,
where xj is again player 1’s share, and player 1 can either accept or
reject that offer. The game ends here if acceptance is player 1’s decision
(with the dollar divided as player 2 proposed); or else, the game moves
on to the j + 1st period. If an offer (x, 1 − x) is accepted in period i,
then player 1’s payoff is δi−1

1 x and player 2’s payoff is δi−1
2 (1−x), where

the discount factors δ1, δ2 ∈ (0, 1).

Shaked and Sutton (1984) prove that there is a unique SPNE of this
infinite-horizon game. At the beginning of period i where i is odd and
no consensus has been reached, the subgame looks exactly the same as
at period 1. This is referred to as the stationarity property. Because of
this property, we know that the set of SPNE’s in the subgame starting
at the beginning of period i where i is odd and no consensus has been
reached is the same as the set of SPNE’s of the entire extensive game.
Let vi and vi be the infimum and supremum of player i’s continuation
payoffs in any SPNE of a subgame starting at a period where it is
player i’s turn to make an offer. Let wi and wi be the infimum and
supremum of player i’s continuation payoffs in any SPNE of a subgame
starting at a period where it is player j’s turn to make an offer.1 Then
in any SPNE, player j cannot reject an immediate offer from i that
gives player j a share greater than δjvj, proving that2

vi ≥ 1− δjvj.

1The set of SPNE payoffs for player i in the subgame where concensus has never been
reached and player i is about to make an offer is bounded above by 1 and below by zero.
This set is nonempty so long as this game has at least one SPNE. A non-empty subset of ℜ
that is bounded above must have a lowest upper bound (the supremum), and a non-empty
subset of ℜ that is bounded below must have a greatest lower bound (the infimum).

2Note that by promising player j the payoff δjvj player i can get the payoff 1 − δjvj
immediately. In any SPNE of the subgame where it is player i’s turn to make an offer,
player i’s equilibrium payoff must be greater than or equal to this “feasible” payoff; that
is, 1−δjvj is a lower bound for the set of SPNE payoffs that player i can get in a subgame
where it is player i’s turn to make an offer. Since vi is the maximum of all such lower
bounds, the following inequality must hold.
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This also implies that player i when making offers to player j will not
promise player j a share greater than δjvj, and hence

wj ≤ δjvj.

On the other hand, player j will definitely reject an offer from player i
that promises a share to player j less than δjvj. That is, when player
i is the one making an offer, he cannot get more than 1 − δjvj when
his offer gets accepted. Recall that if player j rejects player i’s offer in
this period and the game moves on to the next period, then player i’s
payoff in the subgame starting from the next period cannot exceed wi.
Now, in a subgame where no concensus has been reached and player
i is about to make an offer to player j, player i either gets nothing
in equilibrium (if the two players will never reach a concensus in this
subgame), or player i’s equilibrium payoff is positive because player i
will ultimately make an offer that is accepted by player j (and in this
event player i’s payoff is maximized when that offer is made in the
first period of the current subgame), or player i’s equilibrium payoff is
positive because player i will ultimately accept an offer made by player
j (and in that event player i’s payoff is maximized when that offer is
made in the second period of the current subgame). Thus we conclude
that

vi ≤ max(1− δjvj, δiwi)

≤ max(1− δjvj, δ
2
i vi),

implying that the last maximum equals 1 − δjvj. (Why?) It follows
that

vi ≤ 1− δjvj ≤ 1− δj(1− δivi)

⇒ vi ≤
1− δj
1− δiδj

.

It also follows that

vi ≥ 1− δjvj ≥ 1− δj(1− δivi)
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⇒ vi ≥
1− δj
1− δiδj

.

This implies that

vi ≡ vi = vi =
1− δj
1− δiδj

,

so that all SPNE’s must generate the same payoff profile. We have
1 − vj = δivi, and hence 1 − δjvj ≥ δ2i vi. Now the two players must
reach concensus at period 1 in the unique SPNE: player 1 must offer
x1 = v1, which player 2 feels indifferent about accepting or rejecting
but chooses to accept with probability one. (When δi = δj, we have
vi = vj; compare this result with section 53 of Lecture 1, Part I.)

3. Here is another proof for the uniqueness of SPNE’s in Rubinstein’s
bargainging game. Note that when making offers to player j, player
i knows that player j will never accept a negative share, and player
j will accept any share greater than δj. It follows that player i will
not offer a share greater than δj, and player j will reject any share
less than δj(1 − δi). Repeating this argument, we now claim that if
for some k ∈ Z+, player 1 accepts any share x > xk and player 2
accepts any share x < yk, with yk < xk, (so that player 1 will never
offer x < yk and will reject any x < δ1y

k, and player 2 will never offer
x > xk and will reject any x > 1 − δ2(1 − xk)), then player 1 must
accept any x > xk+1 = δ1(1 − δ2) + δ1δ2x

k, and player 2 must accept
any x < yk+1 = 1− δ2 + δ1δ2y

k, where xk+1 > yk+1.

To see this, note that if player 1 rejects player 2’s offer in some subgame,
then one of three things may happen. Either (i) no agreement will
ever be reached, and player 1 gets 0; or (ii) player 2 accepts one of
player 1’s offers, which allows player 1 to get a payoff no greater than
xk+1 = δ1[1−δ2(1−xk)]; or (iii) player 1 accepts one of player 2’s offers,
which yileds a payoff for player that is at most δ21x

k. The payoff in (ii)
is the highest among the 3 possibilities. Thus player 1 should accept
any share x > xk+1. The reasoning for player 2’s behavior is similar.

Now xk+1 − xk = (1 − δ1δ2)(1 − xk) − (1 − δ1) < 0, and similarly
yk+1 − yk > 0, by the axiom of continuity in ℜ, the two monotone
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sequences {xk; k ∈ Z+} and {yk; k ∈ Z+} are contained in [0, 1] and

have limits x∞ = δ1(1−δ2)
1−δ1δ2

and y∞ = 1−δ2
1−δ1δ2

respectively. Since player 2
rejects any x > y∞ and accepts any x < y∞, it is the unique SPNE
outcome that player 1 offers y∞ to player 2, which player 2 accepts
with probability one.

Here the unique SPNE result depends crucially on the facts that there
are only two players engaging in bargaining and that the players can
offer any number contained in the unit interval. When there are more
than two players, or when the set of feasible offers is finite, there tend
to be multiple equilibria for this infinite-horizon bargaining game.

4. (War of Attrition) Consider the following timing game, called the
war of attrition (Maynard Smith, 1974). Two animals are fighting for
a prey, which they both attach value v > 1. The current time is t = 0,
and time is discrete. Fighting costs 1 per date. If one animal gives up
fighting at date t, the other animal gets the prey without incurring the
fighting cost at that date. If both stop fighting at date t, both get zero.
The two animals have common discount factor δ ∈ (0, 1).

Thus this is a timing game, where players must decide when to make
a move.3 (Here, the move is to give up fighting and leave.) Denote the
payoff of the animal that stops first by L(t), where

L(t) = −(1 + δ + δ2 + · · ·+ δt−1) = −1− δt

1− δ
,

and the payoff of the animal that does not stop first by F (t), where4

F (t) = L(t) + δtv.

3Another important class of timing games is the preemption games, in which the first
player that makes a move wins, in contrast with the current war of attrition, in which
the first player that makes the move loses. For example, there are two firms considering
entering a new market. Suppose that neither entered before t and one of them enters
exactly at t. In this case the entering firm gets a time-t payoff g > 0 and the other gets
zero. If both enter at t, then both get l < 0 at t.

4Waiting for one more period does not automatically raise the waiting cost by one; it
does if and only if the rival is also waiting at the same time.
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Note that both animals have payoff L(t) if they both stop fighting at
date t. Among the SPNE’s of this game, there is a unique symmetric
stationary one, where each player chooses to stop right away with a
probability p if the rival is still present.5 For this to be a symmetric
equilibrium, p must satisfy

pF (t) + (1− p)L(t+ 1) = L(t),

where the right-hand side is the payoff generated by “stop immedi-
ately,” and the left-hand side the payoff generated by “stop at the next
date unless the rival is no longer present the next date.” Solving, we
have p = 1

1+v
. Note that in this equilibrium, both players have zero

payoff.

The continuous-time counterpart of this game (where δt is replaced by
e−rt, the distribution function of the exit time t is denoted by G(t),
and fighting costs ∆t for any time interval with length ∆t) also has
symmetric stationary SPNE where both players use the same behavior
strategy at all dates. For G(·) to define a symmetric mixed strategy
equilibrium, it must be that given both firms stay up to time t, each
firm feels indifferent about quitting right away or staying for dt longer.
That is, by incurring a cost −dt, one gets v in the next instant with
probability G(t+dt)−G(t)

1−G(t)
, and this must yield a zero incremental payoff

for the firm:

vdG(t)− [1−G(t)]dt = 0.

It follows that

G′(t) =
dG(t)

dt
=

1−G(t)

v
.

5Usually, the players’ temporal equilibrium behavior in an SPNE may depend both on
t and on the history at time t. We call such an SPNE a closed-loop or feedback SPNE.
(Here, in the war of attrition, if we let ϕt represent the set of players who did not exit
before time t, and the history at time t can be represented by {ϕs; s ∈ [0, t]}.) If the
players’ temporal equilibrium behavior depends only on t, then the SPNE is an open-loop
equilibrium. If the players’ temporal equilibrium behavior depends only on ϕt, then the
SPNE is stationary.
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It follows that

G(t) = 1− ce−
t
v ,

for some constant c. Note that G(0) > 1 if c < 0, and G(0) < 0 if
c > 1. Thus c ∈ [0, 1]. If c < 1, then G(0) > 0. Hence a firm can
get essentially G(0)v > 0 by exiting right after time 0, implying that
it should not exit at time 0 with a strictly positive probability. To be
consistent with a symmetric SPNE, we must have c = 1. Thus in the
unique symmetric stationary SPNE, we have

G(t) = 1− e−
t
v .

5. (Repeated Games) A repeated game is a supergame of some stage
(or constituent) game, and it takes the simple form of repeating the
stage game for either a finite or an infinite number of times. Let the
stage game in normal form be

G(1) = {(Ai)
I
i=1, (ui)

I
i=1},

where I is the number of players, Ai the set of feasible actions available
to player i in G(1), and ui : Π

I
i=1Ai → ℜ player i’s (current) payoff in

G(1). The set A = ΠI
i=1Ai is the set of action profiles at each stage

t. We shall enlarge players’ action spaces by allowing them to use any
correlated device on A. If a device Ω is adopted, and if at stage τ , ωτ

is the outcome of the device, we call the sequence

ht ≡ {ω0, ω1, · · · , ωt−1; a0, a1, · · · , at−1}, ∀t ∈ Z+

∪
{0}

the history of the game at the beginning of stage t. (The notation Z+

stands for the set of strictly positive integers.) A pure strategy si for
player i is a sequence of mappings {sti : ht → A, ∀t}. Let Si be the set
of all pure strategies and Σi the set of all mixed strategies for player i.

Now, denote G(T ) the supergame of G(1) that would result if we repeat
G(1) for T times, with player i’s payoff being given by

1− δ

1− δT+1

T∑
t=0

δtui(a
t),
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where at is the action profile chosen by the players at stage t and δ ∈
(0, 1] the players’ common discount factor (in general players can have
different discount factors δi). In this case, si is a sequence containing
T terms of sti.

Let G(∞) be the supergame of G(1) that will result if we repeat G(1)
for a countably infinite number of times. Correspondingly, the payoff
function of player i in G(∞) is6

(1− δ)
∞∑
t=0

δtui(a
t).

Note that this payoff function has already been normalized so that it
is readily comparable with the payoff function in G(1): observe simply
that (1 − δ)

∑∞
t=0 δ

t = 1. In this case, si is an infinite sequence of sti.
Given G(∞), the following is called the continuation payoff at stage t:

(1− δ)
∞∑
τ=t

δτ−tui(a
τ ).

Note that when players choose actions at stage t, all the current-stage
payoffs in the earlier stages are sunk, and only the continuation payoffs
will affect their choices of actions at stage t.

6. Define V as the set of feasible payoff profiles that the players may attain
by taking some action profiles in G(1). Depending on our assumption
about what the players can do in G(1), V may or may not be a convex
set. ( Recall that A ⊂ ℜn is convex if the line segment connecting any
two points in A is also contained in A.) For example, if the players
are confined to using mixed strategies only, then this set is in general
non-convex.7 At the other extreme where the players can collectively
choose any correlated device (not necessarily a correlated equilibrium),

6Game theorists also consider other payoff functions. For example, the time-average
payoff function takes the form of 1

T

∑T
t=1 ui(s

t) in G(T ) and limT→∞
1
T

∑T
t=1 ui(s

t) in
G(∞). Recall that if {xt; t ∈ Z+} is a real sequence, then limt→∞xt = supt∈Z+

infs≥t xs

always exists in the extended real line ℜ.
7Exceptions exist. For example, in a two player finite game where player 1 has only

one feasible action, the set V is convex.
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which randomly selects elements in A, then it is easy to see that V is
convex. For example, consider the following G(1):

Player 1/Player 2 L R
U 5, 1 0, 0
D 4, 4 1, 5

where a correlated device assigning (U,L), (U,R), (D,L), and (D,R)
with respectively probability a, b, c, and d will generate a payoff profile(

5 · a+ 0 · b+ 4 · c+ 1 · d
1 · a+ 0 · b+ 4 · c+ 5 · d

)

= a

(
5
1

)
+ b

(
0
0

)
+ c

(
4
4

)
+ d

(
1
5

)
.

Thus if we allow the two players to adopt any correlated device from

C = {(a, b, c, d) : a+ b+ c+ d = 1, a, b, c, d ≥ 0},

then the set of payoff profiles attainable by the two players is a convex
set, which is exactly the convex hull generated by the four vectors(

5
1

)
,

(
0
0

)
,

(
4
4

)
,

(
1
5

)
.

In the following, we shall mostly assume that V is convex.8 Any payoff
profile in V will be referred to as feasible.

7. (Minmax Value and Individually Rational Payoff) Given G(1),
define player i’s minmax value or reservation utility as

vi ≡ min
σ−i∈Σ−i

[max
σi∈Σi

ui(σ)],

8Even if the players cannot freely commit to any correlated device that they like,
intertemporal switching may lead to approximately the same result if δ is close to 1. For
example, imagine that in G(∞), for all n ∈ Z+ and at all stage 10(n − 1) + t, the two
players will play (U,L) if t = 1, 2, 3, (U,R) if t = 4, 5, 6, 7, (D,L) if t = 8, 9, and (D,R) if
t = 10. This will generate an average (per-period) payoff profile close to that generated
by a correlated device with a = 0.3, b = 0.4, c = 0.2, and d = 0.1.
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where in this section only, σ denotes a mixed strategy profile in the
game G(1). Define minmax strategy profiles against player i by the
following

mi
−i ∈ arg min

σ−i∈Σ−i

[max
σi∈Σi

ui(σ)].

Define

mi
i ∈ arg max

σi∈Σi

ui(σi,m
i
−i).

With these notations, of course, we have

vi = ui(m
i
i,m

i
−i).

As an example, consider the following stage game G(1):

player 1/player 2 L R
U −2, 2 1,−2
M 1,−2 −2, 2
D 0, 1 0, 1

Let us find v1. If q is the probability that player 2 may play L in G(1),
then m1

2 is the q that minimizes

max(u1(U, q), u1(M, q), u1(D, q)) = max(1− 3q, 3q − 2, 0),

so that we have m1
2 = [1

3
, 2
3
], and

v1 = u1(D,m1
2) = 0.

Similarly, to determine v2, let pU and pM be the probabilities that
player 1 may play U and M respectively, and we have

v2 = min
pU ,pM

[max(2(pU−pM)+(1−pU−pM),−2(pU−pM)+(1−pU−pM))].
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8. Note that in any SPNE of G(∞), player i’s equilibrium payoff can
not be lower than vi, since player i can always take a best response
against the other players’ actions in each and every period! Thus,
define accordingly

V ∗ = {v ∈ V : vi > vi, ∀i = 1, 2, · · · , I},

and payoff profiles in V ∗ will be referred to as feasible and individually
rational.9 10

9. (One-stage Deviation Principle) To check if a conjectured profile
σ is an SPNE of a repeated game, one would presumably need to check
if, from each player’ perspective, any (complex) unilateral deviations
can improve upon σ. The following theorem, however, asserts that ver-
ifying the simplest form of unilateral deviations will suffice.11

Theorem 1. (One-stage Deviation Principle)

(a) A pure strategy profile s is a subgame perfect NE for G(T ) if and
only if no player i can at any stage t benefit from a unilateral
deviation s′i that differs from his equilibrium strategy si only in
the stage-t mapping sti.

(b) If G(∞) is continuous at infinity in the sense that for all i,

lim
t→∞

sup
h,h′s.t. ht=[h′]t

|ui(h)− ui(h
′)| = 0,

9The minmax strategy is typically a mixed strategy. Since a player’s minmax value is
what she can get in G(1) when she uses her best response against her rivals’ joint minmax
strategies, and since a player’s payoff in a Nash equilibrium of G(1) is what she can get
in G(1) when she uses her best response against her rivals’ equilibrium strategies, we
conclude that a player’s equilibrium payoff in G(1) is always greater than or equal to her
minmax value.

10What if players are restricted to using only pure strategies? Note that if a penalized
player’s best response against the other players’ joint minmax strategy is a mixed strategy,
then there exists an equally good pure-strategy best response for the ponalized player.
Hence restricting the players to use only pure strategies only restricts the set of feasible
penalizing strategies, and hence it weakly raises the minmax value for each player.

11Theorem 1 actually applies to all multi-stage games with observable actions.
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then a pure strategy profile s is a subgame perfect NE for G(∞) if
and only if no player i can at any stage t benefit from a unilateral
deviation s′i that differs from his equilibrium strategy si only in
the stage-t mapping sti.

Proof. Consider assertion (a). Necessity is definitional. To check
sufficiency, suppose instead that for some player i, for some t and ht,
there exists ŝi better than si in the subgame starting at ht. Let t̂ be
the largest t′ such that for some ht′ , ŝi(h

t′) ̸= si(h
t′). Apparently, t̂ > t:

otherwise, at t and ht, ŝi relative to si is simply a one-stage deviation,
and we have assumed that no one-stage deviation can improve upon si!

Define s̃i as such that it coincides with ŝi at all τ < t̂, and it coincides
with si from stage t̂ on. At t̂, ŝi is a one-stage deviation relative to
si, and since we have assumed that no one-stage deviation can improve
upon si, we conclude that s̃i is a weakly better response than ŝi in every
subgame starting at stage t̂. Since s̃i coincides with ŝi at all t < t̂, we
conclude that s̃i is also a weakly better response than ŝi starting at
stage t with history ht. Now if t̂ = t + 1, then at t given history ht,
s̃i becomes a one-stage deviation relative to si, but we have assumed
that such a deviation cannot improve upon si. This contradicts the
assumption that ŝi, which is a weakly worse response than s̃i, can
improve upon si at t given history ht.

It remains to discuss the case where t̂ > t + 1. In this case, we can
move the spot light from ŝi to s̃i, and find a strategy s

(1)
i that coincides

with s̃i at all τ < t̂− 1 and coincides with si from stage t̂− 1 on. The
same reasoning as above shows that s

(1)
i is a weakly better response

than s̃i, and hence a weakly better response than ŝi at t given history
ht. Either t̂ − 1 = t + 1, in that case we shall obtain a contradiction,
or we can move the spot light from s̃i to s

(1)
i , and find a strategy s

(2)
i

that coincides with s
(1)
i at all τ < t̂ − 2 and coincides with si from

stage t̂ − 2 on. Repeating this argument, we can utimately show that
ŝi is a weakly worse response than some s

(k)
i , and yet s

(k)
i is a one-stage

deviation at t given history ht, which by assumption cannot improve
upon si at t given history ht, therey establishing a contradiction. This
completes the proof for sufficiency in assertion (a).
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Next, consider assertion (b). From the proof to assertion (a), if s
satisfies the one-stage deviation condition, then it cannot be improved
by any finite sequence of deviations in any subgame. Suppose instead
that for some player i, for some t and ht, there exists ŝi better than
si in the subgame starting at ht. Let e > 0 be the amount of extra
payoff brought about by the improved strategy ŝi. Continuity at infinity
implies that there exists T such that the strategy s̃i that coincides with
ŝi before T and coincides with si from stage T on must improve on si
by at least e

2
> 0, which contradicts the fact that no finite sequence of

deviations can make any improvement on si at all.

10. (Infinitely Repeated Games.) We shall first focus on infinitely
repeated games. How is Theorem 1 helpful? Note that if for all
i = 1, 2, · · · , I, ui(·) is bounded, which will be true if A is a finite set or if
ui(·) is continuous and A is a compact subset of some finite-dimensional
Euclidean space, then with the payoff function (1 − δ)

∑∞
t=0 δ

tui(a
t),

G(∞) is continuous at infinity. In this case, Theorem 1 is always ap-
plicable.

11. Theorem 2. (Nash Folk Theorem) Every feasible and individually
rational payoff profile (i.e. every element of V ∗) can be sustained as an
NE payoff profile in G(∞) as long as δ is close to 1.

The idea is that when some deviation occurs, the deviator will keep
receiving his minmax payoff, starting from the very stage after the
deviation is detected. In other words, the deviator is penalized forever
if he once deviated from an implicitly agreed upon profile in V ∗. The
problem with this penalizing scheme is that it is generally not subgame
perfect, since minmaxing the opponent and expecting the opponent to
make a best response does not constitute an SPNE in general. In other
words, the threat to penalize the deviator may not be credible. This
motivates Friedman’s perfect Folk Theorem.12

12We did not claim that there exist feasible and individually rational payoff profiles that
cannot be sustained as an SPNE payoff profile in G(∞) even when δ is close to 1. We only
pointed out that such a payoff profile may not be sustained by the naive minmax threat.
In fact, when I = 2, the assertion in Theorem 2 is correct, but we need to design another
penalizing scheme, and make sure that the scheme is itself an SPNE.
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12. Theorem 3. (Friedman’s (Nash-threats) Perfect Folk Theorem) Let
u(s) = e be an NE payoff profile in G(1). For all v ∈ V with vi > ei
for all i, v is a payoff profile of some subgame perfect NE in G(∞) as
long as δ is close to 1.13

The idea is that when some deviation occurs, the players will play the
Pareto dominated NE in G(1) forever from the next stage on. This
penalizing scheme is referred to as the trigger strategy. Again, we must
check if this scheme is itself an SPNE in G(∞). First observe that
playing the NE in G(1) in each and every stage is certainly an NE for
G(∞). Next, observe the stationarity of G(∞): at any stage t, the
subgame is again G(∞). This implies that playing the NE in G(1) in
each and every stage is indeed an SPNE, for it specifies NE strategy
profile to the players in each and every subgame (which is again G(∞)).
We thus have proven that the trigger strategy is itself an SPNE, and
hence after a unilateral deviation occurs, playing the trigger strategy
from the next stage on is credible!14

13. As an application of the perfect folk theorem, consider an infinitely
repeated version of the prisoners’ dilemma discussed in Lecture 1.

player 1/player 2 C D
C 1,1 -3,2
D 2,-3 0,0

What is the lowest common discount factor ρ that sustains cooperation
in each period as an SPNE?

13As we remarked earlier that ei ≥ vi for all i = 1, 2, · · · , I, Theorem 3 may give us an
(incorrect) impression that requiring subgame perfection reduces the set of payoff profiles
in V that can be sustained as a reasonable equilibrium outcome of G(∞). The problem is,
again, that Theorem 3 assumes that the players can use only a particular type of penalizing
schemes, called the trigger strategy, and if we consider (and characterize) all the possible
SPNE penalizing schemes, we can actually implement a lot of payoff profiles not stated in
Theorem 3; see below.

14The term “Folk Theorem” originates from the fact that its contents had long been
recognized by people before a formal proof was created.
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Consider the following pure strategy: play C (meaning “Cooperate”)
as long as in the history no one has ever played D (meaning “Defect” or
“Confess”), and play D forever if otherwise. Then both players’ playing
this pure strategy constitutes an SPNE as long as ρ is high enough.

To see this, consider first the subgame where in the history there has
been some player playing D before. In this case both will play D for-
ever, and since (D,D) is the unique NE in the stage game, of course
it remains to be an SPNE in the current infinitely repeated subgame.
Next, consider the subgame where in the history nobody has played D
before. Let the equilibrium continuation payoff for a player be denoted
by π. Given this history, we show that no one has incentives to deviate
unilaterally if ρ is large enough, and we shall derive the lowest ρ as
required.
Expecting one’s rival to play C, if a player plays C also, he gets

π = 1 + ρπ,

implying that π = 1
1−ρ

; and if the player plays D instead, he gets 2
immediately, but this implies that at the beginning of the next round
the history will be such that some player has played D before, implying
that he will get nothing from the next round on. Thus for both players
to play C, it is necessary and sufficient that

2 +
ρ · 0
1− ρ

≤ π =
1

1− ρ
,

or equivalently ρ ≥ 1
2
.15

14. A manufacturer and a retailer are playing the following infinitely re-
peated supergame of G(1), where the stage game G(1) is described
as follows. At each date t, the manufacturer can first decide whether
to spend cm > 0 and if only if it does, there will be consumers of
population one that visit the retailer. The manufacturer also deter-
mines a wholesale price w(t) for its product, which for simplicity can

15The discount rate r and its corresponding discount factor ρ satisfy the familiar rela-
tionship: ρ = 1

(1+r) . With continuous compounding, we have limn→∞(1 + r
n )

−n = e−r.
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be produced without costs. If there are consumers visiting the retailer,
they will buy certain goods from the retailer and the retailer will get
x > 0, and moreover, if the retailer is willing to spend cr > 0 on in-
store promotion for the manufacturer’s product, then with probability
π ∈ (0, 1) these consumers will also have a valuation v > 0 for the
manufacturer’s product. After the retailer decides whether to spend
cr, a retail price p(t) must be chosen for the manufacturer’s product.
Note that without the retailer’s promotion effort, no consumers will
buy the manufacturer’s product. (Thus essentially we have a moral
hazard in team problem.) Assume that whether the retailer has spent
cr cannot be detected by the manufacturer.16 At date t + 1, however,
the manufacturer can observe its own sales at date t, and it can try to
infer from the sales data whether the retailer has promoted its product
at date t. On the other hand, if the retailer has spent cr at date t,
then the retailer would observe whether consumers choose to purchase
the manufacturer’s product. Assume that x+πv > cm+cr, but cr ≥ πv.

(i) Show that in G(1) neither the manufacturer nor the retailer pro-
motes.

(ii) Consider G(∞). Assume that ρ ∈ (0, 1) is the common discount
factor for the two firms. Show that with T large enough, the following
strategies constitute an SPNE for G(∞): Both firms spend on promo-
tions, and if at date t + 1 the manufacturer knows that its profit is
positive at date t, then both firms promote at date t+ 1; or else, both
firms play the stage game NE for a number of T periods, and then they
return to cooperation at date T + 1. Find the smallest T ∗ in this class
of SPNE’s. Find conditions on cr, cm, π, ρ, and x so that such an SPNE
with the least penalty can be sustained.

Solution. Consider part (i). Note that cr ≥ πv and hence given any
w(t) promoting the manufacturer’s product is a dominated strategy
for the retailer in the stage game G(1). Thus the retailer does not

16Thus this multi-stage game involves unobservable actions!
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spend cr in any NE of G(1). It follows that the manufacturer does not
promote either. The unique NE for the stage game involves no channel
promotion at all.

Next consider part (ii). We shall look for SPNE’s in Markov strat-
egy where both firms promote at date t if vt−1 = v, where vt−1 is
consumers’ valuation for the manufacturer’s product at date t − 1. A
Markov strategy makes the actions of punishment contingent only on
the current state variable. If vt−1 = 0, then the Markov strategies
trigger a T -period punishment. In the current context, an action of
punishment consists of the firms’ stopping promoting the product. We
restrict attention to pure strategies. Let V +

i be the sum of discounted
future profits of firm i ∈ {r,m} at the beginning of a period t where
vt−1 = v, and let V −

i be the corresponding sum of discounted future
profits at the beginning of period t where vt−1 = 0 and either t = 2 or
vt−2 = v. Observe that along the equilibrium path, wt = pt = v. By
definition, we thus have

V +
r = −cr + x+ πρV +

r + (1− π)ρV −
r ,

V −
r = ρTV +

r ,

V +
m = −cm + π(v + ρV +

m ) + (1− π)ρV −
m ,

V −
m = ρTV +

m .

Solving, we have

V +
m =

πv − cm
1− (1− π)ρT+1 − πρ

, V −
m =

ρT (πv − cm)

1− (1− π)ρT+1 − πρ
,

V +
r =

x− cr
1− (1− π)ρT+1 − πρ

, V −
r =

ρT (x− cr)

1− (1− π)ρT+1 − πρ
.

The retailer does not want to deviate if and only if

cr ≤ πρ(V +
r − V −

r ),

or equivalently,
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(πx− cr)ρ
T+1 ≤ πρx− cr.

This IC is always violated unless cr < πρx < πx, which we assume
hereafter. In this case, the IC implies that

(Γ) T ≥
log(πρx−cr

πx−cr
)

log(ρ)
− 1.

Next, the manufacturer does not want to deviate if and only if

cm − πv ≤ πρ(V +
m − V −

m ).

This inequality holds true always as long as V +
m > 0, which is true if

and only if

πv > cm.

Since V +
m and V +

r are both decreasing in T , the optimal SPNE in the
class we described has T ∗, which is the smallest integer exceeding

log(πρx−cr
πx−cr

)

log(ρ)
− 1.

The conditions required to sustain this SPNE are hence

cr < πρx < πx, πv > cm.

15. Two identical firms facing a random, unobservable market demand try
to sustain a tacit collusion in an infinitely repeated game of price com-
petition. In each period, demand is either 0 with probability α or D(p)
with prob. 1 − α. When D(p) is there, if two firms collude, they set
prices at the monopoly level, i.e. p1 = p2 = pm, and each gets a profit
Πm

2
, where Πm > 0 is the monopoly profit. If one firm deviates by

reducing price to pm − ϵ, then it gets Πm itself leaving nothing to its
opponent. Firms cannot observe opponents’ (current or past) actions.
We now derive conditions under which the following trigger strategy
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sustains firms’ collusive pricing behavior: If one firm finds out that it
had no sales volume in the last period, then they begin to play Bertrand
game for T periods, but after that, they go back to the collusive pric-
ing again. (Wait! How can the other firm know that this firm’s sales
volume in the last period was zero and so it is prepared to play the
Bertrand outcome in the current period?) Assume that the common
discount factor is δ ∈ (0, 1). Define V + and V − as the continuation
payoffs of a firm at the beginning of, respectively, a period where both
firms had sales volumes last period, and a period where at least one
firm had no sales volume in the last period but its sales volume in the
period before the last period was still positive.17

(i) Show that

V + = (1− α)(
Πm

2
+ δV +) + αδV −,

V − = δTV +.

(ii) Show that the collusion can be sustained iff

V + ≥ (1− α)(Πm + δV −) + αδV −.

(iii) Suppose that α = 1
4
and δ = 7

12
. Find the smallest positive integer

T such that the collusion can be sustained by the above described
trigger-strategy penalizing scheme.

16. Consider example 1 in Lecture 1, part I, where firms 1 and 2 can cost-
lessly produce a product and engage in Cournot competition with the
inverse demand being, in the relevant range,

P (q1 + q2) = 1− q1 − q2.

This problem is a modification of the above Cournot game.

17Recall that the continuation payoff starting at date t is the (discounted) sum of the
temporal payoff at date s, for all s = t, t+1, · · ·. That is, the continuation payoff disregards
the payoffs generated at date 1, 2, · · · , t− 1, because the latter payoffs are sunk at date t
and are irrelevant regarding the subgame starting at date t.
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(i) Assume that there are two dates. The two firms will compete at
date 1, but at date 0, both firms can correctly expect the date-1 inverse
demand function, which is the P (·) defined above. At date 0, the
futures market opens for the product produced by the two firms. There
are price-competitive investors in the futures market, who, just like the
two firms, are risk neutral without time preferences (that is, there will
be no discounting for anyone). The extensive game is as follows.

• At date 0, (only) firm 1 can sign a futures contract with the com-
petitive investors. In the futures contract, firm 1 promises to
deliver f1 units of the product at date 1 to one of the investors
(say, Mr. A), and Mr. A promises to pay the price F (referred
to as the date-0 futures price of the product). We assume that
firm 1 announces f1, and the competitive investors then determine
the futures price F . Assume that investors have rational expecta-
tions; that is, upon seeing f1, they can use backward induction to
anticipate the date-1 price of the product (called the date-1 spot
price of the product), and to rule out arbitrage opportunities, in
the date-0 equilibrium, F must equal the anticipated date-1 price.

• At date 1, upon seeing firm 1’s date-0 futures contract (f1, F ),
the two firms choose q1 and q2 simultaneously. Note that firm 1’s
profit as a function of q1, q2 is

Π1(q1, q2; f1) = [1− q1 − q2][q1 − f1] + Ff1.

Firm 2’s profit function is still

Π2(q1, q2) = [1− q1 − q2]q2.

• Then, after firms set q1 and q2, the date-1 price P (q1, q2) is realized,
and firm 1 must deliver f1 units of the product to Mr. A, and Mr.
A must pay firm 1 Ff1 dollars.

Find the SPNE of this extensive game. Explain why firm 1 may benefit
from futures trading.18

18Hint: Use backward induction. First consider the date-1 subgame with f1 given.
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(ii) Now, suppose that both firms can engage in futures trading at date
0, with f1 and f2 units sold respectively at the futures price F deter-
mined at date 0. Again, assume that all investors in the futures market
have rational expectations when they compete in price to determine F .
Re-derive the SPNE. Explain why the two firms might be hurt by the
availability of futures trading.19

(iii) Now, call the extensive game described in part (ii) G(1). Consider
an infinitely repeated version G(∞) of G(1), where both firm seek to
maximize the sum of discounted profits with common discount factor
ρ ∈ (0, 1).20 We shall consider both the case where the futures market
is always open and the case where the futures market is always closed.
Show that if the futures market is always open, then as long as ρ is
large enough (i.e., it is sufficiently close to 1), there exists an SPNE
supported by the trigger strategy, in which both firms produce 11

30
at

each and every date. Can this SPNE be supported by the trigger strat-
egy if the futures market is always closed?

This is just a Cournot game with the two firms’ profit functions being Π1 and Π2 speci-
fied above. Let the subgame equilibrium be (q∗1(f1), q

∗
2(f1)), which depends on f1. Now

move backwards to consider firm 1’s date-0 choice of f1. Remember that the investors in
the futures market can rationally expect the date-1 spot price of the product, which is
P ((q∗1(f1), q

∗
2(f1)), and given f1, they will compete in price so that in the date-0 futures

market equilibrium, F = P ((q∗1(f1), q
∗
2(f1)). Given that F = P ((q∗1(f1), q

∗
2(f1)), find firm

1’s optimal f1.
19Hint: Again, consider the date-1 subgame with f1, f2 given. Now for i = 1, 2,, firm

i’s profit function becomes

Πi(qi, qj ; fi) = [1− qi − qj ][qi − fi] + Ffi.

Find the Nash equilibrium (q∗1(f1, f2), q
∗
2(f1, f2))for this subgame. Now return to the

date-0 futures market, where the two firms must simultaneously choose f1 and f2. For
each pair (f1, f2) announced, the investors can correctly expect the date-1 spot price,
which must be P ((q∗1(f1, f2), q

∗
2(f1, f2)). Knowing that the futures price will be such that

F = P ((q∗1(f1, f2), q
∗
2(f1, f2)), the two firms’ choices (f1, f2) must form a Nash equilibrium

at date 0.
20More precisely, each date contains two subperiods, where in period 1 firms can trade

futures, and then in period 2, firms select total outputs to engage in the Cournot compe-
tition. There is no discounting over the 2 periods in one date. There is discounting (with
discount factor ρ) over any two consecutive dates.
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Solution. Consider part (i). It is straightforward to show that the
two firms’ date-1 reaction functions are

r11(q2; f1) =
1 + f1 − q2

2
, r12(q1) =

1− q2
2

.

Hence we have the subgame equilibrium

q∗1(f1) =
1

3
+

2

3
f1, q∗2(f1) =

1

3
− 1

3
f1.

Now consider firm 1’s date-0 choice of f1. Since F = P ((q∗1(f1), q
∗
2(f1)),

at date 0 firm 1 seeks to

max
f1

P ((q∗1(f1), q
∗
2(f1))q

∗
1(f1) =

1

3
(1− f1)(

1

3
+

2

3
f1),

for which the necessary and sufficient first-order condition gives

f1 =
1

4
,

implying that, in equilibrium,

F ∗ = P ∗ =
1

4
, q∗1 =

1

2
, q∗2 =

1

4
, Π∗

1 =
1

8
, Π∗

2 =
1

16
.

Compared to the Cournot equilibrium profit 1
9
, firm 1 is better off with

futures trading. The reason is that after commtting to sell f1 units at
a fixed price F , which will not fall when firm 1 expands output at date
1, firm 1 has an incentive to choose a higher total output at date 1.
This fact results in firm 2 lowering output accordingly (because output
choices are strategic substitutes). Consequently, firm 1 benefits from
futures trading, which hurts firm 2 at the same time.

Next consider part (ii). Given (f1, f2), now the subgame equilibrium
becomes

q∗1(f1, f2) =
1

3
+
2

3
f1−

1

3
f2, q∗2(f1, f2) =

1

3
+
2

3
f2−

1

3
f1, P

∗(f1, f2) =
1

3
(1−f1−f2).
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Now consider the date-0 futures market equilibrium. Firm i’s problem
is to, given the conjectured fj,

max
fi

P (q∗i (fi, fj), q
∗
j (fi, fj))q

∗
i (fi, fj) =

1

3
(1− fi − fj)(

1

3
+

2

3
fi −

1

3
fj).

The necessary and sufficient first-order condition gives firm i’s date-0
reaction function

r0i (fj) =
1− fj

4
, i, j = 1, 2, i ̸= j.

Thus the date-0 equilibrium is

f ∗
1 = f ∗

2 =
1

5
,

implying that

q∗1 = q∗2 =
2

5
, F ∗ = P ∗ =

1

5
, Π∗

1 = Π∗
2 =

2

25
.

Compared to the Cournot equilibrium profit, each firm is worse off.
The reason is that, as in the game of prisoners’ dilemma, here each firm
intends to hold a short position in the futures contract as an attempt to
force its rival to produce less. With the short positions in the futures
contract, both firms are faced with a residual inverse demand with
lower elasticity to their output expansion. Consequently, both firms
choose to produce more in the subgame where futures contracts have
been signed, leading to a lower spot and futures price for the product,
and lower profit for each firm.

Finally, consider part (iii). Suppose that the futures market stays open
forever. If the two firms choose q1 = q2 = 11

30
, their profits are Π1 =

Π2 =
22
225

in each period, so that they are better off than in the single-
period equilibrium, where each earns 2

25
by (ii). However, it is easy to

verify that q1 = q2 =
11
30

does not form a Nash equilibrium in the stage
game. We claim that if ρ is sufficiently large, these outputs can indeed
be sustained as an SPNE in G(∞) using a trigger strategy. Note that if
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firm 1 wishes to deviate, its optimal output choice would be 1−q2
2

= 19
60
.

Thus by making the optimal deviation firm 1’s current profit would rise
immediately to

Π1(q1 =
19

60
, q2 =

11

30
) =

19

60

(
1− 19

60
− 11

30

)
=

361

3600
>

22

225
.

Following the current period, firm 1 would earn 2
25

in each of the re-
maining periods; recall part (ii). Thus making the deviation is not
worthwhile if and only if

22

225
+

22

225
ρ+

22

225
ρ2 + · · · ≥ 361

3600
+

2

25
ρ+

2

25
ρ2 + · · ·

⇔ 22

225
× 1

1− ρ
≥ 361

3600
+

2

25
× ρ

1− ρ

⇔ ρ ≥ 9

73
.

Thus as long as ρ ≥ 9
73

there does exist an SPNE supported by the
trigger strategy, where both firms produce 11

30
in every period. Now,

note the role of futures trading in leading to this conclusion. If the
futures market stays closed forever, there does not exist such an SPNE
sustained by the trigger strategy; simply note that both firms earn 1

9

in the single-period equilibrium, where 1
9
> 22

225
.

17. Consider the following repeated game G(∞) with a seller and a buyer
engaged in repeat purchase decisions.21 At each date t ∈ N, the seller
first chooses to offer either a high-quality product or a low-quality prod-
uct (together with a price p), which the buyer must decide to or not to
accept. The buyer cannot tell the quality of the product on the selling
spot (hence the product is an experience good). The buyer needs ex-
actly one unit of the product at each date, and he attaches value v > c
to the high-quality good, where c > 0 is the seller’s cost of producing
one unit of the high-quality good. The low-quality good is considered
worthless to the buyer and it incurs no production cost to the seller.

21This model has a name; it is called a relational model in contract theory.
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(i) First consider the stage game G(1). Show that in the uniqe SPNE
the seller produces only the low-quality product and prices it at p = 0.

(ii) Next consider G(∞) and let δs and δb be the discount factors of
respectively the seller and the buyer. Show that for δs close to one,
there exists an SPNE sustained by the trigger strategy, where at every
date, the seller offers the high-quality good and prices it at p = v.

Solution. Consider part (i). Suppose that there exists an equilibrium
where the seller produces the high-quality product and prices it at
p, with c ≤ p ≤ v. In the equilibrium, the buyer believes that the
seller will provide the high-quality product. Given the buyer’s belief,
if the seller produces high-quality product, she earns p− c; if the seller
deviates to produce low-quality product, she earns p (recall that the
buyer can not tell the quality of the product on the selling spot). Thus,
the seller has an incentive to deviate and produce a low-quality product.
This proves that there does not exist an equilibrium where the seller
produces the high-quality product. By similar reasoning, one can show
that there does not exist an equilibrium where the seller randomizes
between producing a high-quality product and a low-quality product
either.

Now, does there exist an equilibrium where the seller produces a low-
quality product? If such an equilibrium exists, the equilibrium product
price is of course 0. In this equilibrium, the buyer believes that the
seller will provide the low-quality product. Given the buyer’s belief,
even if the seller provides a high-quality product, the buyer would not
know that and would still want to pay zero for the product. Thus, the
seller has no incentive to deviate. Therefore, the uniqe SPNE is that
the seller produces only the low-quality product and prices it at p = 0.

Consider part (ii). We shall show that for δs close to one, the following
strategies constitute an SPNE for G(∞): The seller offers the high-
quality good with price p = v at every date, and at the beginning of
date t, the buyer purchases the good as long as the seller has never
offered the low-quality product before date t. Otherwise, the buyer
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purchases the good only if p = 0. Given the buyer’s strategy, the seller
would like to offer the high-quality product at every date if and only if

v − c

1− δs
≥ (v − 0) + 0,

or equivalently, δs ≥ c
v
. Therefore, for δs close to one, there exists an

SPNE where the seller offers the high-quality good at every date, and
prices it at p = v. This game can be modified by assuming an infinite
sequence of short-term buyers with a perfect word-of-mouth effect, and
the conclusion will be identical. The date-n buyer would be ready to
pay v for the date-n product offered by the seller if all preceding buyers
were served with the high-quality product; or else, all buyers from date
n on would pay zero.

18. Consider a seller and a buyer interacting with each other at dates
n = 0, 1, · · ·. At each date n, the seller can first decide to or not
to spend F > 0 on advertising its price pn. If the seller spends F on
date n, then the buyer knows pn, before he chooses to or not to spend
t > 0 to visit the seller’s store. The buyer has unit demand for the
seller’s product, and his valuation is v > 0 at each date n. The com-
mon discount factor is ρ ∈ (0, 1) for the seller and the buyer. Note that
if the seller chooses not to spend F at date n, then the buyer must
choose to or not to spend t before learning pn. We assume that at the
beginning of each date n, with probability 1− q ∈ (0, 1) another seller
with a much better product may appear, and when she does, the buyer
will not deal with the existing seller any more; that is, the old seller
would face with no demand from date n on, if that new seller emerges.
(We shall let q represent the market status of the old seller’s brand; a
lower q indicates that the old seller has a weak product, which may be
easily replaced by a newly introduced product.)

(i) Derive a condition on t, q, ρ, v, and F which ensures the existence
of an SPNE sustained by the trigger strategy, where in equilibrium the
seller never spends F at any date, but the buyer keeps buying from the
seller at each date till the superior new selller shows up. Find one such
SPNE which is most favorable to the seller.
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(ii) Derive a condition on t, q, ρ, v, and F which ensures the existence
of an SPNE in which the seller spends F at each date till the superior
new seller appears. Find one such SPNE which is most favorable to
the seller.

Solution. For part (i), if such an SPNE exists, then in equilibrium
the seller must price at pn ≤ v − t at each date n, and in the SPNE
most favorable to the seller (we focus on this one), the seller will price
exactly at v − t at each date n. The buyer’s equilibrium strategy is to
visit the seller at date n if and only if the seller has spent F at date n
or if for all m ≤ n− 1, pm ≤ v − t.

The seller’s equilibrium behavior is to price at v − t at each and every
date, so that the seller’s equilibrium continuation payoff at date n is

(v − t) + ρq(v − t) + ρ2q2(v − t) + · · · = (v − t)

1− ρq
.

By making a unilateral deviation and pricing at v at date n, the seller’s
continuation payoff would become

v +
ρqmax(0, v − t− F )

1− ρq
.

In equilibrium, the seller should have no incentives to make unilateral
deviations. Thus we require that, if F ≥ v − t,

t ≤ ρq(v − t)

1− ρq
⇔ t ≤ ρqv.

If instead F < v − t, then we require that

t ≤ ρqF

1− ρq
.

Written compactly, the condition that we are looking for in part (i) is

t ≤ ρqmin(F, v − t)

1− ρq
.
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This finishes part (i).

Now, the SPNE described in part (ii) can arise only if F + t < v and
only if the buyer would stop visiting the seller had the seller not spent
F at least once in the past.

At date n, the seller’s equilibrium continuation payoff is v−t−F
1−ρq

. The
seller’s continuation payoff following a deviation is v. Thus the SPNE
stated in part (ii) can prevail if and only if

v <
v − t− F

1− ρq
⇔ F + t < ρqv.

19. As we remarked in a preceding footnote, one might get the impression
from the two preceding folk theorems that requiring subgame perfection
reduces the set of payoff profiles that can be sustained in the SPNE’s
of G(∞). Fudenberg and Maskin (1986) show that this need not be
the case.
Theorem 4. (Fudenberg and Maskin, 1986) Every v ∈ V ∗ can be
sustained in some SPNE of G(∞) if I = 2 or if I ≥ 3 but V is convex
with dimension I.22

To prove the assertion for two-player games (i.e. I = 2), Fudenberg
and Maskin employ Abreu’s (1988) result (see Fudenberg and Tirole’s
Game Theory, Theorem 5.6) that SPNE penalizing schemes can with-
out loss of generality be confined to simple punishments: a punishment
is simple if it depends only on the identity of the latest unilateral devi-
ator. Assuming that v = 0,23 Fudenberg and Maskin show that given
v ∈ V ∗ = V

∩ℜI
+, the following strategies constitute an SPNE: play

the profile s with u(s) = v until unilateral deviations occur, and in
the latter case minmax the deviator for a long enough period of time
(“enough” means to wipe out the deviator’s gain from deviation) and
then return to the profile s. If a further deviation occurs, start a new

22The dimension of a convex set in RN is the dimension of the smallest affine set
containing the convex set.

23This is a harmless assumption, given that von Neumann-Morgenstern utility function
is determined only up to a positive affine transformation.
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punishment phase against the new deviator (so that all old deviators
are exonerated at this point).24

20. To demonstrate Fudenberg and Maskin’s idea for the case I = 2, con-
sider the infinitely repeated version G(∞) of the Cournot game in sec-
tion 11 of Lecture 1, part I, where firms seek to maximize the sum of
discounted profits with δ ∈ (0, 1) being the two firms’ common discount
factor. First verify that for firm i, mi

−i = 1, and mi
i = vi = 0. Is there

an SPNE where each firm earns a profit 5
72

in each and every period
for δ large enough? (Hint: Consider Q0 = {(q1 = 5

12
, q2 = 5

12
), (q1 =

5
12
, q2 = 5

12
), (q1 = 5

12
, q2 = 5

12
), · · ·}, supported by Q−i and Qi, where

Qi = {(q(t+1)i = 0, q(t+1)j = 1), (q(t+2)i = 0, q(t+2)j = 1), (q((t+3)i =
0, q(t+3)j = 1), · · · , (q(t+T )i = 0, q(t+T )j = 1), (q1 = 5

12
, q2 = 5

12
), (q1 =

5
12
, q2 = 5

12
), · · ·}, and Q−i = {(q(t+1)i = 1, q(t+1)j = 0), (q(t+2)i =

24Note that Theorem 4 only shows that minmax strategies can be used in the penalty
phase so that a cooperative SPNE can be sustained when δ is sufficiently high. It does
not assert that this class of penalizing strategies will make that SPNE most likely to be
sustained. For example, consider the repeated Cournot duopoly where the two firms face
the temporal inverse demand P = 1 − q1 − q2 at each period t, and consider how the
collusive outcome where each produces 1

4 units in each period can be sustained as an
SPNE in G(∞). If the trigger strategy is used to penalize the deviator in the penalty
phase, then this collusive outcome is sustained as an SPNE in G(∞) as long as δ > 9

17 .
(To see this, recall that each firm’s temporal profit is 1

9 and the temporal collusive profit
is 1

8 . Deviation unilaterally by producing the output 3
8 implies an immediate gain of 1

64 .)
Now, if instead the minmax strategy is used to penalize the deviator(s), then to wipe out
the immediate gain from unilateral deviation from the collusive outcome it requires that
the other firm minmax the deviator for just one period, as long as δ > 1

8 . But this also
requires the penalizing firm to produce 1 unit in that penalizing period, and the penalizing
firm may wish to deviate and produce 1

2 units and get an immediate gain of 1
4 instead,

which is much larger than 1
64 ! To wipe out the gain from this penalizing firm, when it

does deviate, the original deviator (who is now exonerated!) must minmax it for, say, 4
periods if δ = 3

4 for example:

1

8
[
3

4
+

9

16
+

27

64
+

81

256
] >

1

4
.

This explains why δ has to be much higher in order to make the minmax penalizing strategy
work. In fact, for the minmax strategy to successfully sustain the collusive outcome in

each and every period, we require δ + δ2 + · · · >
1
4
1
8

= 2, or δ > 2
3 . That is, for δ lying

between 9
17 and 2

3 , the trigger penalizing strategy can be used to sustain the collusive
outcome as an SPNE in G(∞), but the minmax strategy fails to do so.
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1, q(t+2)j = 0), (q((t+3)i = 1, q(t+3)j = 0), · · · , (q(t+T ′)i = 1, q(t+T ′)j =
0), (q1 = 5

12
, q2 = 5

12
), (q1 = 5

12
, q2 = 5

12
), · · ·}. The following is how

these strategies work: The two firms play Q0 until at some date s firm
i makes a unilateral deviation, and from the next date on, firm i is min-
maxed for T periods, and if further deviations occur, all old deviators
are exonerated, and the new deviator will be minmaxed for T ′ periods.
After minmax stage is over, the two firms start playing Q0 until further
deviations take place.)

Solution. If firm j wants to minmax firm i, then firm j should choose
qj to minimize ri(qj) = 1−qj

2
, and hence firm j should choose qj = 1,

which implies that, when minmaxed, firm i does not produce anything,
and it gets zero profit. Now, by symmetry, the same conclusion applies
to firm j. It follows that the output pair (q1 = 5

12
, q2 = 5

12
) is both

feasible and individually rational (meaning that the pair generates for
each firm a profit higher than a firm’s minmax profit level, which is
zero). Theorem 4 tells us that, yes, this output pair can be sustained
as an SPNE outcome in each period of the above infinitely repeated
game. Call the path where both firms produce 5

12
at each date the

equilibrium path Q0. Can we sustain Q0 by the trigger strategy? No,
because the trigger strategy SPNE is one where both firms produce 1

3
,

yielding for each firm a profit higher than the profit in equilibrium Q0

at each date.

So, how can we sustain this SPNE Q0? Theorem 4 tells us that, in
the current case, we can distinguish between two types of deviators,
the one who should be minmaxed, and the one who should minmax its
rival. For this reason, we must require different lengths in the penalty
stage, depending on which type of deviator the punishment is intended
to be imposed on.

Imagine that firm i deviates from Q0 at date n by setting qi =
1− 5

12

2
=

7
24
, leading to a one-time gain

7

24
[1− 5

12
− 7

24
]− 5

12
[1− 5

12
− 5

12
] =

9

576
.
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From date n+1 on, firm j must minmax firm i for T periods, such that

T = min{τ :
5

12
[1− 5

12
− 5

12
](δ + δ2 + · · ·+ δτ ) ≥ 9

576
}.

After minmaxing firm i for T periods, firm j, together with firm i, start
playing Q0 again. This path, starting with date n+1, is referred to as
Qi.

If firm j deviates from Qi at any date m ∈ {n+1, n+2, · · · , n+T} by
setting qj = 1

2
at date m, then the one-time gain that firm j obtains

from the deviation at date m is

1

2
[1− 0− 1

2
]− 1[1− 0− 1] =

1

4
.

Starting from date m+1 on, firm i has to minmax firm j for T ′ periods,
where

T ′ = min{m− n+ τ :
5

12
[1− 5

12
− 5

12
]δn−m(δ + δ2 + · · ·+ δτ ) ≥ 1

4
}.

After minmaxing firm j for T ′ periods, firm i, together with firm j,
start playing Q0 from the next date on. This path, starting with date
m+ 1, is referred to as Q−i.

Once gain, if firm i deviates from Q−i at some date m′, then from
date m′ + 1 on, the two firms play Q−j, and so on and so forth. It is
easy to verify that the above strategies do form an SPNE, where the
equilibrium path Q0 is supported by Q1, Q2, Q−1, and Q−2.

21. How about Fudenberg and Maskin’s proof for the case I ≥ 3? It turns
out the above penalizing schemes used in the proof for the case I = 2
cannot work in general, since threatening to minmax all I ≥ 3 players
in different punishment phases is rather difficult to be compatible with
an SPNE. The following is an example.

Example 1. There are three players. Each player can choose between
a and b in each stage. Payoffs are zero for everyone unless their choices
are the same, and in the latter case each gets 1. Show that, although
the common minmax value for the three players is zero (where for all
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distinct i, j, k ∈ {1, 2, 3}, mi
−i consists of player j playing a and player

k playing b), for δ < 1 no SPNE of G(∞) gives an average payoff that
lies in the interval [0, 1

4
].25

Proof. Define α as the infimum of a player’s average payoff which she
obtains in any SPNE of G(∞). (By symmetry, α does not depend on
the identity of the player.) We must show α ≥ 1

4
. At any stage, the

equilibrium strategy profile must be such that there exists player i such
that the other two players both assign to a or to b a probability that
is less than or equal to 1

2
. Either way, player i can ensure herself an

immediate payoff of 1
4
by betting on the choice between a and b which

her rivals both assign a probability of at least 1
2
. This is one feasible

deviation from the supposed equilibrium profile, and it generates a
payoff for player i of at least

1

4
+

δα

1− δ
,

which, by the assumption that initially we are in an SPNE, should be
less than any perfect equilibrium payoff for player i. Let {αn} be a
sequence of SPNE payoffs for player i converging to α. (Recall that the
infimum of a set A ⊂ R must be a limit point of A.) Then, for each n,
the n-th SPNE must be robust against the feasible deviation we just
designed for player i, which implies that

1

4
+

δα

1− δ
≤ αn

1− δ
, ∀n.

Passing n to ∞, we have

1

4
+

δα

1− δ
≤ α

1− δ
,

implying that α ≥ 1
4
. This example shows that, unlike in the two-player

case, with 3 or more than 3 players, not all feasible and enforceable

25Note that in minmaxing some player i, each of the two penalizers gets zero payoff in
each penalizing stage, but one of the penalizers can get an immediate payoff of at least 1

2
by deviation.
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payoff vectors in G(1) are sustainable as the average payoff of some
SPNE in G(∞).26

22. Because of Example 1, Fudenberg and Maskin turn to reward schemes
in proving their assertion for the case I ≥ 3. The idea is that after some
unilateral deviation by deviator i from v, all other players should min-
max the deviator for a long enough period of time and then all players
except the punished deviator get to play some profile which gives them
payoffs which are higher than their individual minmax values (but still
lower than the payoffs they would have received in the original SPNE
if player i had not deviated). Again, if a further deviation occurs,
then the players follow the same procedure to implement a new pun-
ishment phase against the new deviator, and all the previous deviators
are exonerated. This penalizing scheme works because a player who is
supposed to join force with other players to minmax an earlier deviator
would lose the chance to obtain a higher payoff after the minmaxing
phase if she chose to deviate and maximize her one-period payoff. For
such a scheme to work, it must be required that offering rewards to the
penalizing players without simultaneously benefiting the original devi-
ator be always possible; i.e., V ∗ must possess some “interior” property.
(Example 1 fails to possess this property.) Being convex and having
full dimension in RI , V ∗ has a non-empty interior.27

26For example, imagine that we want to implement a payoff profile where all 3 players
get 1

8 . Assume that mixed strategies are detectable for the moment, and think about
the strategy profile to be implemented consists of players 1 and 2 playing a and player 3
choosing a with probability 1

8 . Now if player 3 has deviated and chosen a for sure, and in
coordinating their actions to minmax player 3 player 1 should play a and player 2 should
play b, in anticipation of player 3’s response of, say, choosing a or b with probability 1

2 ,
then player 1 can deviate and choose b for sure instead, which, as we can verify, also imply
that the other two players can get the immediate payoff 1

2 . (This payoff becomes 1 if
player 3’s m3

3 is a pure strategy!) Thus in anticipation of the high payoff during the period
a player is to be minmaxed, that player will not tolerate an equilibrium payoff of 1

8 , even
though 1

8 is higher than that player’s minmax value in G(1).
27We mentioned earlier that the joint minmax strategy against player i is typically a

profile of mixed strategies in G(1). For example, suppose that player 1 and player 2 must
jointly minmax player 3, with player 1 choosing action L and M with probability 0.4 and
0.6 respectively, leaving another action R un-used. A deviation by player 1 can be detected
if player 1 is found to have used action R. Thus player 1 will become the latest deviator and
will be minmaxed subsequently after the players observe player 1’s action R in the previous
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23. Here we give an example for the SPNE’s in some G(∞).

Example 2. Consider the following 2-person stage game G(1) in
normal form:

1/2 L M R
L 10,10 3,15 0,7
M 15,3 7,7 -4,5
R 7,0 5,-4 -15,-15

Players can use only pure strategies. Suppose that δ = 4
7
. A perfect

equilibrium in simple strategy profile is a triple of SPNE’s (Q0, Q1, Q2)
such that in equilibrium the outcome path is Q0 and in case player
i deviates unilaterally the outcome path becomes Qi. Show that the
following is an SPNE:

Q0 = (L,L), ∀t;
Q1 = (M,R), (L,M), (L,M), · · · .
Q2 = (R,M), (M,L), (M,L), · · · .

Show that Qi gives the lowest payoff to player i among all the SPNEs
for G(∞).28

stage. For the penalizing scheme to work, there is more that needs to be satisfied: player 1,
without wanting to take action R, should also feel indifferent between action L and action
M! Thus the penalizing scheme must give player 1 different payoffs following player 1’s
action L than action M. The bottom line here is that, the penalizing scheme can be very
complicated, exactly because a mixed strategy cannot be observed, only actions that the
mixed strategy randomly chooses may be observed, and hence the penalizing scheme must
trigger different actions to be taken by the players following different observed actions
taken in the preceding stage by the penalizing players.

28Fudenberg and Levine (1983) show that if the stage game is a finite game, then for each
player i the worst possible SPNE Qi in G(∞) always exists. Abreu (1988) show that the
same is true if I is finite, and for all i = 1, 2, · · · , I, Ai is a compact subset of some finite-
dimensional Euclidean space, with the one-stage payoff function ui(·) being continuous.
Moreover, for a finite game G(1), any SPNE outcome of G(∞) can be sustained as an
SPNE outcome when unilateral deviation by player i is always followed by an immediate
switch from the original SPNE to Qi. Abreu (1988) also shows that, if I is finite, and
for all i = 1, 2, · · · , I, Ai is a compact subset of some finite-dimensional Euclidean space,
with the one-stage payoff function ui(·) being continuous, and if there is a pure-strategy
NE in G(1), then the same conclusion holds; that is, any SPNE outcome of G(∞) can be
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Proof. First verify that there is a unique (pure strategy) NE in G(1),
which is (M,M). In this game, we interpret (L,L) as the collusive
outcome that the two players (two firms, say) would like to sustain.
Suppose that σ is an SPNE for G(∞) following a deviation from Q0,
with vi(σ) being player i’s average payoff in the SPNE σ. Then for Q0

to be sustained by σ, it must be that

5 ≤ δ

1− δ
(10− vi(σ)), ∀i.

If we are restricted to using only the trigger strategy in punishing devi-
ations, then vi(σ) = 7, and hence Q0 cannot be sustained as an SPNE:
we have assumed that δ = 4

7
, but Q0 can be sustained by the trigger

strategy if and only if δ ≥ 5
8
. This exercise shows that more severe

punishments than the trigger strategy such as Q1 and Q2 can still be
designed to sustain Q0 as an SPNE for G(∞).

The triple (Q0, Q1, Q2) defined above actually contains three SPNE
profiles. We shall show that both players playing L all the time is
an SPNE which is supported by Q1 and Q2: If player i deviates from
playing L unilaterally at stage t, then start Qi at stage t+1, with player
i playing M and player j playing R at stage t + 1, and with player i
playing L and player j playing M in each and every subsequent stage.
We shall also show that Q1 and Q2 are themselves SPNEs, and are self-
supported: If player j deviates from Qk at stage τ , where k ∈ {1, 2},
then restart Qj at stage τ + 1. Let us now verify that these claims are
all true.

First we verify that each Qi is an SPNE supported by the set of pun-
ishments {Q1, Q2}. Suppose that player 1 just deviated unilaterally at
stage t−1 so that Q1 is now in force at stage t. Then player 1’s optimal
deviation (recall that we only need to check “one-stage” deviations) at
this stage is to play L. This will make player 2 player R in the subse-
quent stages until player 1 finally plays M . But, by conforming, player

sustained as an SPNE outcome when unilateral deviation by player i is always followed by
an immediate switch from the original SPNE to Qi. Note that these penalizing schemes
are simple, in the sense that they depend only on the identity of the latest deviator: if
player i is the latest deviator, then the implemented penalizing scheme is Qi, regardless
of what happened before player i’s latest deviation.
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1 gets

−4 +
δ · 3
1− δ

= 0,

so that player 1 had better conform. (Note that player 1 attains her
minmax payoff, which is zero, in the SPNE Q1.) On the other hand,
player 2 will play R at stage t because by conforming she gets

5 +
δ · 15
1− δ

> 7 + δ[−4 +
δ · 3
1− δ

] = 7,

where the right-hand side is what she gets by deviating and playing M ,
which is followed by Q2 from stage t + 1 on. Thus {Q1, Q2} are self-
supported SPNE in G(∞), with the equilibrium payoff of player i in
Qi attaining player i’s minmax payoff level, proving that these profiles
do attain the minimum payoffs within the class of SPNE’s of G(∞).

Finally, we need to verify that players do not want to unilaterally devi-
ate from Q0, knowing that Qi will be in force after player i unilaterally
deviates, but this is straightforward.

24. Fudenberg and Levine (1983) give a connection between finite- and
infinite-horizon games. They show that under certain conditions, σ∗ is
an SPNE for G(∞) if and only if it is the limit in product topology
of a sequence σT of ϵT -perfect equilibrium (cf. Lecture 1, Part II) of a
sequence of truncated games G(T ) with ϵT → 0. In this case the set of
SPNE of G(∞) is non-empty and compact.

25. (Finitely Repeated Games.) Now we review one important result
for G(T ). As we remarked earlier, if G(1) is the prisoners’ dilemma in-
troduced in Lecture 1, then G(T ) has a unique SPNE where the players
simply play the unique NE in G(1) in each and every stage. However,
stage games with a unique NE are rare. In the remaining case, we have

Theorem 5. (Benoit and Krishna, 1985)
If for all i, there are two NE’s inG(1) yielding different payoffs for player
i, and if the dimension of V is I, then for all feasible and enforceable
payoff profile v, for all ϵ > 0, there exists some T (ϵ, v) such that some
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SPNE in G(T ), T ≥ T (ϵ, v), generates a payoff profile which is within
ϵ of v.

Instead of proving the Theorem, we shall consider a series of examples
(Examples 3-6 below) that demonstrate the intuition behind this result.
Since there is a unique SPNE in G(T ) whenever there is a unique NE
in G(1), these examples assume that G(1) has at least 2 NE’s.

26. Example 3. Consider the following stage game G(1):

1/2 L R
U 0,0 1, 2
D 2,1 0,0

Consider G(T ) where players receive “sum of stage payoffs.” Suppose
that players can only use pure strategies. Let P (T ) be the set of SPNE
payoff profiles for G(T ). Let Q(1) = P (1) and effQ(1) be the efficient
frontier of Q(1). Let R(1) =effQ(1), and for t ∈ {2, 3, · · · , T}, define
Q(t) ≡ {u(σ) ∈ P (t) : all continuation payoffs prescribed by σ on
G(t− 1) lie in R(t− 1)} and R(t) =effQ(t). We say that an SPNE σ of
G(T ) is renegotiation-proof if u(σ) ∈ R(T ). Thus the players cannot
commit to play Pareto dominated SPNE’s in later stages. The idea
is that any Pareto dominated SPNE may cause renegotiations (and
hence not renegotiation-proof), which will Pareto improve the players’
continuation payoffs by directing the players’ attention to some Pareto
superior SPNE. We shall show that

R ≡ lim
T→∞

1

T
R(T ) = co{(1, 2), (2, 1)}.

Note that P (1) = {(2, 1), (1, 2)} = Q(1) =effQ(1). Note that

P (2) = {(4, 2), (2, 4), (3, 3)}, Q(2) = effQ(2) = P (2).

Continuing this way, one can show that for all t ∈ {1, 2, · · · , T}, 1
T
[t(2, 1)+

(T − t)(1, 2)] is a per-period average payoff profile attained by some
renegotiation-proof SPNE in G(T ). Now for each α ∈ [0, 1], and
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for each n ∈ Z+, there exists m(n) ∈ {0, 1, · · · , n − 1} such that
m(n)
n

≤ α ≤ m(n)+1
n

so that

lim
n→∞

|α− m(n)

n
| ≤ lim

n→∞

1

n
= 0.

Of course, this only shows that the set of attainable payoff profiles in
renegotation-proof SPNE’s ofG(T ) for some T is dense in co{(2, 1), (1, 2)};
it does not mean that each point in the latter set is actually attained
by some renegotiation-proof SPNE in G(T ) for some T .

27. Example 3 shows that only the efficient payoff profiles in G(1) are
retained in the set of reasonable equilibrium payoff profiles in G(T ), as
long as T is large enough. This example, however, is misleading, as we
shall demonstrate below.

28. Example 4. Consider the following stage game G(1):

1/2 L M R
L 5,3 0,0 2,0
M 0,0 2,2 0,0
R 0,0 0,0 0,0

Consider G(T ) where players receive “sum of stage payoffs.” Suppose
that players can only use pure strategies.
(i) Show that there are two pure NE’s in G(1).
(ii) Suppose players can use only pure strategies in G(2), where players’
payoffs are averages of temporal payoffs. Show that {(R,R), (L,L)} is
an SPNE in G(2). Show by means of this fact that it is not possible to
sustain all SPNE’s in G(7) using Friedman’s trigger strategies.

Solution. For part (i), (L,L) and (M,M) are the two NE’s. In
part (ii), it is easy to see that the claimed profiles form an SPNE in
G(2), which is supported by the threat of playing (M,M) in stage 2
if unilateral deviations occur in stage 1. The average payoff for player
2 in this SPNE is 1.5 < 2, where 2 is the worst NE payoff in G(1)
for both players. Obviously, 1.5 is the worst average SPNE payoff for
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player 2 in G(2) (correspondingly, 2 is the worst average SPNE payoff
for player 1). Consider the following profiles in G(7):

Q = {(L,R), (M,M), (M,M), (M,M), (M,M), (M,M), (M,M)},

which cannot be sustained as an SPNE by trigger strategies. But, it is
still an SPNE, and the supporting strategies can be

{(R,R), (L,L), (R,R), (L,L), (R,R), (L,L)}

in G(6) in case unilateral deviations occur in stage 1.

29. Example 5. Consider the following stage game G(1):

1/2 L M R
L 0,0 1,2 0,0
M 2,1 0,0 4,0
R 0,0 0,4 3,3

Consider G(T ) where players receive “sum of stage payoffs.” Suppose
that players can only use pure strategies. Find R ≡ limT→∞

1
T
R(T ). Is

it in effV ∗? (Hint: There are two pure strategy NE’s in G(1), yielding
payoff profiles (1, 2) and (2, 1) respectively. Note that

Q(2) = {(4, 2), (3, 3), (2, 4), (5, 2), (2, 5)},

where (5, 2) is associated with the SPNE {(M,R), (L,M)} and (2, 5)
is associated with the SPNE {(R,M), (M,L)}. Hence

R(2) = {(3, 3), (5, 2), (2, 5)}.

It follows that

Q(3) = {(5, 4), (7, 3), (4, 6), (4, 5), (3, 7), (6, 4), (6, 5), (5, 6), (6, 6)},

where (6, 5) is associated with the SPNE {(M,R), (R,M), (M,L)},
(5, 6) is associated with the SPNE {((R,M), (M,R), (L,M)}, and (6, 6)
is associated with the SPNE {(R,R), (L,M), (M,L)}. Hence

R(3) = {(7, 3), (3, 7), (6, 6)}.
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Note that, for T ≥ 3, there exists an SPNE of G(T ) where (R,R) can
be played in the first stage.29 Continuing this way, one can show that

Q(4) = {(9, 4), (5, 8), (8, 7), (8, 5), (4, 9), (7, 8), (10, 6), (7, 7), (6, 10), (9, 9)}

and
R(4) = {(10, 6), (6, 10), (9, 9)}.

For T large, we have

R(T ) = {(3T − 3, 3T − 3), (3T − 2, 3T − 6), (3T − 6, 3T − 2)},

so that

lim
T→∞

1

T
R(T ) = {(3, 3)} ⊂ eff(V ∗).

This example shows that the set R may have a dimensionality smaller
than the dimensionality of the set of Nash equilibrium payoff profiles
of the stage game!)

30. Example 6. Consider the following stage game G(1):

1/2 L M R A
L 0,0 2,4 0,0 6,0
M 4,2 0,0 0,0 0,0
R 0,0 0,0 3,3 0,0
B 0,6 0,0 0,0 5,5

Consider G(T ) where players receive “sum of stage payoffs.” Suppose
that players can only use pure strategies. We shall show that R =
{(4, 4)}, and verify that (4, 4) is not contained in eff(V ∗).

Note that

P (1) = {(4, 2), (2, 4), (3, 3)} = Q(1) = effQ(1),

29The action pair (R,R) cannot be sustained as the first-stage outcome in G(2) because
each of the two players can unilaterally deviate and obtain an additional first-stage payoff
of 1. If (R,R) is followed by the second-stage action pair (M,L), then player 2 strictly
wants to deviate from (R,R) in the first stage; and if (R,R) is followed by the second-stage
action pair (L,M), then player 1 strictly wants to deviate from (R,R) in the first stage.
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and that

P (2) = {(8, 4), (4, 8), (6, 6), (5, 7), (7, 5), (8, 8)} ⇒ R(2) = effQ(2) = {(8, 8)},

where (8, 8) is sustained by the strategy profile where the two players
play (B,A) and then (R,R), and if (B,A) was not observed, then play
either (M,L) or (L,M) depending on who the deviator is. Continuing
this way, one can show that for all T = 2n, n ∈ Z+,

1
T
R(T ) = {(4, 4)},

and for T = 2n− 1, on the other hand, we have

1

T
R(T ) = {(4, 4− 2

T
), (4− 2

T
, 4), (4− 1

T
, 4− 1

T
)}.

Thus we conclude that R = limT→∞
1
T
R(T ) = {(4, 4)}. This exam-

ple shows that elements of R may not even be weakly Pareto efficient
relative to payoffs in G(1).

31. Example 6 shows that, unlike what it seems at first glance, the number
of renegotiation-proof SPNE’s of G(T ) can be smaller than the number
of NE’s of G(1)! Moreover, the attainable payoff profiles may not be
contained in the efficient frontier of the set of feasible payoff profiles of
G(1). However, Krishna and Benoit show that limT→∞

1
T
R(T ) is either

a singleton or it must be contained in weff(V ∗), the weakly efficient
frontier of the set V ∗.30 (Why does renegotiation-proofness not ensure
higher equilibrium payoffs for the players?)

32. (Applications to Corporate Finance.) We now give a series ap-
plications of multistage games with observable actions in finance.

Example 7. (Maksimovic, 1988, Rand JE) There are n firms playing
the Cournot game G(1), and we shall consider the corresponding G(∞).
Suppose that in the stage game G(1), each firm gets πc in a symmetric
collusive outcome, and each gets πnc in the Cournot equilibrium. Let
πd be the optimal profit of a firm in G(1) when all the remaining n− 1
firms are producing the tacitly agreed collusive quantity qc. Suppose

30For a two-player game where (u1, u2) ∈ V ∗ denote a typical payoff profile of G(1),
(u1, u2) is contained in weff(V ∗) if and only if there does not exist (u′

1, u
′
2) ∈ V ∗ such that

u′
1 > u1 and u′

2 > u2.
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that r ∈ (0, 1) is the common discount rate. Suppose that each firm
has a sole equityholder. In this case, the Friedman’s folk theorem says
that if r < πc−πnc

πd−πc ,
31 then the collusive outcome can be sustained as an

SPNE outcome supported by the trigger strategy.

Suppose now that at date 0 all the n firms can issue perpetual bonds.
A bond is thus a constant b > 0 that specifies the interest payments
the borrowing firm must make at each subsequent date. Show that in
a symmetric equilibrium where all firms choose the same amount b at
date 0, there is an upper bound on b so that the collusive SPNE can
still be sustained from date 1 on, if r < πc−πnc

πd−πc . In fact, show that the
upper bound on b in this case is32

31Note that the equilibrium incentive compatibility (or the no-unilateral-deviation) con-
dition requires

δ(πc − πnc)

1− δ
> πd − πc,

where δ = 1
1+r , and hence it is required that

r <
πc − πnc

πd − πc
.

32If r < πc−πnc

πd−πc , then as verified above the collusive outcome can be sustained in an

SPNE when b = 0 is chosen by firm i, for all i. In this case, if b < πnc, then b < πc < πd,
and hence the IC condition for producing the collusive output is the same as before:

δ((πc − b)− (πnc − b))

1− δ
> [(πd − b)− (πc − b)].

Since b < πc apparently, if b ≥ πnc instead, then b ∈ [πnc, πc). In this latter case, if in a
symmetric equilibrium all firms choose such a b at date 0, and if for the first time some
firm deviates from the collusive behavior at date t, then from date t+ 1 on it is an SPNE
where all firms produce the static Nash equilibrium output and each of them obtains πnc.
Indeed, at date t+ 1 no firm can fully repay its debt given that its rivals will all produce
the static Nash equilibrium output, and although these firms are feeling indifferent about
any output strategy, Maksimovic assumes that all firms will choose to produce the static
Nash equilibrium output at date t + 1. Following default on debt at date t + 1, all firms
will then be run by their creditors (as if they are all-equity firms) from date t+2 on, and
these reorganized firms will then produce the static Nash equilibrium output from date
t+2 on. The bottom line is that, for the original equityholder(s) at the deviating firm, the
IC condition for conforming to the collusive behavior is πd− b ≤ (πc− b)(1+ δ+ δ2+ · · ·),
which reduces to b < πc−r(πd−πc). Clearly, when b ≥ πnc, a deviating firm no longer has
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max(πnc, πc − r(πd − πc)).

On the other hand, if r ≥ πc−πnc

πd−πc , show that in a symmetric equilib-
rium, b cannot exceed πnc.

Remark. The above has mainly assumed that the firm can only
consider vanilla debt contracts. The result crucially depends on this as-
sumption. If the contracting parties can optimally design the covenants,
then the upper bound on b can be lifted. For example, the debt con-
tract may impose restrictions on the amount of cash earnings that can
be distributed as dividends, or it may put restrictions on the firm’s
production activities. In the above model, if the debt covenants re-
strict the amount of cash dividend per period to not exceed πc − b,
then with any debt level b, the firm will optimally conform to the col-
lusive arrangement! Similarly, if the debt covenants forbid the firm to
expand output beyond qc, then any debt level b is consistent with value
maximization. Hence, I do not find Maksimovic’s result about a debt
upper bound very convincing. See Smith and Warner (1979, JFE) for
an in-depth discussion of debt covenants. See also Rajan and Winton
(1995, JF) for the strategic roles of debt covenants and collateral. Mak-
simovic (1988) does mention that the use of warrants and convertible
debt may help lift the debt upper bound: by allowing the holders of the
option-like securities to turn their securities into equity after the firm
deviates from the collusive outcome, a firm convinces its rivals that it
will not deviate at all. Thus issuing these option-like securities helps
sustain collusion.

33. Example 8. (Jensen and Meckling, 1976, JFE) At date 0, Mr. B is
the owner-manager of a firm protected by limited liability. The firm is
endowed with $50 in cash. There are two mutually exclusive investment
projects available to B at date 0. Alternative 1 is a riskless project
which incurs an immediate $100 cash outflow and generates $105 at
date 1. Alternative 2 is a risky project which incurs an immediate

to worry about its debt obligations due after its deviation, and this alters the incentive-
compatibility condition for the collusive outcome.
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cash outflow of $100 and generates a random cash inflow $X̃, where
X̃ has two equally likely outcomes, 0 and 180. Note that alternative 1
generates a positive NPV of $5, but alternative 2 leads to an expected
loss of $10. Since taking alternative 1 is productively efficient, we
assume that Mr. B will take alternative 1 whenever he feels indifferent
about the two investment alternatives.

Mr. B decides to come to Mr. C for a loan of $50. The game proceeds
as follows. B offers a debt contract with face value F to C, which C
can either accept or reject. If C rejects the contract, no investment is
made and both B and C get zero payoffs. If C accepts the contract,
then B must choose between alternative 1 and alternative 2. After the
investment decision is made, the state of nature is realized, and B and
C get paid according to the debt contract. Find the subgame perfect
Nash equilibrium of the game.

Solution. First consider the subgame where F is given and the loan
is made (or else the game has ended). If B chooses alternative 1, she is
sure that she will get max(0, 105−F ). If B chooses alternative 2, then
her payoff is random: with prob. 1

2
, she gets 0; and with prob. 1

2
, she

gets max(180− F, 0). Thus, B chooses alternative 2 over alternative 1
if and only if

1

2
· 0 + 1

2
·max(180− F, 0) ≥ max(105− F, 0). (1)

The following table summarizes the investment behavior of B given
different values of F :

F alternative chosen
∈ [0, 30] 1

∈ (30, 105] 2
∈ (105, 180) 2
∈ [180,+∞) 1

Now we consider the subgame where C must decide whether to accept
B’s debt contract. According to the above table, B would subsequently

44



invest in alternative 1 if and only if F ≤ 30 or F ≥ 180, but C is sure
to lose money if she accepts any offer with F ≤ 30 or with B choosing
alternative 2. Thus, C accepts B’s offer if and only if F ≥ 180. Now
consider B’s problem of making an offer to C. Given the above analysis,
B can expect her offer to be accepted by C only if F ≥ 180, but B would
be better off giving up the new investment and keeping her 50 dollars
at hand.

Our conclusion is that, in the unique subgame perfect Nash equilibrium
of this game, B does not make any offers to C in the first place, and
the game ends at the very beginning with the firm passing on the good
investment opportunity (alternative 1).

This kind of shareholders’ incentive problems is referred to as risk shift-
ing or asset substitution in the finance literature. There are other kinds
of incentive problems involving shareholders or creditors which we shall
review later on. These incentive problems lead to investment inefficien-
cies and hence reductions in firm value.
Remarks. Implicitly assumed in the above extensive game is that B’s
investment decision cannot be observed by C, or it can be observed by
C but cannot be verified by the contract enforer (usually the court of
law). For if the choice of the investment alternative is both observable
and verifiable (which will be referred to as contractible), then B can
sign a contract with C saying that B will choose the riskless project,
or else C can, say, break B’s arms. This is called a forcing contract,
which apprently removes the agency problem, as long as B cares enough
about his arms. The problem is then, “Why can’t C observe B’s in-
vestment decision?” One may argue that, B, as the CEO, makes the
decision in his office, and may not be observed by C. The problem
is more delicate than that! Note that if ex-post cash flows are con-
tractible, then by observing the cash flows C can prove whether B has
invested the riskless project or not, and hence a forcing contract seems
possible. (Of course, breaking somebody’s arms may not be legal, and
hence itself unenforceable; this could create a new problem: penalizing
B in a monetary manner may not work as well as breaking arms, for
B may not have enough money to implement a monetary penalty on
him!) Therefore, it seems necessary to assume that the ex-post cash
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flows are not contractible. Alas! This is again not the end of the prob-
lem. One must then ask, “Why can’t cash flows be observable?” Is it
a reasonable assumption? As we shall see, a large body of literature
in optimal design of financial contracts has assumed that cash flows
can be costlessly observed only by the insiders of the firm (here, B).
However, it has also been assumed that by spending some money, C
may be able to verify the true cash flows. Of course this money, paid
to an accountant for example, is a deadweight loss, and should be by
all means avoided or minimized in an optimal contract, but allowing C
an opportunity to verify is indeed a more reasonable assumption. The
bottom line here is that, the above conclusion that external financing
leads to the asset substitution problem actually stems from the some-
what arbitrary assumption that Mr. B can only use a standard debt
contract when raising funds from outside investors. If B and C are
rational, they should be able to use Pareto optimal contracts, and one
of them is clearly equity contract.

34. Example 9. (Jensen and Meckling, 1976, JFE) Suppose A is the
owner-manager of a firm whose value is

V = 1− L,

where L ∈ [0, 1] is A’s on the job leisure. A has utility function

U(V, L) = V
4
5L

1
5 .

(i) Compute the optimal leisure for A. What is the corresponding value
of the firm?
(ii) Now suppose A wants to sell 1

3
of his ownership to outsiders. The

game proceeds as follows. A first sells his partial ownership to outsiders
in exchange for money M . Then, after the transaction, A chooses his
leisure L. Assume that outside investors are competitive and have per-
fect foresight, so that M is exactly the worth of the partial ownership
they obtain in equilibrium. What is the equilibrium value of the firm?
Suppose there is no portfolio effect between ownership and money for
A, determine if A should make this ownership transaction in the first
place. What if there is a portfolio effect?
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Solution. First, part (i). Recall the following consumption problem:
with constants a, b > 0, a+ b = 1, and px, py, I > 0 given, the solution
to

max
x,y

U(x, y) = xayb,

s.t. pxx+ pyy ≤ I

is simply

x∗(px, py, I) =
aI

px
, y∗(px, py, I) =

bI

py
.

(The above utility function is called a Cobb-Douglas utility function.)
Using this fact, we have for part (i),

V ∗ =
4

5
, L∗ =

1

5
.

That is, the firm value is 4
5
. In the following, we continue to denote the

manager’s monetary wealth by V . Consider part (ii). In the subgame
where M has been given, the manager’s problem is to choose L to max-
imize her utility. Let V be the manager’s monetary wealth including
the cash M . Then, the value of the firm will be

V −M
2
3

.

Thus, the manager seeks to

max
V,L

V
4
5L

1
5

s.t.
V −M

2
3

= 1− L.

Using the above result for the Cobb-Douglas utility function, we have

L∗ =
1

5
(1 +

3

2
M).

Observe that two things happen here. First, the price of ownership
(V ) relative to leisure (L) has increased from 1 to 3

2
. Second, before

choosing the optimal L, the manager has received M (as part of his
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V ), which implies by the concavity of U in V that L has become more
desirable than in part (i). Thus it is not surprising that L∗ > 1

5
, where

1
5
is the optimal leisure in part (i), and moreover, the difference L∗ − 1

5

increases with M and the fraction of ownership held by the outside
investors.

Now, using backward induction, we can infer what M must be in equi-
librium: With rational expectations, the M outsiders are willing to pay
to the manager is exactly 1

3
the value of the firm:

M =
1

3
(1− L∗) =

1

3
(1− 1

5
(1 +

3

2
M)).

Solving, we have

M∗ =
8

33
,

which implies that L∗ = 3
11
, and the value of the firm becomes 8

11
(which

was originally 8
10
). How about the manager’s utility in equilibrium? It

is

(
2

3
× 8

11
+

8

33
)
4
5 (

3

11
)
1
5 < (

4

5
)
4
5 (
1

5
)
1
5 .

This has assumed that there is no portfolio effect in the manager’s
utility function, and we conclude that in this case the manager will
not sell the partial ownership willingly in the first place. On the other
hand, if the manager considers cash different from ownership of the
firm, then selling the ownership may still enhance her satisfaction. In
this case, however, it is not clear if the manager will increase her on
the job consumption after selling the shares.

A question comes to mind at this point: why are there so many pro-
fessional managers in the real world? One possibility is that running
business takes managerial expertise, and it is costly to acquire such
expertise; in particular, the initial founder of the firm may not be able
to manage the firm as well as a professional manager. It is natural
then for the initial founder to sell the firm to the professional manager
to avoid the agency problem discussed above, but the latter may not
have enough money to buy out the firm! Another possibility is that an
owner-manager may be hit by liquidity shock and must sell a fraction
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of equity for cash. This however raises the following question, “why
can’t the owner-manager borrow some money, if after all getting some
cash will resolve his problem?” A likely answer is that borrowing also
creates some agency costs.

These two possibilities both suggest that professional managers exist
only when the equityholders are forced to hire them (either because of
their exclusive expertise, or because the equityholders must liquidate
their positions in the stock to get cash). An ingenius point is made by
Hirshleifer and Thakor (1992, Review of Financial Studies), who sug-
gest that professional managers may exhibit too much conservatism,
which shareholders dislike, but by hiring conservative professional man-
agers, shareholders can reduce or even remove the agency costs of debt
that arises from the asset substitution problem. (Like the Chinese old
saying suggests, one poison may be used as an antidote for another poi-
son.) Thus shareholders may be pleased to hire professional managers,
using the latter as a commitment to ensure the debtholders that the
firm will not undertake projects that involve excessive risks.33

35. Example 10. (Diamond and Dybvig, 1983, JPE)34 Consider econ-
omy E that consists of a continuum of consumers. Let the population
of consumers be (normalized to) 1. At date 0, each consumer is en-
dowed with one unit of consumption, which can be invested in a real
investment project that generates R > 1 units of consumption at date
2. A consumer normally consumes at date 2, but with probability
x ∈ (0, 1), he may be hit by a liquidity shock at date 1, and in that
event the consumer is forced to consume at date 1 (hence he must liq-
uidate his investment at date 1 to get cash). Assume that if the project

33A converse story (Hart and Moore, 1995, AER; Stulz, 1990, JF) is as follows. Suppose
that managers derive private benefits from empire-building (taking too many negative NPV
projects just to keep a large corporation under their control). Debt, although it creates
agency costs on its own, can be used to force the manager to disgorge the free cash flows
(Jensen, 1986, AER). Thus debt (a poison) can be used as the antidote to the managerial
incentive problem (another poison).

34This exercise examines why we need a commercial bank, and why a bank’s functioning
may fail because of inefficient bank runs, and inquires about the possibility of replacing the
commercial bank by other financial institutions like insurance companies. It also discusses
the role of deposit insurance.
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is terminated at date 1, it returns 1 unit of consumption. Assume that
at date 1, the population of consumers who are hit by a liquidity shock
is exactly x; this is called a no-aggregate uncertainty assumption.35

(A) At first, suppose there are no financial institutions. Then, the
date-0 expected utility of a consumer is simply xu(1) + (1 − x)u(R),
where u(·) is the consumer’s temporal utility function of consumption,
with u′ > 0 > u′′.

(B) Now assume that the consumers can get together to form a financial
institution (called a commercial bank), and each consumer gets to sign
a deposit contract with the bank at date 0. A deposit contract is a pair
of promised consumptions {c1, c2} such that (1) in the event that the
consumer is hit by a liquidity shock at date 1, then he receives c1 at
date 1 and nothing at date 2 from the bank (equivalently, the consumer
withdraws c1 from the bank at date 1); and (2) in the event that the
consumer is not hit by a liquidity shock, then he receives nothing at
date 1 but c2 at date 2 from the bank. Such a deposit contract is called
feasible if

[1− xc1]R = (1− x)c2; (2)

that is, with x consumers withdrawing at date 1, and each taking away
c1 dollars, the bank gets to invest the rest [1 − xc1] dollars at date 1,
which yields [1−xc1]R dollars at date 2 for the rest (1−x) consumers.

A deposit contract {c∗1, c∗2} is called Pareto optimal if it is feasible and
it maximizes each individual’s expected utility:

max
c1,c2

xu(c1) + (1− x)u(c2).

(i) Show that under the optimal contract, the following first-order con-
dition must hold:

u′(c∗1) = Ru′(c∗2). (3)

(ii) Show that if u(c) = log(c) for all consumers, then there is no need
of forming the commercial bank.

35Although each individual is facing the uncertainty that he might need to consume
early (at date 1), and that event may occur with probability x, the entire population is
sure to have x consumers who need to consume early, thus facing no uncertainty.
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(iii) Show that if for all consumers and for all c, − cu′′(c)
u′(c)

> 1, then

the Pareto optimal deposit contract is such that 1 < c∗1 < c∗2. (Hint:
Write R in terms of c∗1 and c∗2 from the feasibility condition, and then
substitute R into the first-order condition, and then recall the funda-
mental theorem of calculus: if f(·) is continuously differentiable, then
f(x) = f(y) +

∫ x
y f ′(t)dt. Now look at the first-order condition with R

substituted, and let f(x) = xu′(x).)

From now on, we always assume that − cu′′(c)
u′(c)

> 1 for all c. Suppose
that at date 1 the bank cannot tell if a consumer who wants to with-
draw money was really hit by a liquidity shock, but it chooses to pay c∗1
to everyone who wants to withdraw at date 1. Let f be the population
of consumers who want to withdraw at date 1. Note that if fc∗1 ≤ 1,
then each withdrawer gets c∗1; or else, each gets 1

f
. (This simplifies the

analysis. But in general, the bank holds a “first-come-first-serve” pol-
icy and hence the money a withdrawer can get is random.) Consumers

who do not withdraw at date 1 receive max(0,
R(1−c∗1f)

1−f
) at date 2.

(iv) Show that there is a Nash equilibrium where consumers withdraw
at date 1 (i.e. f = x) if and only if they were hit by liquidity shocks.
(v) Show that there is another Nash equilibrium where consumers all
withdraw at date 1 (i.e. f = 1) regardless of whether or not a liquidity
shock has occurred.
(vi) Now consider a sunspot y which takes the values 0 and 1 with
probability π and 1 − π. Show that it is an equilibrium that f = x if
y = 0 and f = 1 if y = 1. Call this the sunspot banking equilibrium.
For the rest of this problem, always assume the presence of the sunspot
y.
(vii) Suppose that instead of signing the deposit contract, the con-
sumers sign an insurance contract with the institution (with this new
contract, the institution is defined as an insurance company): if a con-
sumer intends to withdraw money at date 1, then a cost k > 0 is spent
(to hire a private investigator for example) by the institution to see if
the withdrawer was hit by a liquidity shock, and at date 1 this con-
sumer receives c′1 if he was hit by a liquidity shock and nothing if he
was not. Let f stand for the population of consumers who receive c′1
at date 1, and h the population of consumers who intend but fail to
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withdraw money at date 1. For each consumer who did not receive c′1
at date 1, his date-2 payoff is c′2 =

max(0,1−fc′1−(f+h)k)R

1−f
. Show that in

equilibrium f = x and h = 0. Show that under the Pareto optimal
insurance contract c′1 and c′2 satisfy

[1− xk − xc′1]R = (1− x)c′2; (4)

and
u′(c′1) = Ru′(c′2). (5)

Compare (c′1, c
′
2) to (c∗1, c

∗
2).

(viii) Show that when k is sufficiently small, an insurance company
dominates a commercial bank, and when π is sufficiently large, a com-
mercial bank dominates an insurance company.
(ix) Suppose now that there is another economy E ′, identical to E.
However, we shall make several modifications. First, the investment
opportunity that transforms one dollar into R dollars is available to
just one economy, where 1 < R < 2, and ex-ante it is equally likely
that E and E ′ may have this investment opportunity. Second, the
consumers in the two economies can first sign a deposit insurance con-
tract before learning to which economy nature assigns the investment
opportunity. After signing the contract and after knowing that their
economy is endowed with the investment opportunity, the consumers in
the lucky economy can then form a commercial bank and sign deposit
contracts with the bank, as in the above sections (i)-(vi). The deposit
insurance contract states that if E is endowed with the investment op-
portunity while E ′ is not (the same is true if E and E ′ are switched),
and if at date 1 the bank in economy E has f > 1

c∗1
withdrawers, then

each consumer in economy E ′ is obliged to pay fc∗1 − 1 to the bank of
economy E. Show that under deposit insurance, withdrawing money
from the bank is a weakly dominated strategy for a consumer in econ-
omy E who was not hit by a liquidity shock. Show that in equilibrium
consumers in economy E ′ never have to pay to the bank of economy E.
(x) Can you think of any negative side of deposit insurance?

Solution. Consider questions (i)-(iii). The maximization problem in
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part (i) can be stated as follow:36

max
c1,c2

xu(c1) + (1− x)u(c2)

subject to
(1− xc1)R = (1− x)c2

Equivalently, we can maximize the unconstrained function

f(c1) = xu(c1) + (1− x)u(
(1− xc1)R

1− x
),

which is a strictly concave function of c1 (because x < 1 and f ′′ < 0),
so that its maximum appears at

f ′(c∗1) = 0 ⇔ u′(c∗1) = Ru′(c∗2).

In part (iii), since R > 1 and u′(·) is a strictly decreasing function (
because u′′ < 0!), we conclude that c∗2 > c∗1. Now, if we replace R by
(1−x)c∗2
1−xc∗1

in u′(c∗1) = Ru′(c∗2) (note that 1 > xc∗1 because of the condition

u′(0) >
u′( 1

x
)

R
), we have the following equation:

u′(c∗1) =
(1− x)c∗2
1− xc∗1

u′(c∗2)

⇒ u′(c∗1)− xc∗1u
′(c∗1) = (1− x){c∗1u′(c∗1) +

∫ c∗2

c∗1

[u′(t) + tu′′(t)]dt}

< (1− x)c∗1u
′(c∗1),

because by assumption for all c, − cu′′(c)
u′(c)

> 1. It follows that, if for all

c, − cu′′(c)
u′(c)

> 1, then we have

0 < u′(c∗1)(c
∗
1 − 1) ⇒ c∗1 > 1,

36The condition u′(0) > max(
u′( 1

x )

R , Ru′( R
1−x )) implies that the constraint 0 ≤ xc1 ≤ 1

will be automatically satisfied at optimum, and hence we can ignore this constraint.
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and hence c∗2 > c∗1 > 1 in this case. Note that if u(c) = log(c), as in
part (ii), then u′(c) = 1

c
. In this case we have c∗1 = 1 and c∗2 = R. Thus

there is no room for welfare-improving commercial banks in this case.

Consider part (iv). Because xc∗1 < 1, if consumers believe that only
those hit by a liquidity shock will withdraw at date 1, a consumer not
hit by a liquidity shock knows that she can get c∗2 = R(1−xc∗1)/(1−x)
if she decides to not withdraw her money from the bank at date 1,
and she would otherwise get c∗1 if she chooses to withdraw at date 1.
Since c∗2 > c∗1, a consumer not hit by a liquidity shock at date 1 indeed
will not withdraw at date 1. Thus there exists an equilibrium where
consumers withdraw at date 1 if and only if they are hit by a liquidity
shock at date 1.

Consider part (v). When a consumer believes that all other consumers
will withdraw at date 1, she believes that she will get nothing unless
she also goes withdraw her money from the bank at date 1, in the latter
case she would get 1 dollar back. Thus it is an equilibrium where all
consumers withdraw their money from the bank at date 1 whether or
not they are hit by a liquidity shock.

Consider part (vi). Suppose that all consumers believe that the equi-
librium in part (iv) will prevail when everyone sees y = 0, and the
equilibrium in part (v) will prevail when everyone sees y = 1. Then,
it is easy to verify that these beliefs are self-fulfilling so that the above
beliefs are realized in a sunspot equilibrium, where the equilibrium out-
come depends on the realization of y.

Consider part (vii). With the insurance contract, a withdrawer gets
money only if the institution proves that she was indeed hit by a liq-
uidity shock. Thus there is no point for those not hit by a liquidity
shock to try to withdraw. This means that in equilibrium f = x
and h = 0, and it rules out inefficient bank runs that appear in the
equilibrium described in part (v). However, the insurance company
has committed to verify withdrawers in equilibrium, even though it
knows that all withdrawers are hit by a liquidity shock. Thus insur-
ance company incurs a deadweight verification cost, which reduces the
non-withdrawers’ date-2 wealth. An insurance contract is feasible if
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and only if [1− xk− xc′1]R = (1− x)c′2. The Pareto optimal insurance
contract c′1and c′2 must solve the following program:

max
c1,c2

xu(c1) + (1− x)u(c2)

subject to
(1− xk − xc1)R = (1− x)c2.

It can be shown that c′1and c′2 satisfy [1− xk − xc′1]R = (1− x)c′2 and
u′(c′1) = Ru′(c′2).

Recall that c∗1and c∗2 satisfy [1−xc∗1]R = (1−x)c∗2 and u′(c∗1) = Ru′(c∗2).
Using u′(c′1) = Ru′(c′2) and u′(c∗1) = Ru′(c∗2), we have

u′(c′1)

u′(c∗1)
=

u′(c′2)

u′(c∗2)
.

From [1−xk−xc′1]R = (1−x)c′2 and [1−xc∗1]R = (1−x)c∗2, we obtain

1− x(k + c′1)

1− xc∗1
=

c′2
c∗2
.

It can be verified that c′1 < c∗1 < c′1+k and c∗2 > c′2. Thus the verification
cost is shared by all consumers, regardless of whether or not a consumer
withdraws money at date 1.

Consider part (viii). Under the optimal deposit contract, a consumer’s
expected payoff is

π[xu(c∗1) + (1− x)u(c∗2)] + (1− π)u(1)

Under the optimal insurance contract, a consumer’s expected payoff is

xu(c′1) + (1− x)u(c′2),

When k tends to zero, c′1 and c′2 approach to c∗1 and c∗2 respectively.
Therefore, when k is sufficiently small, an insurance company domi-
nates a commercial bank, and when π is sufficiently large, a commercial
bank dominates an insurance company.
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Consider part (ix). Under the deposit insurance, if there are y with-
drawers in economy E at date 1, then the bank in economy E is left
with the following amount of money for investment,37

1 +G(y)− yc∗1.

Each non-withdrawer in economy E will then get

[1 +G(y)− yc∗1]R

1− y
= c∗2

at date 2. If such a person deviated and withdrew at date 1, then he
or she received c∗1 only! Thus only those who are forced to consume at
date 1 would choose to withdraw at date 1 in the presence of deposit
insurance provided by the other economy. We conclude that in equilib-
rium, the population of withdrawers at date 1 is exactly x in economy
E.

Consider part (x). Sometimes depositors withdraw money from the
bank because they believe that the bank has a bad performance and is
not operating in a way that is consistent with their best interest. Thus,
withdrawing money is one costly way (sometimes the only way) to make
sure that a bad bank quits the market. Under a deposit insurance
contract with full coverage (such as the one in part (ix)), depositors
have no incentives to withdraw money even if they believe that the
bank’s performance is poor. The bank managers can continue to have
their own way and to reduce the value of the bank without having
to fear being terminated by the runs created by monitoring depositors.
These issues did not appear in the above exercise, but their importance
in reality cannot be overstated.

Remarks.

(i) It is important that to get R at date 2, the investment must be
made at date 0. For if it is feasible to invest the dollar at date 1 and

37We should make sure that people in economy E′ do not default on this deposit
insurance contract; that is, G(y) ≤ 1 for all y ∈ [x, 1]. It can be readily verified
that G(x) = 0 and G′ > 0. Thus it suffices to check that G(1) ≤ 1. Note that
G(1) = c∗1 − 1 < c∗2 − 1 < R− 1 < 1, because we have assumed that R < 2.
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get R at date 2, then the only NE involves everyone withdrawing at
date 1: a consumer who is not hit by the liquidity shock can realize an
arbitrage profit by withdrawing at date 1. Certainly this cannot hap-
pen in equilibrium, and hence no arbitrage will rule out the existence
of banks; that is, rule out the possibility of an insurance contract that
Pareto improves the no trade outcome.

(ii) This model leaves out the banker’s moral hazard problems. In the
presence of these problems, bank runs may have a positive function:
being afraid that the monitoring depositors may withdraw their money
from the bank, the banker’s incentives of making bad loans can be ef-
fectively removed. Deposit insurance (discussed in class) that aims at
eliminating the inefficient runs may simultaneously eliminate the pos-
sibility of efficient runs, thereby aggravating the banker’s moral hazard
problem.

(iii) Observe that in the above model, banks essentially play the role
of insurance companies: consumers are ensured a gain in the bad state
(consumption equals 1) in exchange for a fee that must be paid in the
good state (consumption equals R). The difference between an insur-
ance policy and the demand deposit is that with an insurance policy,
an investigation (or in more formal terminology, state verification) may
take place to determine if the insuree is really in the bad state, and the
insuree gets paid only if the bad state does occur. It is then not sur-
prising why runs do not occur to the insurance companies. Now, if
both demand deposit and insurance policy provide insurance to the
consumers, and if inefficient runs are not likely to occur with insurance
policy, what is the relative advantage of demand deposit to justify its
existence? One distinct feature of demand deposit offered by commer-
cial banks is the immediacy that it allows. Nowadays one can withdraw
money by visiting an ATM or do transactions on the net. Investigation
by the insurance company can be costly and time-consuming and hence
may not be desirable if consumption is needed immediately. In terms
of this observation, the above analysis can be further generalized by
including immediacy and investigation (state verification), and the op-
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timal choice of these features helps to explain why a commercial bank
instead of an insurance company is more desirable in certain economic
environments. The same line of reasoning now suggests that one also
consider security innovation. What may happen if, for example, instead
of forming a bank, the economy chooses to form an exchange, which
then optimally designs a traded security for the public? A number of
authors have published new research in this regard.

36. Example 11. (Myers, 1977, JFE) A growth firm may be more
vulnerable to an agency problem (known as debt overhang) than a firm
with no growth opportunities. The following is an example. A firm
finances the date-0 cost g > 0 for its search for a valuable investment
opportunity by borrowing, and it promises to repay the debtholder
F > 0 at date 2. (The cost g can be viewed as an R&D expense.) It is
known at date 0 that , some public information will arrive at date 1,
which will reveal how much cash inflow the project will generate at date
2. Suppose that it is investors’ common knowledge that the date-2 cash
inflow is equally likely to be either 20 or 10. To generate that cash flow,
an additional I dollars must be spent at date 1. However, The firm
has no cash at date 1, and must issue junior debt at date 1 to raise the
I dollars. Now, assume that competitive investors are all risk neutral
without time preferences (recall that this implies that asset prices are
all marginales). At date 1, if the state is that the date-2 cash inflow is
C, then the new investor (debtholder) will get min(C − F, F ′) at date
2, where F ′ is the face value of junior debt. Thus the new investor will
lend I to the firm if and only if I ≤ min(C − F, F ′), and since F ′ ≥ I,
this equivalent to C ≥ F + I. In case

20 > F + I > 10 > I,

the new investor will refuse to lend to the firm, if C = 10 at date 1.
Since I < 10, this creates a deadweight loss, and is referred to as an
agency cost pertaining to debt.

Thus, solving the SPNE of this game, we conclude that when 20 >
2g + I > 10 > I, then in equilibrium, F = 2g, so that the date-0 firm
value is 1

2
(20−I) > g, which justifies the firm’s inital R&D effort. Note

that if the firm were to have enough cash earnings at date 1, the date-0
firm value would be 1

2
(20− I) + 1

2
(10− I).
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It is not surprising that the standard debt contract is Pareto suboptimal
in this example. Let us derive a Pareto optimal financial contract for
the initially raised g dollars, assuming more generally that C = 20 and
10 with probability π and 1 − π (in the above we have assumed that
π = 1

2
). Assume correspondingly

20 > I +
g

π
> I + g > 10 > I > 0. (Θ)

Before solving the optimal financial contract at date 0, let us first con-
sider the equilibrium F associated with the (asserted suboptimal) stan-
dard debt contract written at date 0. Quickly deduce that F ≤ 20− I.
(Why?) Similarly, we claim that F ≥ 10 − I. Thus given F , the firm
can raise I at date 1 if and only if C = 20. Rationally expecting this,
the F can be obtained by solving the zero expected profit condition of
the senior debtholder:

πF = g ⇒ F =
g

π
.

This result is consistent with assumption (Θ). Thus at date 0, the value
of debt is exactly g, showing that trading financial assets yields zero
NPV at date 0. The date-0 value of equity is then π(20 − I). What
happens at date 1? It depends on C. In case C = 20, then the date-1
equity value is 20−F − I, and the date-1 value of the senior (old) debt
is F (the junior debt is fairly priced, and hence is worth I); and in case
C = 10, then all securities are worthless.

Now we consider the Pareto optimal financial contracts at date 0. Such
a contract must allow the firm to maximize its date-0 value (allowing
the firm to adopt as many positive-NPV projects as possible) while
allowing all investors to at least break even of the time financing is
granted. Let f(C) be the initial investor’s payoff at date 2 when C is
the date-2 cash inflow. We must look for f(10) and f(20) such that

10− f(10) ≥ I; 20− f(20) ≥ I;

0 ≤ f(20) ≤ 20− I; 0 ≤ f(10) ≤ 10− I.

We shall maintain the assumption that

0 < g ≤ 20π + 10(1− π)− I,
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so that establishing the firm by spending g in the first place makes
sense to the entrepreneur. Note that this assumption implies that

g − 10π ≤ 10− I.

It is easy to show that (i) if g < 10π, then

f(10) = 0, f(20) =
g

π
;

and (ii) if g ≥ 10π, then

f(10) = g − 10π, f(20) = 10 + g − 10π,

are optimal contracts. (There are other optimal contracts, all leading
to the same date-0 value.) Compared to the long-term debt maturing
at date 2, these contracts allow the date-2 repayments to the date-0
investor to be indexed by the net present value of the date-1 project.
Recall that the above debt overhang problem occurs because the firm
promises to repay the senior debtholder too much in the poor state
C = 10. Thus, by indexing the face value of debt to the realization of
C, the problem is solved; see a profound analysis based on this idea in
Froot, K., D. Scharfstein, and J. Stein, 1989, LDC Debt: Forgiveness,
Indexation, and Investment Incentives, Journal of Finance, 44, 1335-
1350.

There is also a second resolution to the above debt overhang problem:
at date 0, issuing a properly designed convertible bond instead of the
straight bond. This will give the initial bondholder has an option to
convert the senior debt into a fraction α of equity right before the firm
tries to raise I at date 1.

How does this work? Note that the firm fails to raise I at date 1 if
and only if the senior debt was not converted and the face value of the
senior debt is F > C − I. In this event the senior debt will also be
worthless, while by converting and holding a fraction α of the equity,
the senior debtholder’s payoff will be strictly positive: the new investor
will be happy to lend I, as he will be the sole debtholder at date 2, and
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will hence be sure to get back the I dollars he invests at date 1. Thus
investment efficiency is attained at date 1.38

It remains to compute the pair (F, α), which completely describes the
CB issued at date 0. The zero expected profit condition requires only
that

πF + (1− π)α(10− I) = g,

and hence there is more than one solution. For the bondholder to
optimally convert in the date-1 subgame where C = 10, we need α > 0,
so that F < g. If we do not want the initial investor to convert the
bond in the state C = 20, then we should choose F > α(20− I).

Finally, we must re-consider Myers’ reasoning that leads to the debt
overhang problem. At date 1, when C = 10, what prevents the equi-
tyholder (assuming there is only one) and the senior debtholder from
renegotiating the inefficient debt contract? This is a legitimate ques-
tion, for both of them will get zero if they choose to do nothing. On the
other hand, imagine that the equityholder says to the senior debtholder
that, “if you can just reduce the face value to x < 20 − I, then you
know that you will receive x > 0 for sure at date 2 instead of getting
nothing.” Of course, any x ≤ 20− I will do, and which x ∈ [0, 20− I]
will actually prevail at date 1 must depend on the relative bargaining
power between the equityholder and the senior debtholder, but as you
can see, renegotiation should occur, as long as renegotiation is costless
(Coase, 1937, Economica).

Can renegotiation be costly anyway? Imagine that the senior debt is
a corporate bond diffusely held by a large number of small investors.
Renegotiation can be costly, although the equityholder may have more
bargaining power, in this case. On the other hand, if the initial investor
is a commercial bank, then renegotiation may not be very costly, al-
though the equityholder may not enjoy as much bargaining power as

38The point here is to make sure that the new investor holds the senior claim at date 2,
if it is known that C = 10 at date 1. Thus, one even simpler solution is to issue outside
equity at date 0. That is, in exchange of g dollars raised at date 0, the firm gives the
initial investor a fraction g

20π+10(1−π)−I+g of equity. Can you give a story that justifies

the seniority of the financial claim issued at date 0?
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when he is faced with a large number of small creditors. Thus the type
of the debt instrument (bond or bank loan) and the ownership structure
of the debt (diffuse or concentrated) may both affect the possibility of
ex-post renegotiation.

Notice that unlike issuing CB or outside equity, the outcome of ex-post
renegotiation is not guaranteed. Both the equityholder and the initial
investor must form expectations about how much they may respectively
get in the stage of renegotiation, and based on these expectations, the
terms of the initial debt can be determined at date 0 (via backward
induction). Although we are assuming risk neutrality for everyone in
this model, it is important to notice the risk involved in the ex-post
renegotiation.

37. Example 12. (Maksimovic, 1990, JF) Consider two firms playing a
Cournot game, given the inverse demand

p = A− b(q1 + q2), A, b > 0.

Suppose that the two firms have unit cost of 1 dollar (a normalization).
Define a = A− 1. Suppose that the two firms have no funds and must
borrow from competitive banks, who require a cost of capital r ∈ (a

6
, a).

Assume that all players are risk neutral. In this case, firm i’s financing
cost is

r × total cost = r × [1× qi] = rqi.

It follows that firm i’s profit as a function of the two firms’ quantity
profile is

Πi(qi, qj) = [A− b(qi + qj)− 1]qi − rqi = [a− r − b(qi + qj)]qi.

This game has a unique Nash equilibrium where firm i’s reaction func-
tion is

ri(qj) = −qj
2
+

a− r

2b
,

and the equilibrium outputs are
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q∗1 = q∗2 =
a− r

3b
.

Observe from here that firm i will be better off if r can be reduced:
expanding output will appear to be credible to firm j, and firm j must
reduce output to prevent the price from dropping too much in this case.

Refer to the bank that lends to firm i as bank i. Imagine that firm i
makes the following take-it-or-leave-it offer to bank i: I suggest that
you charge me a fixed payment f = r(a+r)

3b
and lend me the amount a+r

3b

at zero interest rate. Bank i should accept this offer, because it earns
a rate of return r on each dollar it lends to firm i. With the offer being
accepted by bank i, firm i’s reaction function becomes

ri(qj) = −qj
2
+

a

2b
,

so that in equilibrium qi =
a+r
3b

, which is exactly the amount that firm
i borrows from bank i given the above offer. Note that what happens
is that firm i successfully expands its output:

a+ r

3b
>

a− r

3b
,

which raises Πi at firm j’s expense.

Thus it is a good idea for firm i to get the above loan commitment from
bank i. (The fixed payment f is the fee that firm i pays the bank in
order to get a committed amount a+r

3b
of loan at the very low interest

rate (zero interest rate).) The problem here is that firm j would then
want to do the same, resulting in a situation like the Pareto dominated
equilibrium outcome for the prisoners’ dilemma. To formally model the
interactions, suppose that the two firms simultaneously propose (fi, ri)
and (fj, rj) to bank i and bank j, where ri, rj ∈ [0, r]. Either an offer
is accepted by the bank, or (0, r) will prevail. Then upon seeing both
firms’ financial arrangements, the two firms play the above Cournot
game. Using backward induction, we first solve for the Cournot game,
taking (ri, rj) as given. It is easy to derive
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q∗i (ri, rj) =
a− 2ri + rj

3b
, i, j ∈ {1, 2}, i ̸= j.

Substituting these optimal q∗i ’s into Πi and Πj, we then consider the
first stage of the game where the two firms simultaneously choose ri, rj.
The reaction functions are

ri =
6r − a− rj

4
, i, j ∈ {1, 2}, i ̸= j.

Thus we have

ri = rj =
6r − a

5
< r.

The corresponding

fi = fj =
r(a− 6r−a

5
)

3b
.

As we expected, both firms expand outputs in equilibrium, resulting in
lower profits, since with loan commitments the two firms are operating
at lower unit costs (at the expense of higher fixed costs), which prompts
them to both choose a higher quantity.

38. (Example 13). (Harris and Raviv, 1995, Review of Financial Studies)
Suppose that at date 0 an enterpreneur (E) wants to raise no less than
75 dollars from competitive investors to implement some investment
project. All people are risk neutral without time preferences. There are
two equally likely states, and the realization of the true state becomes
common knowledge at date 1. In state s = 1, the project generates 100
at date 1 and 200 at date 2; and in state s = 2, the project generates
40 at date 1 and 200 at date 2. The project can be partially or fully
liquidated at date 1, and if fully liquidated, it is worth 100 in state
s = 1 and 50 in state s = 2. We shall assume that at each date, after
the cash flow at that date is generated, E can appropriate all of it if he
likes. Thus the investors may refuse to commit money at date 0 unless
their claims are due at date 1 and they are given the right to liquidate
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the firm’s asset in case they are not fully repaid. Since rational agents
will select Pareto optimal outcomes, we would like to know what Pareo
optimal financial contracts look like in this game.

We shall distinguish two cases. First, the two parties can sign state-
dependent financial contracts. In particular, they can sign debt con-
tracts with face value indexed on the state s. Second, the two parties
can only sign state-independent contracts. In particular, if they must
sign debt contracts, then the face value of debt cannot be made contin-
gent upon the state s. Apparently, whether the first case approximates
the reality better depends on whether the state s is verifiable in the
court of law. But, in either case, recall that cash flows are not verifiable:
E can take them away!

Consider the first case now. A state-dependent debt contract specifies
(T, F1, F2), where the chosen investor at date 0 pays E T + 75, with
T ≥ 0, and is entitled to be repaid Fs in state s. With this class of
contracts, the Pareto optimal one is (0, 110, 40).39 Note that E prefers

39Can there be a feasible contract that induces no liquidation in either state? If there
is one such (T, F1, F2), then the contract must satisfy

T + 100 ≥ F1, T + 40 ≥ F2, T + 100− F1 + 200 ≥ T + 100, T + 40− F2 + 200 ≥ T + 40,

implying that
1

2
(F1 + F2) ≤ T + 70,

which violates the investor’s individual rationality (IR) condition,

1

2
(F1 + F2) ≥ T + 75.

Thus a feasible contract must induce liquidation in either s = 1 or s = 2. Apparently,
liquidation is less costly in state s = 1. Let us look for the optimal contract that induces
liquidation only in state s = 1. Any such contract must satisfy:

T+100 < F1, T+40 ≥ F2, 2{100−[F1−(T+100)]} ≥ T+100, T+40−F2+200 ≥ T+40,

and moreover,
1

2
(F1 + F2) ≥ T + 75.

It can be easily verified that the last constraint must be binding (equality must hold) at
optimum. We thus search for contracts that satisfy the above constraints that maximize
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paying cash to getting liquidated, and liquidation is less costly in state
s = 1. In state s = 1, E will then liquidate assets with l0-dollar’s
worth and pay 100, and in state s = 2, E pays F2 in full and avoids
liquidation completely. As you can verify, this contract maximizes E’s
welfare (or minimizes E’s expected cost) while keeping the investor’s
ex-ante individual rationality condition binding.

What happens if state-dependent contracts are infeasible? In this case,
one face value F of debt will be chosen to apply to both date-1 states,
and it is clear that in this case at least in one state s, the date-0 chosen
F will not be Pareto optimal at date 1. That is, under the old contract
signed at date 0, at least in one state s the firm will liquidate too much,
and it is feasible to find a Pareto improving new contract for E and the
creditor such that under the new contract everyone can be made better
off than under the old contract. Since renegotiation will generally occur
at date 1, it matters how renegotiation proceeds. In the following we
refine our attention to two cases, one where in renegotiation E can
make a take-it-or-leave-it offer to the creditor, and the other where

E’s expected payoff at date 0, which is

1

2
{2{100− [F1 − (T + 100)]}+ (T + 40− F2 + 200)} .

The solution to the above constrained maximization problem is (T ∗, T ∗ + 110, T ∗ + 40),
where T ∗ is non-negative. Hence (0, 110, 40) is optimal.

One can also derive the (dominated) contract that induces liquidation only in state
s = 2. The corresponding maximization program is as follows.

max
(T,F1,F2)

1

2
[(T + 100− F1 + 200) + 4(50− [F2 − (T + 40)])]

subject to
F2 > T + 40, F1 ≤ T + 100,

F1 ≤ 200, 3T − 4F2 + 320 ≥ 0,

and
1

2
(F1 + F2) = T + 75.

One can show that the optimal contract takes the form of (T ∗, T ∗ + 100, T ∗ + 50), which
incurs a 10-dollar liquidation in state s = 2. Apparently, this contract is dominated by
the optimal contract that induces liquidation only in state s = 1.
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the creditor can make a take-it-or-leave-it offer to E. We assume that
the choice between the two renegotiation processes can be stated in the
date-0 old contract. Hence a debt contract in the current case is a triple
(i, T, F ), where i, which is either the creditor or the debtor, represents
the contracting party who has the right to make the take-it-or-leave-it
renegotiation offer to the other party at date 1.

Let us call the debt contract (T, F ) with i being the (initial) investor the
creditor-favored debt contract. The creditor, in making a renegotiation
offer, can propose to reduce the face value of debt from F to a new face
value F ′ ≤ F , and then E must repay accordingly by either cash or the
proceeds from asset liquidation; and if E does not repay accordingly,
then the creditor can liquidate as much of the asset as needed to recoup
up to the face value F ′. It can be verified that the optimal creditor-
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favored debt contract consists of (T, F ) = (104, 200).40

Given this contract, in state s = 1, E has cash T + 100 = 204, and
hence the investor will propose F ′ = F = 200 and no liquidation will
take place; but in state s = 2, E has cash T + 40 = 144, lower than
F = 200. If the investor does not offer some F ′ < F , then E is better

40If liquidation occurs in state s = 1, then it has to occur in state s = 2 also. It is
easy to show that no contracts can avoid liquidation in both states. Hence we may first
look for a contract that implies liquidation only in state s = 2. If such a contract exists
with F ′ being the new face value in state s = 2 following renegotiation (where at this
point, it remains a possibility that F = F ′), then F ′ must be the largest one satisfying
F ≥ F ′ ≥ 50, and 4(50− [F ′ − (T + 40)]) ≥ T + 40. The first set of inequalities say that
in renegotiation face value of debt cannot move up, and the investor (creditor) can ensure
at least a payoff of 50 by liquidating the whole firm. The second inequality makes sure
that E is willing to accept F ′ instead of taking T + 40 and running away. This gives the
subgame equilibrium F ′ = 80 + 3

4T in state s = 2. Move backward to consider E’s date-0
contract choice. E seeks to maximize 1

2 [100 + T − F + 200] + 1
2 [T + 40], where in state

s = 2, note that E’s payoff consists of the date-1 cash only, for the creditor has all the
bargaining power in renegotiation. The constraints facing E include:

• T +75 ≤ F+F ′

2 , which is the creditor’s break-even condition, with everyone knowing
that renegotiation will occur in state s = 2 and a new face value of debt F ′ will
replace F , where F ′ = 80 + 3

4T ;

• F ≤ 100 + T , so that the firm is solvent in state s = 1;

• F ≥ 40 + T , so that the firm is not solvent in state s = 2;

• 100 + T − F + 200 ≥ 100 + T , so that in the solvent state E will not run away with
cash; and

• T +40 ≥ 4max(0, 50− [F − (T +40)]), so that with the old contract, E would rather
take the cash and run away, and that is why renegotiation will occur.

It can be shown that the creditor’s break-even condition will be binding at optimum,
implying that F = 70 + 5

4T . Replacing F ′, F by respectively, 80 + 3
4T and 70 + 5

4T , and
maximizing E’s date-0 payoff with respect to T subject to the remaining constraints, we
have the optimal T = 104. It follows that F = 200 and F ′ = 158.

Why is T > 0 at optimum? Note that in renegotiation in state s = 2 the creditor will
make sure that E gets the payoff 4(50− [F ′− (T +40)]) = T +40, where the left-hand side
tells us that an increase in T by one dollar implies a reduction in the amount of liquidated
assets by 1

4 dollars. This efficiency enhancement improves E’s welfare because the creditor
will simply break even in equilibrium. But then, how come we did not raise T beyond
104? Note that in order for E to not default strategically in state s = 1, it is necessary
that F ≤ 200, but if T is greater than 104, the creditor would not be able to break even
given that F ≤ 200; recall that given T , F ′ = 80 + 3

4T .
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off taking the money at hand and run: if F ′ = 158, then by honoring
the debt, E pays in total 144 + (158− 144)× 200

50
= 200, which is equal

to what E may lose if he chooses to simply take money at hand and
forget about the income 200 at date 2. For the investor, he prefers that
E honors the debt: taking 158 is better than taking 50. Thus in state
s = 2, the investor proposes F ′ = 158, and E, besides paying cash,
liquidates some assets to generate the remaining 14.

Note that the creditor-favored debt contract is rather inefficient: liqui-
dation occurs in the wrong state (which arises because the same face
value F must be applied to both date-1 states), and the assets have
been liquidated too much! Why? This is because at the renegotia-
tion stage, the creditor has full bargaining power.41 Thus the proceeds
from asset liquidation must be very high, because the cash that E has
in state s = 2 is very little. From here, it is now understandable why

T > 0 may help: in equilibrium, a fraction
200−(T+40)

4

50
of date-1 assets

must be liquidated in state s = 2, which is decreasing in T . Note that,
however, T cannot be too high either: intuitively, if T is too high, then
E will choose to steal the money and run away in state s = 1 at date
1.42

Finally, consider the debtor-favored debt contract. At the renegotia-

41At first, renegotiation must maximize ex-post efficiency, and it is efficient in state
s = 2 that the creditor gets the cash at date 1 and E gets the (remaining) cash at date
2. With full bargaining power, the creditor only leaves T + 40 = 144 to E at date 2, so
that (200-144)/4=14 out of 50 of the date-1 assets will be liquidated. Note that the role
of T = 104 in reducing the amount of liquidated assets at date 1.

42In state s = 2, E can get T + 20 by running away with the cash earnings, and
to induce E to disgorge the cash earnings plus T (which is necessary in order that the
amount of liquidated assets can be reduced) the creditor will always choose F ′ to make E
feel indifferent about running away with cash earnings and repaying the debt. Note that
increasing T by one dollar raises E’s payoff from running away with cash earnings by one
dollar. Thus increasing T by one dollar can reduce the amount of liquidated assets by 1

4
dollars in state s = 2! Now, this should induce E to keep raising T when designing the
date-0 contract. However, in raising T , E should make sure that E will not run away with
cash earnings in state s = 1 also! In other words, E must make sure that F ≤ 200, where
F , the old face value of debt determined at date 0, is the cost that E must incur if E
chooses to repay the debt in state s = 1 at date 1, and 200 is the cost that E must incur
if E chooses to run away with cash earnings plus T in state s = 1 at date 1. Now, by the
fact that F ′ must make E indifferent about repaying and not repaying the debt in state
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tion stage, E simply offers some cash and some liquidation proceeds to
replace the existing debt contract, and if the creditor rejects the offer,
then E simply takes the cash, leaving the assets in place to the credi-
tor. It can be verified that (T, F ) = (0, 100) is an optimal contract in
this class.43 With this contract, in state s = 1, E offers 100 cash to
the investor, since if E does not, the investor can still get the full face
value by selling all the assets in place; and in state s = 2, E offers 40 in
cash and 10 from liquidation proceeds to replace the old debt contract,
which the investor cannot reject (why not?).

Thus the allocation of bargaining power at the renegotiation stage does
matter. In the creditor-favored contract, E gets no rent at date 1: his
expected cost is 200 in the state s = 2 even if E has decided to repay
the debt at date 1; and in debtor-favored contract, the creditor gets
no rent at date 1: the creditor’s accepting E’s offer does prevent the
assets in place from being liquidated, but E gets all the efficiency gain!
It can be shown that creditor-favored debt contract is never optimal,
but neither is the debtor-favored debt contract. We shall discuss the
optimal contracts for this game when we review the literature of optimal

s = 2, we have

4[50− (F ′ − (T + 40))] = T + 40 ⇒ F ′ = 80 +
3

4
T.

Since the creditor must break even at date 0, we have

F + F ′ = (T + 75)× 2 ⇒ F = 70 +
5

4
T.

Thus we require 70 + 5
4T ≤ 200, implying that the optimal choice of T is 104.

43At first, observe that at date 1, under the old contract, the payoff for the investor
(creditor) never exceeds the minimum of F and the liquidation value of the firm: if F
is equal to that minimum, then E will choose to repay the debt (probably by partially
liquidating the assets in place) instead of leaving the whole firm to the creditor, and if F
is greater than that minimum, then E can force the creditor to accept a a repayment equal
to the liquidation value of the firm, by threatening to leave the whole firm to the creditor
if the creditor dares to turn down E’s renegotiation offer. With this observation in mind,
we see that E will force the investor to receive only 50 in state s = 2, which is what the
investor would get if E simply took the cash 40 and run; and similarly the investor can
get no more than the liquidation value 100 of the assets in place in state s = 1. Since the
investor must provide at least 75, there is only one solution to the date-0 contract, which
is (T = 0, F = 100).
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financial contracts.
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