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1. This note will consider several game-theoretic marketing models. Ex-
ample 0 reviews the so-called Schmalensee effect and Nelson effect
found in the literature of product price signaling. Example 1 con-
siders the impact of coupon resale on a monopolistic manufacturer’s
optimal product-line, pricing and promotion strategies. Examples 2-4
analyze how the issuance of a giftcard may alter duopolistic retailers’
price competition via a complicated effect of advance selling. Examples
5 and 6 consider transaction-based or behavior-based discrimination in
respectively a duopolistic market and a monoplistic market. Example
7 considers coupon competition between a retailer and a manufacturer.
Example 8 considers a monoplistic seller’s optimal design of a product
line and an associated return policy.

2. (Example 0.) (The Schmalensee effect and the Nelson effect.)

• (The Schmalensee effect) Consider a monopolist M trying to sell
an experience good E to two buyers with unit demand. The expe-
rience good E may be of quality H or quality L, where H > L > 0.
M can produce L costlessly, but must incur a unit cost c > 0 in
producing H. M has chosen the quality of E, which is unobservable
to the buyers. Buyer j ∈ {1, 2} is willing to pay Vj for H, with
V2 > V1 > v, where v is the two buyers’ common valuation for
L. The game proceeds as follows. First, the seller chooses a unit
price p. Upon seeing p, the two buyers can simultaneously tell the
seller whether they want to purchase E.

We claim that this game has a separating PBE where a high price
signals high product quality if

2v > V2 > V2 − c > 2(V1 − c).
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These inequalities state the basic fact that the type-H seller is
more willing to let go of buyer 1 than the type-L seller; after all,
the former seller must incur a unit cost c to produce the premium
product. This is referred to as the Schmalensee effect. One can
show that the above inequalities are only sufficient; such a sepa-
rating PBE may exist even if these inequalities do not hold.

• (The Nelson effect.) The above example does not consider repeat
purchase. To incorporate repeat purchase, let us modify the pre-
ceding example by assuming that only buyer 1 exists, with V1 = θ,
v = 0, and buyer 1 has unit demand for E at both dates 0 and 1.
Assume that buyer 1 will not come back at date 1 if she does not
make a purchase at date 0, and that if she does make a purchase at
date 0, then buyer 1 can find out the true quality of E right after
she consumes E at date 0. Buyer 1 seeks to maximize the sum of
discounted expected consumer surpluses and M seeks to maximize
the sum of discounted expected profits over dates 0 and 1, and we
let δ ∈ (0, 1] denote the common discount factor for buyer 1 and
the seller M.. At each date t = 0, 1, the game proceeds just like
in Example 3.

We claim that a PBE exists in which a low date-0 price signals
high product quality if the following condition holds:

(1 + δ)c ≤ δθ.

In this equilibrium, at date 0, pH(0) = 0 < pL(0), and at date 1,
pH(1) = θ > 0 = pL(1). Buyer 1’s posterior belief is such that
M is of type L if the date-0 price is greater than zero and that
M is of type H if the date-0 price is zero. Note that the type-H
M does not deviate at date 0, because a positive date-0 price will
drive away buyer 1, who will not come back at date 1, whereas
M can obtain a positive equilibrium payoff by setting pH(0) = 0
(recall that −c + δ(θ − c) ≥ 0). The type-L M does not deviate
because it will get a zero payoff no matter how it chooses its date-
0 price. This separating PBE exists because the type-H seller is
more optimistic than its type-L counterpart about the prospect of
making profits at date 1. This is referred to as the Nelson effect.

The Nelson effect does not necessarily take the form of setting a low

2



introductory price for E. For the sake of demonstration, assume that
the price has been fixed at p = θ at both dates 0 and 1. Thus M cannot
signal product quality via choosing price levels. Assume however that
M can choose to or not to spend K > 0 on wasteful advertisements.1

It is easy to see that this modified game has a separating PBE where
spending on wasteful advertisements is taken as evidence that E is of
high quality if the following condition holds:

θ −K = p−K ≤ 0, (θ − c)(1 + δ)−K ≥ 0.

Again, the idea here is that spending on wasteful advertisements (or
other wasteful promotions) is a way to convince buyers that the firm
will stay in business for a long time (because its product is of high
quality). Such an expenditure may lower its short-term profits, but it
helps enhance its long-term profits.

3. Example 1. (Coupon Resale and Product Line Design)
In this example, I shall solve the optimal product, pricing and pro-
motion strategies for an integrated channel selling a single product to
two segments of consumers, for both the case where coupon resale is
prohibited and the case where coupon resale is allowed.

4. A monopolistic firm must first spend a cost cq2

2
to develop a product

item with quality q ∈ ℜ+, and must then announce a unit price p
and a coupon with face value R ∈ ℜ+. Other than the above product
development cost, I shall assume no production costs.

Consumers can each buy either 1 or 0 unit of the product, and upon
seeing (q, p, R), they each must decide whether to make the purchase,
and whether to incur a redemption cost to acquire and carry the coupon
before making the purchase. A consumer pays p−R instead of p if she
can present a coupon when making the purchase.

There are two segments of consumers, indexed by respectively θ2 and
θ1. The populations of these two segments are respectively α and 1−α,
where 0 < α < 1. A θj consumer will incur a fixed cost Tj ∈ ℜ+ if she
decides to acquire and carry the coupon.

1Advertising need not be wasteful in reality; it can be persuasive or informative, or
both.
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To incorporate coupon resale into the analysis, assume that there exists
a coupon reseller who is not interested in making any purchase but can
spend a redemption cost T ′ ∈ ℜ+ to acquire the coupon and then
sell to consumers in the aforementioned two segments. Assume that
this coupon reseller has all bargaining power against the consumers
from the aforementioned two segments in coupon resale. Assume that
trading with the coupon reseller incurs a cost tj ∈ ℜ+ for a θj consumer,
which includes also the cost of carrying the coupon till the time the θj
consumer makes a purchase.

5. A marketing environment in this model is a tuple

(θ1, θ2, α, c, T1, T2, t1, t2, T
′).

A marketing plan in this model is a tuple (p, q, R). I shall consider the
marketing environments that satisfy the following regularity conditions:

Assumption 1
θ2 > θ1 > αθ2 > 0, (1)

T2 − t2 < T ′ < T1 − t1 < T1 < αT2. (2)

6. Let me recapitulate the timing of the game. The firm first chooses a
marketing plan (p, q, R). In case coupon resale is allowed, then upon
seeing (p, q, R) the coupon reseller can set a retail price r for the coupon.
Then, consumers simultaneously decide whether to make a purchase
from the firm, and if (and only if) a consumer θj decides to make a
purchase, she then must decide whether to spend Tj to acquire the
coupon on her own, or, if coupon resale is allowed, whether to incur a
cost tj and pay r to the coupon reseller to get the coupon, or not to
obtain the coupon at all. A consumer without ( respectively, with) a
coupon pays p (respectively, p−R) when purchasing from the firm.

7. First consider the optimal marketing plan when coupon resale is pro-
hibited. We can classify the marketing plans into two categories, those
intending to serve only θ2 consumers, and those intending to serve all
consumers.
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Under Assumption 1, the optimal marketing plan falls in the latter
category. Too see this, note that if the firm intends to serve only θ2
consumers, then given q it is optimal to set R = 0 and p = θ2q. The
firm’s optimal q in this case must then maximize αθ2q − cq2

2
, yielding

the optimal q = αθ2
c
. By Assumption 1, however, since αθ2 ≤ θ1,even

at the product quality q = αθ2
c

that best fits the purpose of serving θ2
consumers alone, lowering the price to the level αθ1θ2

c
and serving all

consumers is still a dominant choice than pricing at
αθ22
c

and abandoning
θ1 consumers.

Thus we can confine our attention to marketing plans that intend to
serve all consumers. At first, given q, we solve for the optimal pricing
and promotion strategies. Given q, the firm seeks to

(P) max
p,R

p− (1− α)R

subject to

θ2q ≥ p,

T2 ≥ R,

θ1q − p+R− T1 ≥ 0.

Since given R the objective function is increasing in p, either the
above first constraint or the third (last) constraint must be binding
at optimum. When the latter happens, by replacing p in the objec-
tive function by θ1q + R − T1, we see that the objective function is
strictly increasing in R, and hence the above second constraint will
bind at optimum. That is, whenever the last constraint is binding,
R = T2; and given that R = T2, the last constraint will bind whenever
p = θ1q +R− T1 = θ1q + T2 − T1 ≤ θ2q, or equivalently, whenever

q ≥ q ≡ T2 − T1

θ2 − θ1
.
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When q ≤ q, on the other hand, the p obtained from the binding last
constraint would violate the first constraint, so that all θ2 consumers
would drop out of the market, violating optimality. Thus at optimum
the first constraint will bind if q ≤ q. In this case the objective func-
tion becomes strictly decreasing in R, so that R must make the last
constraint binding. Thus we can conclude that, given q, the optimal
(p,R) is such that

p =

{
θ1q + T2 − T1, if q ≥ q ≡ T2−T1

θ2−θ1
;

θ2q, if otherwise.

and

R =

{
T2, if q ≥ q ≡ T2−T1

θ2−θ1
;

(θ2 − θ1)q + T1, if otherwise.

Now, we solve for the optimal product quality. First we find the optimal
q lying in the interval [0, q]. Given q ∈ [0, q], our preceding analysis
shows that the firm should optimally choose (p,R) = (θ2q, (θ2 − θ1)q+
T1), so that the firm’s profit as a function of q is

θ2q − (1− α)[(θ2 − θ1)q + T1]−
cq2

2
,

which has an unconstrained maximum appearing at

q2 ≡
αθ2 + (1− α)θ1

c
.

The optimal q lying in the interval [0, q] is therefore equal to min(q2, q).

Next, we find the optimal q contained in the interval [q,+∞). Given q
lying in this region, our preceding analysis shows that the firm should
optimally choose (p,R) = (θ1q + T2 − T1, T2), so that the firm’s profit
as a function of q is

θ1q + αT2 − T1 −
cq2

2
,

which has an unconstrained maximum appearing at

q1 ≡
θ1
c
.
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Thus the optimal q lying in the interval [q,+∞) is equal to max(q1, q).

Observe that q2 > q1. Thus we summarize the firm’s optimal marketing
plan in the absence of coupon resale as follows.

Proposition 1 Suppose that Assumption 1 holds. Then the optimal
marketing plan without coupon resale depends on which among the fol-
lowing three conditions holds.

• (Condition 1.) q2 > q1 > q. In this case, q1 is optimal, and
hence we have

q∗ =
θ1
c
,

implying that

p∗ =
θ21
c
+ T2 − T1, R∗ = T2.

The firm’s equilibrium payoff is

Π∗ =
θ21
c
+ αT2 − T1 −

θ21
2c

=
θ21
2c

+ αT2 − T1.

• (Condition 2.) q2 > q > q1. In this case, q is optimal, and
hence we have

q∗ =
T2 − T1

θ2 − θ1
,

implying that

p∗ =
θ1(T2 − T1)

θ2 − θ1
+ T2 − T1, R∗ = T2.

The firm’s equilibrium payoff is

Π∗ =
θ1(T2 − T1)

θ2 − θ1
+ αT2 − T1 −

c(T2 − T1)
2

(2(θ2 − θ1)2
.

• (Condition 3.) q > q2 > q1. In this case, q2 is optimal, and
hence we have

q∗ =
αθ2 + (1− α)θ1

c
≡ θ

c
,
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implying that

p∗ =
θ2θ

c
, R∗ =

(θ2 − θ1)θ

c
+ T1.

The firm’s equilibrium payoff is

Π∗ =
θ
2

2c
− (1− α)T1.

Proposition 1 provides a benchmark with which we shall derive impli-
cations of coupon resale on the firm’s optimal pricing, promotion, and
product strategies, and on firm’s profit and consumers’ welfare.

8. Now consider the case with coupon resale.

Lemma 1 Facing a marketing plan (p, q, R) that induces θ1 consumers
to make a purchase, the coupon reseller prices the coupon that he ac-
quires at min(T1, θ1q − p+R)− t1.

Proof. In this case the maximum amount of money that a θj consumer
is willing to pay the coupon reseller in order to obtain the coupon is

min(Tj, θjq − p+R)− tj,

and this implies that no trade can ever take place between a type θ2
consumer and the coupon reseller. To see this, note that

min(T2, θ2q − p+R)− t2 ≤ T2 − t2 < T ′,

and hence by spending T ′ to acquire the coupon and then selling the
coupon to a type θ2 consumer will result in a net loss to the coupon
reseller.

Thus the coupon reseller will price optimally to trade only with θ1
consumers. It is optimal to price in such a manner that θ1 consumers
are left with zero surplus. ∥

Lemma 2 Suppose that Assumption 1 holds. When coupon resale is
allowed, all consumers are served in equilibrium under the firm’s opti-
mal marketing plan (p, q, R).
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Proof. If (p, q, R) is the optimal marketing plan that induces all con-
sumers to make a purchase in equilibrium, then given q, (p,R) must
solve the following maximization problem:

max
p,R

p− (1− α)R

subject to

θ2q ≥ p,

T2 ≥ R,

min(T1, θ1q − p+R)− t1 ≥ T ′.

In the above, the first two constraints are respectively the θ2 consumers’
IR condition (ensuring that they will make a purchase) and IC condition
(ensuring that they do not redeem the coupon), and the last constraint
compactly gives the θ1 consumers’ IC condition (ensuring that they will
acquire the coupon from the coupon reseller) and the coupon reseller’s
IR condition (ensuring that his profit is non-negative; cf. Lemma 1).

Assumption 1 implies that T1 − t1 ≥ T ′, and hence the last constraint
is equivalent to

θ1q − p+R− t1 ≥ T ′.

Thus the optimal marketing plan that induces all consumers to make
a purchase in equilibrium must be such that, given q, (p,R) solves the
following maximization problem

(P′) max
p,R

p− (1− α)R

subject to

θ2q ≥ p,
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T2 ≥ R,

θ1q − p+R− t1 ≥ T ′.

Comparing program (P′) to program (P), we see that the only differ-
ence between the two programs is that, by Assumption 1, the former
program has a larger feasible set; that is, (p,R) satisfies the last con-
straint in (P′) if it satisfies the last constraint in (P). Thus the optimal
marketing plan that induces all consumers to make a purchase in equi-
librium generates a higher payoff for the firm with than without coupon
resale. Since whether coupon resale is allowed does not affect the prof-
itability of the optimal marketing plan that serves only θ2 consumers,
we conclude that under Assumption 1, when coupon resale is allowed,
the firm’s optimal marketing plan must again induce all consumers to
make a purchase in equilibrium. ∥

Because of Lemma 2, we continue to solve for the optimal marketing
plan that induces all consumers to make a purchase in equilibrium. We
shall take cases. Throughout this note, I shall assume that Condition
1 holds, and leave the other two cases to the reader.

Define

q̂ ≡ T2 − (T ′ + t1)

θ2 − θ1
, (3)

which is strictly positive because T2 > T1 > T ′ + t1. In fact, we have
by Assumption 1,

q̂ > q.

Lemma 3 Suppose that Assumption 1 and Condition 1 both hold. Then
with coupon resale, given q, the firm’s optimal pricing and promotion
strategies are

(p,R) =

{
(θ2q, (θ2 − θ1)q + (T ′ + t1)), if q̂ ≥ q;
(θ1q + T2 − (T ′ + t1), T2), if q̂ ≤ q.

(4)
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Proof. Given q, (p,R) solves the firm’s problem of finding the optimal
pricing and promotion strategies:

max
p,R

p− (1− α)R (5)

subject to

θ2q ≥ p, (6)

T2 ≥ R, (7)

θ1q − p+R− t1 ≥ T ′. (8)

Since the objective function is increasing in p, given R, p must satisfy
either θ2q = p or θ1q− p+R− t1 = T ′. The same reasoning as that we
used to solve problem (P) leads to

R = min(T2, (θ2 − θ1)q + (T ′ + t1))), (9)

and

p =

{
θ2q, if θ1q + T2 − (T ′ + t1) > θ2q;
θ1q + T2 − (T ′ + t1), if θ1q + T2 − (T ′ + t1) ≤ θ2q.

(10)

This completes the proof. ∥

Note that in equilibrium the θ1 consumers and the coupon reseller have
no rent. The θ2 consumers may or may not have rent, depending on
whether R is equal to or strictly less than T2. Coupon resale does not
affect the θ2 consumers directly, but via its effect on the firm’s changing
strategies, it might nonetheless change the θ2 consumers’ welfare.

Now we are ready to characterize the optimal product strategy with
coupon resale.
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Lemma 4 The optimal marketing plan (p, q, R) must be such that

q =


q1, if q2 > q1 > q̂;
q2, if q1 < q2 < q̂;
q̂, if q2 ≥ q̂ ≥ q1.

(11)

Proof. The preceding lemma shows that under the optimal marketing
plan (p, q, R), given q, the firm’s payoff under the corresponding optimal
(p,R) is

Π(q) =

{
Π(q) ≡ θ2q − (1− α)[(θ2 − θ1)q + (T ′ + t1)]− cq2

2
, if q ≤ q̂;

Π(q) ≡ θ1q + αT2 − (T ′ + t1), if q ≥ q̂.
(12)

The unique unconstrained maximum of Π(q) on ℜ+ is

αθ2 + (1− α)θ1
c

,

and the unique unconstrained maximum of Π(q) on ℜ+ is

θ1
c
.

Since both functions Π(q) and Π(q) are strictly concave, the lemma
follows from a straightforward comparison between the unconstrained
maxima to Π(q̂) = Π(q̂). ∥

The following propositions follow directly from the preceding lemmas.

Proposition 2 Suppose that Assumption 1 and Condition 1 hold. Sup-
pose also that q1 > q̂. Then with coupon resale nothing changes in the
firm’s optimal marketing plan except that the product price is increased
by T1 − (T ′ + t1).
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Proposition 3 Suppose that Assumption 1 and Condition 1 hold. Sup-
pose that q2 < q̂. Then with coupon resale the firm optimally raises
product quality by q2 − q1 and product price by θ2q2 − θ1q1 − (T2 − T1).
The firm also optimally reduces the face value of the coupon by T2 −
(T ′ + t1)− (θ2 − θ1)q2.

A few remarks for the preceding proposition are in order.

• Note that the increase in the product price caused by coupon
resale can be decomposed into three terms:

θ2q2 − θ1q1 − (T2 − T1)

= θ2(q2−q1)+[θ2q1−(θ1q1+T2−T ′−t1)]+[(θ1q1+T2−T ′−t1)−(θ1q1+T2−T1)],

where the last term reflects an intention to extract rent from the
coupon reseller and the θ1 consumers, following a reduction in
this group’s coupon-redemption cost; the second term is the price
concession that the firm must make in order to prevent the θ2
consumers from leaving the market; and the first term reflects
the benefit from raising the product quality given that the new
marginal consumers become the θ2 consumers.

• Note that an increase in θ1 may lead to more or less increase in
the product price when coupon resale is allowed. This happens
because a higher θ1 encourages the firm to raise both the product
quality (which equals θ1

c
) and the product price (which, given q, is

equal to θ1q+T2−T1) when coupon resale is prohibited, but it also
raises the marginal benefit from raising the product quality when
coupon resale becomes allowed. The latter can be understood as
follows. An increase in θ1 implies a higher consumption utility for
the θ1 consumers, so that the firm can reduce more the face value
R of the coupon (recall that R = (θ2 − θ1)q + (T ′ + t1)) and still
make the coupon reseller’s IR condition satisfied. This latter ben-
efit increases with q, which then encourages the firm to raise the
product quality more (recall that the firm’s revenue with coupon
resale is θ2q − (1 − α)R), thereby allowing the firm to raise the
product price more (recall that the product price is θ2q). With the
price without coupon resale and the price with coupon resale both
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increasing in θ1, an increase in θ1 may or may not lead to a higher
increase in the product price caused by coupon resale. (Given As-
sumption 1 and Condition 1, a sufficient condition ensuring that
an increase in θ1 leads to a higher increase in the product price
caused by coupon resale is (1− α)θ2 ≥ 2θ1.)

• Next, observe that the increase in product quality caused by coupon
resale,

q2 − q1 =
θ − θ1

c
=

α(θ2 − θ1)

c
,

is increasing in α and θ2 − θ1 and decreasing in c. The latter is
self-evident. Given θ1, the former says that the more important
the θ2 consumers become, the more the firm would like to raise
the product quality when coupon resale is allowed. This happens
because coupon resale makes the θ2 consumers the new marginal
consumers.

• Finally, observe that coupon resale does not imply a reduction in
the face value of the coupon that equals the difference in the re-
demption costs of the coupon reseller and of the θ1 consumers. The
reduction is actually smaller, so that the coupon reseller would
enjoy a rent if the product price were to remain unchanged. In
equilibrium the reseller enjoys no rent, because the product price
does rise, although not by an amount to extract all the coupon
resellers’ surplus—the firm must make sure that the θ2 consumers
are willing to stay in the market. Essentially, the firm would like
to extract the coupon reseller’s rent by raising the prodoct price,
but when raising the price alone cannot do it, the firm resorts to
lowering the face value of the coupon.

Proposition 4 Suppose that Assumption 1 and Condition 1 hold, and
that q2 ≥ q̂ ≥ q1. Then with coupon resale the firm optimally (i) raises
the product quality from q1 to q̂; and (ii) raises the product price by
θ1(q̂ − q1). However, the face value of coupon remains unchanged.

9. Example 2. (Giftcard and Price Competition, 1.)
Consider the following duopoly model where all buyers have unit de-
mand. Two retailers R1 and R2 are competing in price at date 1. For
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simplicity, retailers have no productoin costs. Retailer Rj is faced with
a > 0 loyal date-1 shoppers and 1 loyal gift-buyer, and these customers’
valuation for Rj’s product is V . There are also c > 0 switchers, who
are date-1 shoppers who regard the two retailers’ products as perfect
substitutes. Let v denote switchers’ valuation for either retailer’s prod-
uct. Assume that V > v > 0. Let p1, p2 denote the two retailers’ date-1
product prices.

A date-1 shopper will never visit the retailers at date 0. The two gift-
buyers, on the other hand, can visit the retailers at date 0 if they want
to. The following events occur at date 0.

• At date 0, the two retailers R1 and R2 can simultaneously decide
whether to spend f ≥ 0 to issue a giftcard. One unit of Rj’s
giftcard will allow its holder to pick up one unit of Rj’s product
at date 1.

• Upon seeing the two retailers’ decisions in the previous stage, the
two retailers simultaneously announce the date-0 prices of their
own giftcards. Let q1, q2 denote the date-0 prices of the giftcards.
Let qj = +∞ if Rj has announced in the previous stage that no
giftcards will be issued.

• Upon seeing the two retailers’ decisions in the above two stages,
giftbuyer 1 and giftbuyer 2 must simultaneously decide whether to
buy a giftcard. (Because of loyalty to Rj, giftbuyer j has no reason
to buy the giftcard issued by Ri.) Here, the two giftbuyers must
play a simultaneous game. That is, each giftbuyer must guess
(correctly) whether the other giftbuyer decides to buy a giftcard
or not when making her own giftcard-purchasing decision. We
assume that the two giftbuyers are fully strategic: giftbuyer j
knows that she is the only giftbuyer interested in Rj’s giftcard.

Following the above date-0 events, at date 1, there are therefore 4
possible demand states facing the two retailers, and we assume that
the two retailers know which demand state has been realized before
engaging in date-1 price competition. We represent the 4 demand states
at date 1 by {(i, j) : i = 0, 1; j = 0, 1}. In demand state (i, j), giftbuyer
1 decides to make a purchase (of either a giftcard or a product) at time
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i, and giftbuyer 2 decides to make a purchase at time j. For example,
in state (1, 0) R1 is faced with a+1 loyals and R2 is faced with a loyals
before competing in price at date 1. Assume that

(Θ) (1 + a+ c)v > (1 + a)V > (1 + a+ c),

so that in each demand state at date 1 there exist only mixed-strategy
NE’s. (Note that under condition (Θ), we have v > 1.) Denote the
date-1 mixed-strategy Nash equilibrium in state (i, j) by (p̃1(i, j), p̃2(i, j)).
(i) Derive (p̃1(i, j), p̃2(i, j)), for all i, j = 0, 1.
(ii) Now, consider the simultaneous game played by the two giftbuyers
at date 0, when q1, q2 are already given. Denote

µ11 ≡ E[p̃1(1, 1)] = E[p̃2(1, 1)],

µ00 ≡ E[p̃1(0, 0)] = E[p̃2(0, 0)],

µ∗ ≡ E[p̃1(1, 0)] = E[p̃2(0, 1)],

µ∗ ≡ E[p̃1(0, 1)] = E[p̃2(1, 0)].

Now we characterize partially the relationship among these expected
date-1 prices. Show that under condition (Θ), we have µ11 > µ∗,
µ11 > µ∗, and µ11 > µ00.
(iii) Show that if q1, q2 > µ11 or if q1, q2 < µ∗ then this simultaneous
game has a symmetric pure-strategy NE.2 Show that if qi > µ11 while
qj < µ11 or if qi < µ∗ whereas qj > µ∗ then this game has an asymmetric
NE. Show that in the remaining case, this simultaneous game has a
mixed strategy NE, where giftbuyer i’s mixed strategy makes giftbuyer
j indifferent about accepting or rejecting qj.
(iv) Now, consider the date-0 simultaneous game where R1 and R2
must choose q1 and q2. Recall that Rj can avoid spending f only if
qj = +∞. Find the NE of this simultaneous game. (Here each retailer
must maximize the sum of expected profits over dates 0 and 1.)

2For example, if q1 > µ11, then giftbuyer 2 rationally expects giftbuyer 1 to reject q1.
Being strategic, giftbuyer 2 knows that she will face the expected date-1 price µ11 unless
she accepts q2: she knows that she is the only one interested in buying R2’s giftcard at
date 0. Consequently, she will accept q2 if q2 < µ11 and she will reject q2 if q2 > µ11. If
q2 = µ11, she feels indifferent about accepting and rejecting, and she is ready to adopt any
mixed strategy in this situation.
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Solution.
Consider part (i). We shall focus on the symmetric date-1 pricing
equilibrium whenever i = j.

• If i = j = 0, then both R1 and R2 adopt the following mixed
strategy (described by the distribution function of the random
product price) in equilibrium:

F (p) =



0, p < aV
a+c

;

1 + a
c
[1− V

p
], p ∈ [ aV

a+c
, v);

1 + a
c
[1− V

v
], p ∈ [v, V );

1, p ≥ V.

• If i = j = 1, then both R1 and R2 adopt the following mixed
strategy in equilibrium:

F (p) =



0, p < (1+a)V
1+a+c

;

1 + 1+a
c
[1− V

p
], p ∈ [ (1+a)V

1+a+c
, v);

1 + 1+a
c
[1− V

v
], p ∈ [v, V );

1, p ≥ V.

• If i = 1, j = 0, then R1 and R2 adopt respectively the following
mixed strategies in equilibrium:

F2(p) =



0, p < (1+a)V
1+a+c

;

1 + 1+a
c
[1− V

p
], p ∈ [ (1+a)V

1+a+c
, v);

1, p ≥ v,
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and

F1(p) =



0, p < (1+a)V
1+a+c

;

(1 + a
c
)[1− (1+a)V

(1+a+c)p
], p ∈ [ (1+a)V

1+a+c
, v);

(1 + a
c
)[1− (1+a)V

(1+a+c)v
], p ∈ [v, V );

1, p ≥ V.

• If i = 0, j = 1, then R1 and R2 adopt respectively the following
mixed strategies in equilibrium:

F1(p) =



0, p < (1+a)V
1+a+c

;

1 + 1+a
c
[1− V

p
], p ∈ [ (1+a)V

1+a+c
, v);

1, p ≥ v,

and

F2(p) =



0, p < (1+a)V
1+a+c

;

(1 + a
c
)[1− (1+a)V

(1+a+c)p
], p ∈ [ (1+a)V

1+a+c
, v);

(1 + a
c
)[1− (1+a)V

(1+a+c)v
], p ∈ [v, V );

1, p ≥ V.

Next, consider part (ii). Let us first compute µ00 and then prove that
µ11 > µ00. It can be shown that

µ00 =
∫ v

aV
a+c

pdF (p) + V · a
c
[
V

v
− 1],
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where

F (p) =



0, p < aV
a+c

;

1 + a
c
[1− V

p
], p ∈ [ aV

a+c
, v);

1 + a
c
[1− V

v
], p ∈ [v, V );

1, p ≥ V.

By integration by parts, we have∫ v

aV
a+c

pdF (p) = vF (v−)−
∫ v

aV
a+c

F (p)dp

= −(1 +
a

c
)[v − aV

a+ c
] +

aV

c
log(

v
aV
a+c

).

It follows that

µ00 = H(x) = −xV + x
V 2

v
+ xV log(

v(1 + x)

xV
),

where
x =

a

c
.

Hence we have

H ′(x) = V [log(
v(1 + x)

V x
)− 1 +

V x

v(1 + x)
].

Recall that by assumption 1+x
x

≥ V
v
> 1. Consider G : [1,+∞) → ℜ

defined by G(y) = log(y) + 1
y
− 1. Note that

lim
y↓1

G(y) = G(1) = 0,

and

G′(y) =
1

y
[1− 1

y
] > 0 = G′(1), ∀y > 1.

It follows that G(y) > 0 for all y > 1, and hence

H ′(x) = V G(
v(1 + x)

V x
) > 0.
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This proves that

µ11 = µ00 +
∫ a+1

c

a
c

H ′(x)dx > µ00.

Next, note that

µ∗ =
(1 + a)V

c
[log(

v(1 + a+ c)

V (1 + a)
+ 1]− (1 + a)v

c
,

µ∗ = (1 +
a

c
)[

(1 + a)V

(1 + a+ c)
][
V

v
+ log(

v(1 + a+ c)

V (1 + a)
)]− aV

c
,

µ11 =
(1 + a)V

c
[−1 +

V

v
+ log(

v(1 + a+ c)

V (1 + a)
)].

We have
µ11 − µ∗

= [
V

v
+ log(

v(1 + a+ c)

V (1 + a)
)][

(1 + a)V

c
][

1

1 + a+ c
]− 1

c

=
1

c
{[−(log(

V

v
)− V

v
) + log(

1 + a+ c

1 + a
)][

(1 + a)V

1 + a+ c
]− 1} > 0,

where the inequality follows from the fact that maxz>0 log(z)− z = −1
(and hence −(log(V

v
) − V

v
) ≥ 1) and condition (Θ). Moreover, note

that

µ11 − µ∗ =
(1 + a)

cv
[V − v]2 > 0.

This finishes part (ii).

Now consider part (iii).

• Suppose that both q1, q2 > µ11. In this case, according to part
(ii), it is a dominant strategy for giftbuyer i to reject qi. Hence
there is a symmetric equilibrium in which both giftbuyers choose
to stay till date 1.

• In case q1, q2 < µ∗, then giftbuyer i should accept qi if she expects
giftbuyer j to accept qj: by rejecting qi, giftbuyer i will be faced
with the higher expected price µ∗. Thus there is a symmetric
equilibrium where both giftbuyers choose not to show up at date
1.
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• In case qi > µ11 > qj, then we claim that there exists an equi-
librium where giftbuyer i stays till date 1 but giftbuyer j chooses
not to. Again, staying till date 1 is giftbuyer i’s dominant strat-
egy, and in anticipation of this, giftbuyer j understands that she
will be faced with the expected date-1 price µ11 if she rejects the
lower price qj. Hence no giftbuyer can benefit from a unilateral
deviation from the supposed equilibrium strategy.

• In case qj > µ∗ > qi, then we claim that there exists an equilibrium
where giftbuyer i accepts qi whereas giftbuyer j rejects qj. To see
that giftbuyer i will not deviate unilaterally, recall from part (ii)
that µ∗ < µ11, and hence qi < µ11, which implies that giftbuyer
i should accept the lower price qi instead of waiting for the date-
1 price, which, given that giftbuyer j will stay till date 1, has
an expected value equal to µ11. Now, given that giftbuyer i is
expected to accept qi, giftbuyer j must compare qj to µ∗. Clearly,
rejecting qj is her best response.

• Now, suppose that µ11 ≥ q1, q2 ≥ µ∗. Define λ1 and λ2 as such
that

λ1µ11 + (1− λ1)µ
∗ = q2, λ2µ11 + (1− λ2)µ

∗ = q1.

Since µ11 > µ∗, there exist unique solutions for λ1 and λ2 in the
unit interval [0, 1]. We claim that there exists a mixed-strategy
equilibrium in which giftbuyer i chooses to stay till date 1 with
probability λi, i = 1, 2. To see that this indeed defines an equilib-
rium, note that by construction, rationally expecting λi, giftbuyer
j feels indifferent about rejecting or accepting qj, and is ready
to adopt any mixed strategy λj, and we pick the λj that makes
giftbuyer i feel indifferent about rejecting or accepting qi (which
justifies the λi adopted by giftbuyer i in the first place).

Now we consider part (iv). We shall focus on the case where f = 0
and demonstrate an equilibrium where giftcard issuance improves the
retailers’ welfare. Consider the strategy profile where q∗1 = µ11 > µ∗ =
q∗2. We claim that this pair (q∗1, q

∗
2) forms an equilibrium. The subgame

equilibria following respectively (q∗1, q
∗
2) and some unilateral deviation

from (q∗1, q
∗
2) are now summarized as follows.
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• Giftbuyers 1 and 2 will reject q∗1 and accept q∗2 respectively with
probability one.

• Facing (q∗1, q2) with q2 ∈ [µ∗, µ11], giftbuyer 2 will rejct q2 with
probability one, so that giftbuyer 1 remains indifferent about q∗1,
and she decides to accept q∗1 with probability one, which justifies
giftbuyer 2’s decision to reject q2.

• Facing (q∗1, q2) with q2 > µ11, it is a dominant strategy for giftbuyer
2 to reject q2, and hence giftbuyers 1 becomes indifferent about
rejecting or accepting q∗1, and her decision is irrelevant to giftbuyer
2’s decision to reject q2.

• Facing (q∗1, q2) with q2 < µ∗, again, giftbuyers 1 and 2 will reject
q∗1 and accept q2 respectively with probability one.

• Facing (q1, q
∗
2) with q1 ≥ µ∗, q1 ̸= µ11, giftbuyer 1 will reject q1

(cf. part (iii)), and hence giftbuyer 2 decides to accept q∗2 with
probability one.

• Facing (q1, q
∗
2) with q1 < µ∗, both q1 and q∗2 will be accepted (cf.

part (iii)).

According to the above subgame equilibria, R2 has no incentive to
deviate unilaterally from the equilibrium (q∗1, q

∗
2). R1, on the other

hand, cannot benefit from adopting a different q1 ≥ µ∗. If R1 adopts
some q1 < µ∗, her payoff becomes

q1 + aV < µ∗ + aV < (a+ 1)V,

where the right-hand side is R1’s payoff by sticking to q∗1.

Thus we have shown that the pair

(q∗1, q
∗
2) = (µ11, µ

∗)

does form a Nash equilibrium at date 0. Now we claim that this equilib-
rium outcome Pareto dominates the equilibrium outcome in the absence
of giftcards for the two retailers. Recall that in the latter case, both
retailers obtain (1 + a)V . In the above (q∗1, q

∗
2) equilibrium, R1 gets

(1 + a)V again, but R2’s payoff becomes

µ∗ +
(1 + a)V

1 + a+ c
· (a+ c) >

(1 + a)V

1 + a+ c
+

(1 + a)V

1 + a+ c
· (a+ c) = (1 + a)V,
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where the inequality follows from the fact that µ∗ > (1+a)V
1+a+c

. That is,
R2 is better off with giftcard issuance.

Note that by symmetry

(q∗1, q
∗
2) = (µ∗, µ11)

also defines an equilibrium for the subgame where R1 and R2 price
their giftcards. Ex-ante, before the game gets started, each of these
two equilibria is likely to arise.3 Hence, under condition (Θ), allowing
the retailers to issue giftcards enhances both retailers’ ex-ante welfare.
The assumption that giftcard-buyers can act collectively at date 0 is
crucial here. This actually weakens the giftcard-buyers’ bargaining
power against the giftcard-issuing retailer.

10. Example 3. (Giftcard and Price Competition, 2.)
Reconsider Example 2, but with the following modifications. First,
only R1 has giftbuyers. Second, R1 has a continuum of giftbuyers with
a population of 1. Let α be the population of the giftbuyers that decide
to ignore the giftcard (issued by R1) and remain in the date-1 market.
Hence we have a continuum of possible date-1 demand states, denoted
by α ∈ [0, 1]. Assume that (1+a+c)v > (1+a)V , so that there will be
only mixed-strategy NE’s at date 1. Denote the date-1 mixed-strategy
Nash equilibrium in state α by (p̃1(α), p̃2(α)).
(i) Derive (p̃1(α), p̃2(α)), for all α.
(ii) Now, consider the date-0 subgame where the giftbuyers must si-
multaneous decide whether to accept q1. Denote µ1 ≡ E[p̃1(1)] and
µ0 ≡ E[p̃1(0)]. Show that if q1 > µ1 or if q1 < µ0 then there exists
a symmetric NE (where in equilibrium either α = 1 or α = 0). Show
that if q1 ∈ [µ0, µ1], then there exists a NE where for some α ∈ (0, 1),
exactly α giftbuyers decide to remain in the date-1 market. (Here let
us forget about the problem of how to fulfill an asymmetric equilibrium
in an anonymous game.)
(iii) Now, consider R1’s decision of choosing q1. Again, R1 can avoid

3For example, if there is a binomial sunspot taking values 1 and 2 with probability θ
and 1 − θ respectively, then a sunspot equilibrium or a correlated equilibrium will result
where both retailers believe (correctly) that (q∗i , q

∗
j ) = (µ11, µ

∗) in the event that the

realization of the sunspot is i.
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spending f only if q1 = +∞. Find R1’s optimal q1. (Here R1 must
maximize the sum of expected profits over dates 0 and 1.)
Solution. Consider part (i). It can be shown that the following pair
of distribution functions forms a Nash equilibrium at date 1 given that
the demand state is α:

F2(p) =



0, p < (α+a)V
α+a+c

;

1 + α+a
c

− (a+α)V
cp

], p ∈ [ (α+a)V
α+a+c

, v);

1, p ≥ v,

and

F1(p) =



0, p < (α+a)V
α+a+c

;

1 + a
c
− (α+a)(a+c)V

c(α+a+c)p
, p ∈ [ (α+a)V

α+a+c
, v);

1 + a
c
− (α+a)(a+c)V

c(α+a+c)v
, p ∈ [v, V );

1, p ≥ V.

Note that we have chosen the asymmetric equilibrium for the case α =
0.

Now, consider part (i). Define

µ(α) ≡ E[p̃1(α)],

so that

µ(α) ≡ H(x(α)) = V {V
v

(1 + a
c
)

x(α)
−a

c
+(1+

a

c
)

V

x(α)
[log(x(α))−log(V )v]},

where

x(α) ≡ a+ α + c

a+ α
,

implying that

x′(α) =
−c

(a+ α)2
< 0.
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Note that

H ′(x) =
V (1 + a

c
)

x2
[log(

V

v
)− V

v
+ 1] < 0,

where the inequality follows from the fact that

log(
V

v
)− V

v
< max

z>0
log(z)− z = −1 = log(1)− 1.

Hence we conclude that
µ′(α) > 0.

Now, if q1 > µ(1) ≡ µ1, then it is an equilibrium where all giftbuyers
reject q1: a single giftbuyer by assumption cannot alter the date-1
expected equilibrium price by changing her own giftcard-purchasing
decision. If a single giftbuyer believes that all her fellow giftbuyers are
rejecting q1, then she knows that she will be faced with the expected
date-1 price µ1 < q1, and hence rejecting q1 is the best response for her.
This proves our assertion that it is an equilibrium where all giftbuyers
reject q1.

Similarly, if q1 < µ(0) ≡ µ0, then it is an equilibrium where all giftbuy-
ers accept q1. Again, a single giftbuyer knows that she will be faced
with the expected date-1 price µ0 if she rejects q1 alone, which is not a
wise decision.

Finally, for each q1 ∈ [µ0, µ1], by the fact that µ(α) is continuous and
strictly increasing on the interval [0, 1], there exists α(q1) such that

q1 = µ(α(q1)),

and hence expecting a population α(q1) of giftbuyers to reject q1, each
and every single giftbuyer finds rejecting and accepting q1 equally good,
and hence we can assume that exactly a population 1 − α(q1) of gift-
buyers purchase the giftcard at date 0 at the price q1. This is an
equilibrium. This finishes part (ii).

Now consider part (iii). Since retailer 1 by assumption has always a
larger loyal base than retailer 2 does at date 1, and since by assumption
there can exist only a a mixed-strategy Nash equilibrium at date 1, we
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can now summarize retailer 1’s payoff of choosing q1 at date 0 as follows:
(a+ 1)V, q1 > µ1;
q1[1− α(q1)] + V [a+ α(q1)], q1 ∈ [µ0, µ1];
q1 + aV, q1 < µ0.

Since µ1 < V , we see that retailer 1’s optimal decision is not to issue
the giftcard at date 0 (even in the case f = 0). This result should be
constrasted with our conclusion in part (ii), where giftcard buyers act
strategically and collectively, which makes giftcard issuance benefit the
retailers (at the expense of the date-1 switchers).

11. Example 4. (Giftcard and Price Competition, 3.)
Reconsider Example 3, but now assume that the continuum of giftbuy-
ers are loyal to R2, and moreover, assume that the population of R1’s
loyal date-1 shoppers is A > 1+ a, with AV < (A+ c)v. Thus only R2
has a date-0 decision about the issuance of a giftcard. Use backward
induction to determine R2’s equilibrium q2.
Solution. The crucial observation here is that F2(·) will be indepen-
dent of α, the population of the giftbuyers waiting to purchase at date
1. Indeed, F2(·) can be shown to satisfy, for all p ∈ [ AV

(A+c)
, v),

AV = p[AF2(p) + (A+ c)(1− F2(p))] ⇒ F2(p) = 1 +
A

c
− AV

cp
,

and

∆F2(v) =
A

c
[
V

v
− 1].

This implies that E[p̃2] is independent of the giftbuyers’ giftcard-purchasing
decisions at date 0. Hence it is optimal for retailer 2 to choose either
q2 > E[p̃2] or q2 = E[p̃2]. The payoff to retailer 2 using the former
strategy is

(1 + a+ c)AV

(A+ c)
;

and the payoff to retailer 2 using the latter strategy is

E[p̃2] +
(a+ c)AV

A+ c
− f.
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Since AV
A+c

is the lower bound of the support of p̃2, we see that retailer
2 always wants to issue the giftcard if f = 0. The same remains true if
f > 0 but is small; indeed, retailer 2 will issue the giftcard if and only
if

f ≤ E[p̃2]−
AV

A+ c
.

Examples 2-4 intend to deliver some insights regarding giftcard is-
suance. Example 2 shows that, seemingly contrary to our intuition,
the retailers are better off facing giftbuyers that can act collectively.
Examples 3 and 4 show that when there are many small giftbuyers, the
retailer with a smaller loyal base is more likely to issue the giftcard.
These preliminary analyses have assumed that there only exist mixed-
strategy equilibria at date 1. More interesting results can arise when
we allow pure-strategy equilibria in the presence or in the absence of
giftcards.4

While we have interpreted the above scenario as one where the retailers
consider issuing giftcards, these exercises actually relate to the recent
literature in advanced selling. Unlike in the current exercises, where
regular shoppers are assumed to be around only at date 1, a formal
model of advanced selling must allow different segments of consumers to
consider advanced buying. This creates new complexity in the analysis.

12. Example 5. (Transaction-based Discrimination and Poaching
with Demand Uncertainty)
Firms A and B are located at the left and right endpoints of the
Hotelling main street, denoted by the closed interval [0, 1], and they

4For example, suppose that all giftbuyers are switchers that regard the two retailers’
products as perfect subsitutes, and that only the retailer with a smaller loyal base (a)
can issue the giftcard. In this case, giftcard issuance may reduce the population of date-1
switchers by so much that the other retailer (with loyal base A) chooses to serve only her
loyals. (More precisely, this is true if (A+c)v > AV > (A+αc)v and (a+αc)v > aV , where
α is the fraction of switchers that are date-1 regular shoppers.) That is, the giftcard-issuing
retailer can price at v at date 1 if all giftbuyers purchase the giftcard at date 0. With
a continuum of acting-alone giftbuyers, this game has an equilibrium where the giftcard-
issuing retailer induces all giftbuyers to purchase the giftcard at the price q = v − ϵ.
This leads to the shocking conclusion that with giftcard issuance, the two retailers can
essentially obtain the profits of a perfectly colluding cartel; that is, one retailer gets the
profit (a+ c)v and the other gets AV .
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engage in price competition for two periods (t = 1 and t = 2). At the
beginning of t = 1, firm j privately learns its loyal base ãj, which is
the population of consumers residing at the same location as firm j,
while the other firm believes that ãj = 0 with probability 1 − π and
ãj = a > 0 with probability π. It is the two firms’ common knowledge
at the beginning of t = 1 that there are c consumers at each point
x ∈ (0, 1), and these consumers will be referred to as the switchers.
A consumer located at x ∈ [0, 1] must spend x dollars for round-trip
transportation if she decides to make a purchase from firm A, and sim-
ilarly she must spend 1−x dollars if she chooses to purchase from firm
B instead. (From now on, we identify a consumer with her location
on the Hotelling maing street.) The two firms produce a homogeneous
good. Each consumer may buy either zero or one unit of the good, and
we assume that the gross utility v > 0 from consuming the good is suf-
ficiently high so that it plays no role in the subsequent price equilibria.

The game proceeds as follows. First the two firms simultaneously
choose their first-period prices upon privately seeing their own loyal
bases. Then, at the beginning of the second period, the loyal bases of
the two firms become common knowledge, and the firms choose their
second-period prices at the same time. Here we distinguish two cases:
either a firm can offer two different prices to its new and old customers
at t = 2, or it can only offer one price. We refer with Fudenberg and
Tirole to the former case “price competition with poaching.”

13. We now look for a symmetric Bayesian equilibrium of the game de-
scribed above. First consider the second period with poaching. Sup-
pose that in state (aA, aB), consumers purchased from firm A at t = 1
if and only if their locations x ∈ [0, x∗], and consumers purchased from
firm B at t = 1 if and only if their locations x ∈ (x∗, 1]. (In equilib-
rium, x∗ varies with (aA, aB), but at the beginning of t = 2, we can
take x∗, aA, aB as three separate state variables.)

First consider the market segment [0, x∗] (firm A’s turf). Let firm A’s
and firm B’s prices in firm A’s turf be p1 and p2, and given x∗, let t̂ be
those consumers who feel indifferent about buying from firm A or from
firm B. That is,

p1 + t̂ = (1− t̂) + p2.
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Thus given x∗, p1, p2, firm A’s sales volume in its own turf is aA + ct̂,
and firm B’s sales volume in firm A’s turf is c(x∗ − t̂). Given x∗, p2,
firm A’s optimal price in its own turf must then solve the following
maximization problem:

max
p1

p1aA + p1c[
1 + p2 − p1

2
],

yielding

p1 =
1 + p2

2
+

aA
c
.

Similarly, given p1 and x∗, firm B seeks to

max
p2

p2c[
2x∗ − 1 + p1 − p2

2
],

yielding

p2 =
2x∗ − 1 + p1

2
.

Note that given p1, p2, an increase in x∗ raises firm B’s sales volume,
and hence it induces firm B to optimally raises price. Solving the above
two reaction functions simultaneously, we obtain

p∗1 =
1

3
+

2x∗

3
+

4aA
3c

, p∗2 = −1

3
+

4x∗

3
+

2aA
3c

.

It follows that

t̂ =
1

6
+

x∗

3
− aA

3c
.

Note that an increase in aA shifts up firm A’s reaction function, which in
turn raises both firms’ equilibrium prices via strategic complementarity.
(An increase in aA raises p∗1 more than it raises p∗2, because one unit
of increase in p1 raises p2 by only 1

2
units.) It is straightforward to

verify that the two firms’ second-period profits in firm A’s turf are
respectively

π1 =
c

2
[p∗1]

2 =
c

2
[
1

3
+

2x∗

3
+

4aA
3c

]2, π2 =
c

2
[p∗2]

2 =
c

2
[−1

3
+

4x∗

3
+

2aA
3c

]2.

Note that these profits are increasing in x∗.
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Next, we consider the market segment [x∗, 1] (firm B’s turf). Let firm
A’s and firm B’s prices in firm A’s turf be pA and pB, and given x∗, let
t be those consumers who feel indifferent about buying from firm A or
from firm B. That is,

t =
1 + pB − pA

2
.

Thus given x∗, pA, pB, firm B’s sales volume in its own turf is aB+c(1−
t), and firm A’s sales volume in firm B’s turf is c(t−x∗). Given x∗, pB,
firm A’s optimal price in its own turf must then solve the following
maximization problem:

max
pA

pAc[t− x∗] = pAc[
1− 2x∗ + pB − pA

2
],

yielding

pA =
1− 2x∗ + pB

2
.

Similarly, given pA and x∗, firm B seeks to

max
pB

pBaB + pBc[1− t] = pBaB + pBc[
1− pB + pA

2
],

yielding

pB =
aB
c

+
1 + pA

2
.

Note that given pA, pB, an increase in x∗ reduces both firms’ sales
volumes. Solving the above two reaction functions simultaneously, we
obtain

p∗A = 1− 4x∗

3
+

2aB
3c

, p∗B = 1− 2x∗

3
+

4aB
3c

.

Note that an increase in aB shifts up firm B’s reaction function, which in
turn raises both firms’ equilibrium prices via strategic complementarity.
(An increase in aB raises p∗B more than it raises p∗A, because one unit
of increase in pB raises pA by only 1

2
units.)

It is straightforward to verify that the two firms’ second-period profits
in firm A’s turf are respectively

πA =
c

2
[p∗A]

2 =
c

2
[1− 4x∗

3
+

2aB
3c

]2, πB =
c

2
[p∗B]

2 =
c

2
[1− 2x∗

3
+

4aB
3c

]2.
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Note that these profits are decreasing in x∗.
Remark. An increase in x∗, other things (such as p1, p2, pA, pB) being
equal, raises firm B’s sales volume in firm A’s turf, so that firm B wants
to raise its price above p2, which by strategic complementarity leads to
a rise in firm A’s price also. To see what happens, let D(p2; p1, x

∗) be
the residual demand in firm A’s turf that is faced by firm B, and recall
that the optimal p2 must satisfy the following first-order condition to
firm B’s profit maximization problem:

p2D
′(p2) +D(p2) = 0;

that is, at the optimal p2, the marginal profit produced by an infinites-
imal change in p2 must equal zero. Now if x∗ rises to the level of x∗+ ϵ,
then since t̂ does not depend on x∗, firm B’s sales volume would rise
from D(p2) to D(p2) + ϵ. This means that raising the price above the
original p2 by an infinitesimal amount now becomes profitable:

p2D
′(p2) + [D(p2) + ϵ] > 0,

so that firm B would optimally raise p2 to a higher level. The latter
implies a rise in the equilibrium p1 also via firm A’s second-period
reaction function in firm A’s turf; that is, p1 =

1+p2
2

+ aA
c
.

Similarly, an increase in x∗, other things equal, reduces firm A’s sales
volume in firm B’s turf immediately, which makes lowering pA prof-
itable. To see what happens, let D(pA; pB, x

∗) be the residual demand
in firm B’s turf that is faced by firm A, and recall that the optimal
pA must satisfy the following first-order condition to firm B’s profit
maximization problem:

pAD
′(pA) +D(pA) = 0;

that is, at the optimal pA, the marginal profit produced by an infinites-
imal change in pA must equal zero. Now if x∗ rises to the level of x∗+ϵ,
then since t does not depend on x∗, firm A’s sales volume would drop
from D(pA) to D(pA) − ϵ. This means that lowering the price below
the original pA by an infinitesimal amount now becomes profitable:

pAD
′(pA) + [D(pA)− ϵ] < 0,

and the latter fact also implies a drop in the equilibrium pB via firm B’s
second-period reaction function in firm B’s turf; that is, pB = aB

c
+ 1+pA

2
.
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14. For future reference, firm A’s second-period equilibrium profit given
(x∗, aB, aA) is

F (x∗, aB, aA) ≡ π1 + πA =
c

2
[
1

3
+

2x∗

3
+

4aA
3c

]2 +
c

2
[1− 4x∗

3
+

2aB
3c

]2.

How does an increase in x∗ affect firm A’s second-period profit in state
(aB, aA)? Apparently, it raises firm A’s second-period profit from its
own turf, but it also reduces firm A’s second-period profit from firm
B’s turf. The following lemma shows that, starting from a very low
x∗, reducing x∗ by an infinitesimal amount enhances firm A’s second-
period profit, but starting from a sufficiently high x∗, raising x∗ by an
infinitesimal amount enhances firm A’s second-period profit.

Lemma 5 F is increasing (respectively, decreasing) in x∗ if and only

if x∗ ≥ (respectively, ≤) 1
2
+ 2(aB−aA)

5c
.

Also, we have the following lemma.

Lemma 6 The maximum of F (x∗; aA, aB) on [0, 1] appears at{
0, if aB ≥ aA;
1, if aB ≤ aA.

15. Does poaching shift up or shift down firm A’s first-period reaction
function? From firm A’s perspective, either aB = a (with probability
π) or aB = 0 (with probability 1 − π). At t = 1, expecting firm B’s
first-period strategy (PB(0), PB(a)), firm A given aA seeks to

max
PA

G(PA; aA, PB(0), PB(a), ρ) ≡ π{[x∗(a)c+ aA]PA

+ρ(
c

2
[
1

3
+

2x∗(a)

3
+

4aA
3c

]2 +
c

2
[1− 4x∗(a)

3
+

2a

3c
]2)}

+(1−π){[x∗(0)c+aA]PA+ρ(
c

2
[
1

3
+

2x∗(0)

3
+

4aA
3c

]2+
c

2
[1− 4x∗(0)

3
]2)},

subject to

x∗(a) =
PB(a) + 1− PA

2
, x∗(0) =

PB(0) + 1− PA

2
.
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In the above maximization program, ρ = 1 if the firms must compete
in price with poaching at t = 2, ρ = 0 if they must compete in price
without poaching at t = 2, and G(PA; aA, PB(0), PB(a), 1) is the (un-
discounted) sum of firm A’s first-period and second-period profits.

Lemma 7 The objective function in the above maximization problem
is concave in PA, regardless of ρ = 0 or ρ = 1.

Proof. The assertion is self-evident when ρ = 0. When ρ = 1, G is a
quadratic function of PA, in which the coefficient of P 2

A is

c

2
[−1 + π · 5

9
+ (1− π) · 5

9
] < 0. ∥

Define
PB ≡ πPB(a) + (1− π)PB(0).

It is easy to see that when ρ = 0, firm A’s first-period reaction function
is

PA(PB(0), PB(a); aA) =
aA
c

+
1 + PB

2
.

Now we solve for firm A’s first-period reaction function for the case ρ =
1. Just like in the case ρ = 0, we must, given aA, express PA as a func-
tion of PB(0) and PB(a). The reaction function PA(PB(0), PB(a); aA)
is the implicit function defined by the following first-order condition:

0 = G′(PA; aA, PB(0), PB(a), 1) =
PB + 1

2
·c+aA−PAc+π

∂x∗(a)

∂PA

∂F

∂x∗ (x
∗(a), aA, a)

+(1− π)
∂x∗(0)

∂PA

∂F

∂x∗ (x
∗(0), aA, 0)

=
PB + 1

2
·c+aA−PAc+π·−1

2
· ∂F
∂x∗ (x

∗(a), aA, a)+(1−π)·−1

2
· ∂F
∂x∗ (x

∗(0), aA, 0).

Note that

π
∂F

∂x∗ (x
∗(a), aA, a) + (1− π)

∂F

∂x∗ (x
∗(0), aA, 0)
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= cπ[
2

3
(
1

3
+

2

3
x∗(a) +

4aA
3c

)− 4

3
(1− 4x∗(a)

3
+

2a

3c
)]

+c(1− π)[
2

3
(
1

3
+

2

3
x∗(0) +

4aA
3c

)− 4

3
(1− 4x∗(0)

3
)]

= c[−10

9
+

20x∗

9
+

8aA
9c

]− 8acπ

9
,

where

x∗ = πx∗(a) + (1− π)x∗(0) =
PB + 1− PA

2
.

Thus we obtain the following lemma.5

5These computations remain valid when we replace the binomial distribution of ãA
(and ãB) by general distributions. Let a = E[ãA] = E[ãB]. Note that in the binomial
case, a = πa. Given aA, recall that firm A’s expected second-period profit is

c

2
E{[ 1

3
+

2x∗(ãB)

3
+

4aA
3c

]2 + [1− 4x∗(ãB)

3
+

2ãB
3c

]2},

and one can show that its partial derivative with respect to PA is

− c

2
[−10

9
+

20x∗

9
+

8(aA − a)

9c
],

where
x∗ = E[x∗(ãB)],

x∗(ãB) =
PB(ãB) + 1− PA

2
,

and firm B is expected to price at PB(ãB) at t = 1, upon seeing the realization of ãB .
With poaching the first-period best response of firm A is therefore the PA that solves the
following first-order condition:

(1 + PB)c

2
+ aA − PAc =

c

2
[−10

9
+

20x∗

9
+

8(aA − a)

9c
],

where again,
PB = E[PB(ãB)],

so that we have

P 1
A(PB ; aA) =

9

8
− PB

8
+

5aA
4c

+
a

c
,

which is the same formula as the one appearing in the next lemma.
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Lemma 8 With ρ = 0 or ρ = 1, given aA, firm A’s first-period reaction
function is a function of PB only; that is, it does not depend on PB(0)
and PB(a) separately. Denote it by P ρ

A(PB; aA), and we have

P ρ
A(PB; aA) =


aA
c
+ 1+PB

2
, if ρ = 0;

9
8
− PB

8
+ 5aA

4c
+ aπ

c
, if ρ = 1.

An important fact is that poaching may alter the strategic complemen-
tarity in period 1. A higher PB implies that both x∗(a) and x∗(0) are
higher, and given a higher PB an decrease in PA raises the expected
second-period profit more than the resulting loss in the first-period
profit from firm A’s perspective. This happens because F is convex in
both x∗(a) and x∗(0), so that at higher and higher x∗(a) and x∗(0), a
reduction in PA becomes more and more profitable from the second-
period perspective.

Letting P 1
A ≥ P 0

A, we obtain the following lemma.

Lemma 9 Given aA, with poaching firm A reacts by pricing higher in
the first period if and only if it expects PB ≤ 2aA

5c
+ 8aπ

5
+ 1.

This lemma tells us that poaching is more likely to induce a firm with
a loyal base than a firm without a loyal base to price higher in the first
period. Equivalently, poaching is more likely to induce a firm without
a loyal base than a firm with loyal base to lower its first-period price
in order to gain the market share. The intuition can be captured by
comparing the first-order condition with ρ = 0,

(1 + PB)c

2
+ aA − PAc = 0,

and the first-order condition with ρ = 1,

(1 + PB)c

2
+ aA − PAc =

c

2
[−10

9
+

20x∗

9
+

8(aA − a)

9c
]

=
c

2
[−10

9
+

10(PB + 1− PA)

9
+

8(aA − a)

9c
].
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Intuitively, given PB, with poaching an increase in PA affects not only
firm A’s first-period expected profit, as in the case without poach-
ing, but also firm A’s second-period expected profit. An increase in
PA reduces both x∗(0) and x∗(a), and reduces firm A’s second-period
expected profit in firm A’s turf and increases firm A’s second-period
expected profit in firm B’s turf. The net effect of an increase in PA

on firm A’s second-period expected profit is more likely to be positive
when PA gets larger but is more likely to be negative when aA gets
larger. This happens because a larger PA implies that x∗(0) and x∗(a)
are both smaller, and reducing x∗(0) and x∗(a) at smaller levels result
in smaller changes in firm A’s second-period expected profit, thanks to
the convexity of F in x∗. A larger aA, on the other hand, implies a
larger loss in firm A’s second-period expected profit in firm A’s own
turf, because firm A’s second-period profit in firm B’s turf no longer
increases with aA. These observations imply that G′(PA; ρ) when ρ = 1
is less decreasing in PA and less increasing in aA compared to G′(PA; ρ)
when ρ = 0. Whether or not the optimal PA becomes more responsive
to an increase in aA then depends on parameters. In our model, firm
A’s concern about its second-period expected profit leads to the opti-
mal PA becoming more responsive to aA. In fact, one can show that
one unit of increase in aA leads to 1

c
units of increase in PA in the case

ρ = 0, and it leads to 5
4
1
c
units of increase in PA in the case ρ = 1.

16. Now, we are ready to solve explicitly the first-period symmetric Bayesian
equilibrium. Let me adopt the general distribution described in foot-
note 1, and assume that ãA and ãB have a common support, of which
the least upper bound is a > 0 and the greatest lower bound is zero.

• Suppose that ρ = 0. In this case, by symmetry (i.e, PA = PB =
P ), we have

PA = E[
ãA
c

+
1 + PB

2
]

⇒ P = 1 +
2a

c

⇒ Pj(aj) =
aj
c
+

1 + 1 + 2a
c

2
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= 1 +
aj + a

c
,

for all j = A,B and for all realizations aj of the random variable
ãj.

• Suppose that ρ = 1. In this case, by symmetry (i.e, PA = PB =
P ), we have

PA = E[
9

8
− PB

8
+

5ãA
4c

+
a

c
]

⇒ P = 1 +
2a

c
,

implying that the average first-period price remains the same with
or without poaching. It follows that

Pj(aj) =
9

8
−

1 + 2a
c

8
+

5aj
4c

+
a

c

= 1 +
3a

4c
+

5aj
4c

,

for all j = A,B and for all realizations aj of the random variable
ãj.

Correspondingly, we can obtain the equilibrium payoff for each firm,
which is the un-discounted sum of profits over t = 1 and t = 2. We
only compute the equilibrium payoffs for the case ρ = 1, and leave the
case ρ = 0 to the reader.

In case ρ = 1, in state (aA, aB), we have

x∗(aA, aB) =
5(aB − aA)

8c
+

1

2
,

so that, by letting Gj denote firm j’s equilibrium payoff, we have

Gj = [1 +
3ai + 5aj

4c
][aj +

5(ai − aj)

8
+

c

2
]

+
c

2
[
1

3
+
2

3
(
5(ai − aj)

8c
+
1

2
)+

4aj
3c

]2+
c

2
[1−4

3
(
5(ai − aj)

8c
+
1

2
)+

2ai
3c

]2, j = A,B.
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17. Now we look for a set of regularity conditions that will ensure that the
above analysis is valid. In particular, we need to make sure that in
equilibrium, (i) for all realizations (aA, aB),

0 ≤ x∗(aA, aB), t, t̂ ≤ 1;

and (ii) at both t = 1 and t = 2, all consumers can get a non-negative
consumer surplus by purchasing from either of the two firms.

Using the equilibrium pricing strategies derived above, we can obtain
the following conditions. To ensure participation of all consumers in
the first period, we impose

v ≥ 1 + max
aj

1 +
3a

4c
+

5aj
4c

⇒ v ≥ 2 +
3a+ 5a

4c
.

This condition implies that even the consumers located at the right
endpoint of the Hotelling main street can obtain non-negative surplus
by purchasing from firm A, and even the consumers located at the left
endpoint of the Hotelling main street can obtain non-negative surplus
by purchasing from firm B.

Next, using

x∗(aA, aB) =
5(aB − aA)

8c
+

1

2
,

we obtain

p∗1 =
1

3
+

2[5(aB−aA)
8c

+ 1
2
]

3
+

4aA
3c

=
2

3
+

5aB
12c

+
11aA
12c

,

p∗2 = −1

3
+

4[5(aB−aA)
8c

+ 1
2
]

3
+

2aA
3c

=
1

3
+

5aB
6c

− aA
6c

,

t̂ =
1

6
+

[5(aB−aA)
8c

+ 1
2
]

3
− aA

3c
=

1

3
+

5aB
24c

− 13aA
24c

,

p∗A = 1−
4[5(aB−aA)

8c
+ 1

2
]

3
+

2aB
3c

=
1

3
− aB

6c
+

5aA
6c

,

p∗B = 1−
2[5(aB−aA)

8c
+ 1

2
]

3
+

4aB
3c

=
2

3
+

11aB
12c

+
5aA
12c

,
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and

t =
1 + p∗B − p∗A

2
=

2

3
− 5aA

24c
+

13aB
24c

.

Hence to ensure that all consumers’ IR are satisfied if they purchase in
either of the two markets at the second period from either of the two
firms, we impose

v ≥ 1 + max
aA,aB

p∗1 =
5 + 4a

3c
;

v ≥ 1 + max
aA,aB

p∗2 =
5a+ 8c

6c
;

v ≥ 1 + max
aA,aB

p∗A =
5a+ 8c

6c
;

v ≥ 1 + max
aA,aB

p∗B =
5 + 4a

3c
.

Next, we must ensure that for all realized (aA, aB), t̂ ≤ x∗(aA, aB) ≤ t.
For the former, we require

1

3
+

5aB
24c

− 13aA
24c

≤ 5(aB − aA)

8c
+

1

2
,

and hence we need
10aB − 2aA

24c
+

1

6
≥ 0,

which holds for all realized (aA, aB) if

min
aA,aB

10aB − 2aA
24c

+
1

6
≥ 0,

so that we need
−2a

24c
+

1

6
≥ 0.

For the latter, similarly, we impose

2

3
− 5aA

24c
+

13aB
24c

≥ 5(aB − aA)

8c
+

1

2
,

and hence we need
2aB − 10aA

24c
− 1

6
≤ 0,

39



or equivalently,
10aA − 2aB

24c
+

1

6
≥ 0,

which leads to the same requirement, namely

−2a

24c
+

1

6
≥ 0.

Finally, we need to ensure that 0 ≤ x∗(aA, aB) ≤ 1 for all realized
(aA, aB). That is, we impose

|5(aB − aA)

8c
| ≤ 1

2
.

Hence we need
5a

8c
≤ 1

2
.

Putting all the requirements derived above together, we have obtained
a set of sufficient conditions ensuring the validity of our analysis, which
consists of

4c ≥ 5a,

and

v ≥ max(2 +
3a+ 5a

4c
,
5 + 4a

3c
,
5a+ 8c

6c
).

18. Example 6. (Transaction-based Discrimination with Non-
linear Pricing)
In Example 5, the duopolists are assumed to be able to use only linear
pricing schemes. In this example, we consider a monoplist that can use
non-linear pricing schemes.

A monopolistic firm M is trying to sell two products A and B to 1 buyer.
The buyer, with her private information (α, β), seeks to maximize the
expected value of

αqa + β
√
qb − Ta − Tb,

where qa ∈ {0, 1} and qb ∈ ℜ+ are respectively the amounts of products
A and B consumed by the buyer, and Tj is the amount of money paid
to M by the buyer for the purchase of product j, j = A,B. It is
common knowledge that the buyer’s reservation value α may equal a2
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or a1 with respectively probability γ and 1 − γ, where a2 > a1 > 1,
with 1 being the unit production cost for product A. Conditional on
α = aj, β = 1 with prob. πj and β = 2 with prob. 1−πj, where π2 = 0
and π1 = π. Let c be the unit cost for producing product B. The buyer
may be myopic with probability 1−z, or fully rational with probability
z. A myopic buyer does not know her need of trading product j when
the seller presents to her only the opportunity of trading product i.
However, if the seller presents to the buyer the terms of transaction for
both products A and B, then there is no difference between a myopic
buyer and a fully rational buyer.

19. First consider the case where the seller offers the buyer the terms of
trade about both products. In this case, the buyer is fully rational with
probability one, and she has 3 possible types. We say that the buyer
is of type 3 if (α, β) = (a2, 2), of type 2 if (α, β) = (a1, 2), and of type
1 if (α, β) = (a1, 1). Let Qj ∈ {0, 1} be the quantity of product A sold
to type-j buyer. Theorem AS-1 of Lecture 4 shows that the seller can
restrict attention to incentive feasible direct contract; that is, the seller
seeks to

max
{(Qj ,qj ,Tj)}

γ(T3−Q3−cq3)+(1−γ)(1−π)(T2−Q2−cq2)+(1−γ)π(T1−Q1−cq1)

subject to the three types of the buyer’s IC and IR conditions. We shall
refer to the solution to this problem as the optimal bundling contract.

20. The seller can alternatively choose to sell A and then B, or to sell B
and then A, to the buyer. We shall refer to these transaction modes the
sequential transaction contracts. Intuitively, by adopting a sequential
transaction scheme the seller can extract information from the buyer
during the first-stage transaction, and then practice transaction-based
discrimination in the second-stage transaction. However, the revelation
principle introduced in Lecture 4 leads to the following result.

Lemma 10 No sequential transaction schemes can outperform the op-
timal bundling scheme if z = 1.

To see that this is true, suppose that {qj(k), Tj(k); j = A,B, k =
1, 2, 3} is the equilibrium outcome after the seller implements a fixed
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sequential transaction scheme S. Then in equilibrium, a type-k buyer
can mimic her type-k′ counterpart’s equilibrium behavior and obtain
{qj(k′), Tj(k

′); j = A,B} but would rather not to. This implies that
B ≡ {qj(k), Tj(k); j = A,B, k = 1, 2, 3} is one incentive feasible bundling
scheme, which by definition cannot outperform the optimal bundling
scheme!

21. The preceding lemma shows that, for a sequential transaction scheme
to outperform the optimal bundling scheme, it is necessary (but in
general insufficient) that z < 1. Note that with z < 1, each of the
3 types of the buyer may be myopic or fully rational, and hence the
buyer has 6 possible types in total. We shall denote a type-k myopic
buyer by Nk, and a type-k rational buyer by Rk. Indeed, applying the
revelation principle again, we obtain the following result.

Lemma 11 Any sequential transaction scheme resulting in, for all
k = 1, 2, 3, Nk and Rk behaving identically in equilibrium, cannot out-
perform the optimal bundling scheme.

To see that this is true, consider a sequential transaction scheme S
resulting in, for all k = 1, 2, 3, Nk and Rk making the same payment
to the seller and

qj(Nk) = qj(Rk), ∀j = A,B.

Since this is an equilibrium outcome, a rational type-k buyer can mimic
her rational type-k′ counterpart’s equilibrium behavior but would rather
not to. This implies that B ≡ {qj(k), Tj(k); j = A,B, k = 1, 2, 3} is one
incentive feasible bundling scheme for the rational buyer, and since with
S in equilibrium the myopic buyer consumes exactly the same amounts
of A and B and pays the seller the same amount of money, the se-
quential transaction scheme S must yield for the seller a payoff which
coincides with the payoff generated by B, which by definition cannot
exceed the payoff generated by the optimal bundling scheme!

22. The upshot of the preceding lemma is that, in search of the optimal
transaction scheme, we can ignore all sequential transaction schemes
except those resulting in, for at least one k ∈ {1, 2, 3}, Nk and Rk
behaving differently in equilibrium.
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23. We shall first derive a series of lemmas for the sequential transaction
schemes involving selling A and then B. The game proceeds as follows.
The seller first posts the price TA for product A. Then the buyer can
decide to or not to buy one unit of product A. Then the seller forms
his posterior belief about the buyer’s type based on whether the buyer
has purchased product A, and then the seller offers to the buyer an
optimal screening contract for product B based on her posterior belief
(transaction-based discrimination!). The seller cannot commit to the
screening contract for selling B when he sells product A.

Lemma 12 Given TA, R1 decides to purchase product A if and only
if N1 does.

Proof. Whatever the seller’s posterior belief may be, R1 will gain no
surplus from consuming product B. Thus when deciding whether to
purchase product A at the price TA, R1 and N1 have the same payoff
function, where recall that N1 totally disregard his need of subsequently
purchasing product B when he is faced with TA. ∥

Lemma 13 Given TA, N3 will purchase product A if N2 will, and N2
will purchase product A if and only if N1 will.

Proof. Obvious.∥

Lemma 14 Given TA, R3 will purchase product A if R2 will.

Proof. R2 and R3 will obtain the same surplus from consuming B as
long as they make the same decision about purchasing or not purchasing
product A at the price TA. Since R3 obtains a higher gross utility than
R2 in consuming product A, R3 will purchase product A whenever R2
will. ∥

Lemma 15 Given TA, if N3 decides not to purchase product A in equi-
librium, neither does R2 or R3.
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Proof. Suppose that at the price TA N3 decides not to purchase product
A. This implies that TA > a2 > a1, and by the preceding lemmas, N2,
N1 and R1 must choose not to purchase product A either. Suppose
that either R2 alone or R3 alone or both R2 and R3 choose to purchase
product A at the price TA. Then the seller’s posterior belief upon seeing
the buyer purchase product A must be such that with probability one
the buyer will get the surplus 2

√
q − T when consuming q units of

product B and paying the price T subsequently. Thus the seller will
offer the first-best contract for the latter buyer, resulting in zero surplus
from consuming product B for that buyer. Thus the type of buyer that
purchases product A at the price TA, which by assumption is either
R2 or R3, must have an equilibrium payoff a2 − TA < 0, which is a
contradiction because this type can choose not to buy product A and
obtain a non-negative payoff. ∥

Lemma 16 Given TA, if N1 decides to purchase product A in equilib-
rium, then so do R2 and R3.

Proof. Suppose that at the price TA, N1 decides to purchase product
A in equilibrium. This implies that a2 > a1 ≥ TA, and hence by the
preceding lemmas, R1, N2, and N3 will also purchase product A in
equilibrium. Suppose that either R2 alone or R3 alone or both R2
and R3 choose not to purchase product A. Then the seller’s posterior
belief upon seeing the buyer refuse to purchase product A must be such
that with probability one the buyer will get the surplus 2

√
q− T when

consuming q units of product B and paying the price T subsequently.
Thus the seller will offer the first-best contract for the latter buyer,
resulting in zero surplus from consuming product B for that buyer.
Thus the type of buyer that refuse to purchase product A at the price
TA, which by assumption is either R2 or R3, must have an equilibrium
payoff equal to zero, which is a contradiction because this type can
buy product A and obtain a payoff which is greater than or equal to
a2 − TA > 0. ∥

Lemma 17 In order to generate a positive sales from selling product
A, the seller will optimally choose a TA lying in the interval [a1, a2].
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Proof. This follows directly from the preceding lemmas. ∥

Because of this lemma, we can safely assume that the seller will set
TA > a2 if he chooses to give up selling product A and to directly
offer an optimal screening contract for product B based on his prior
belief; our earlier remark says that this sequential transaction scheme
can never outperform the optimal bundling scheme.

Now we classify the equilibria in which the seller decides to generate a
positive sales volume for product A.

Lemma 18 The optimal TA that results in N1 and R1 refusing to buy
product A but some other type buying product A must result in N2 and
R2 also refusing to buy product A.

Proof. Apparently that other type cannot be N2. Buying product A
in this case results in the seller offering the first best contract for the
type of buyer that will obtain surplus 2

√
q−T from accepting contract

(q, T ) for product B. Thus buying product A will generate a payoff
a2 − TA for N3 and R3, and a payoff a1 − TA for R2, implying that R2
should not purchase product A in equilibrium either. This says that
if there does exist such an equilibrium, N1, N2, R1, and R2 do not
purchase product A, although N3 and R3 may still do. ∥

Thus there are only three classes of sequential schemes involving selling
A and then B to consider.

The first class of such schemes lead to an equilibrium where N1 and R1
accept TA and buy product A, which implies, by the preceding lemmas,
that all other types do also. Since this class of sequential schemes lead
to a pooling outcome at the stage of selling product A, it implies that
for all k = 1, 2, 3, Nk and Rk must consume the same amounts of A
and B and make the same payment to the seller. An earlier lemma
shows that we can ignore this sequential scheme, because it cannot
outperform the optimal bundling scheme.

With the second class of such schemes, the resulting equilibrium in-
volves N1, R1, N2, R2, and R3 refusing to buy product A, and only
N3 deciding to buy product A.
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With the third class of such schemes, in the resulting equilibrium N1,
R1, N2, and R2 refuse to buy product A, and only R3 and N3 decide
to buy product A. Again, this class of schemes can be safely ignored
when we search for the optimal scheme.

Proposition 5 In search of the optimal scheme, we can ignore all se-
quential schemes asking the seller to sell A and then B but those that
result in an equilibrium in which N1, R1, N2, R2, and R3 refuse to buy
product A, and only N3 decides to buy product A.

24. Now we consider the sequential transaction schemes under which the
seller first sells B and then A. Again, we shall develop a series of useful
lemmas.

Lemma 19 With such a scheme N1 and R1 must behave identically
when the seller sells product B.

This lemma follows from the fact that R1 will receive no rent when the
seller sells A regardless of R1’s behavior when the seller sells B.

Lemma 20 With such a scheme, N2, N3 and R2 must behave iden-
tically when the seller sells product B.

This lemma follows from the fact that N2 and N3 have the same payoff
function when the seller sells product B, and the fact that R2, like R1,
will receive no rent when the seller sells product A.

Lemma 21 With such a scheme, R3 cannot be separated when the
seller sells product B.

This lemma calls for some explanations. If instead R3 can be identified
after the seller sells product B, then R3 will receive no rent from A
(the seller will set TA = a2). In equilibrium, R3 can mimic N3 but
would rather not to, and since N3’s rent from A is non-negative, R3
must obtain a rent from B which is higher than or equal to the rent
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that N3 obtains from B. Since N3 can mimic R3’s purchase decision
about B, N3 must obtain a rent from B which is higher than or equal
to the rent that R3 obtains from B. It follows that these two must
obtain the same rent from B, and to prevent R3 from mimicking N3,
both of them (and N2 and R2) must obtain no rent from A. Thus this
sequential scheme actually offers some (qb, Tb) for N1 and R1 and some
(q′b, T

′
b) for N2, N3, and R2, and some (q′′b , T

′′
b ) to R3, where (q′b, T

′
b)

and (q′′b , T
′′
b ) must yield the same rent for R3, and to be an optimal

choice for the seller, offering (q′b, T
′
b) or offering (q′′b , T

′′
b ) for R3 must be

equally profitable from the seller’s perspective, which is a contradiction.
Hence, R3 must pool with either N1 and R1, or with N2, N3, and R2.
The latter involves for all k = 1, 2, 3, Nk and Rk behaving identically
when the seller sells B, and hence can be safely ignored. Thus we come
to the following conclusion.

Proposition 6 In search of the optimal scheme, we can ignore all se-
quential schemes asking the seller to sell B and then A but those that
result in an equilibrium in which the seller offers two distinct pairs
(T, q) and (T ′, q′) when selling B, such that N1, R1, and R3 take (T, q)
and the rest 3 types take (T ′, q′) in equilibrium.

25. Now we consider a numerical example. Suppose that

z = 0, γ = c =
1

2
, π =

3

4
,

and that
1

2
(a2 − 1) > a1 − 1 ⇔ a2 + 1

2
> a1.

It can be shown that there are two undominated bundling schemes; in
the first one, B1,

(Q1, q1) = (0, 0), (Q2, q2) = (0, 4), (Q3, q3) = (1, 4),

and in the second one, B2,

(Q1, q1) = (1, 0), (Q2, q2) = (1, 4), (Q3, q3) = (1, 4).
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Correspondingly these two bundling schemes generate for the seller the
payoffs

1

2
(a2 − 1) +

5

8
· 2 =

4a2 + 6

8
,

and

(a1 − 1) +
5

8
· 2 = a1 +

1

4
,

where note that 5
8
= γ + (1− γ)(1− π),

4 = argmax
q

2
√
q − cq,

and
2
√
4− c · 4 = 2.

26. Let us denote the optimal sequential scheme asking the seller to sell
A and then B by SA, and the optimal sequential scheme asking the
seller to sell B and then A by SB. First let us find SA. By backward
induction, we should consider the seller’s optimal selling scheme for B
and then the seller’s optimal selling scheme for A, but since z = 0, we
can simplify the analysis by first consider the optimal selling scheme
for A. It is obvious that the seller should set Ta = a2, and hence the
seller’s payoff function can be written as

γ[(a2−1)+max
q′2

2
√
q′2−cq′2]+(1−γ){0+max

q1,q2
π[
√
q1−cq1]+(1−π)[2

√
q2−

√
q1−cq2]},

It follows that at optimum,

q′2 =
1

c2
= 4 = q2, q1 =

(2π − 1)2

4c2
=

1

4
.

The seller’s payoff from implementing SA is therefore

a2
2

+
53

64
.

27. Now, we solve for SB. The seller’s problem is to

max
q1,q2

π(1−γ)[
√
q′1−cq′1+(a1−1)]+[1−π(1−γ)]{2√q2−

√
q1−cq2+

4

5
(a2−1)},

48



where
4

5
=

γ

γ + (1− γ)(1− π)
.

At optimum, we have

q′1 = 0 = q1, q2 =
1

c2
= 4.

The seller’s payoff from implementing SB is therefore

4a2 + 3a1 + 3

8
.

Note that SA dominates SB if and only if

29

24
> a1 > 1.

28. Now, the seller’s optimal scheme is either B1, or B2, or SA, or SB. It is
easy to see that B1 is dominated by SA, and that B2 is dominated by
SB if and only if

4a2 + 1

5
> a1.

Summing up the above analysis, we have the following result.

• Suppose a2 <
121
96
. In this case, we have

1 <
a2 + 1

2
<

4a2 + 1

5
<

29

24
,

so that SA ≻ SB ≻ B2, and the optimal scheme is SA.

• Suppose a2 >
136
96
. In this case, we have

1 <
29

24
<

a2 + 1

2
<

4a2 + 1

5
,

so that SB ≻ B2, and the optimal scheme is SA if a1 <
29
24

and SB

if otherwise.

• Suppose 136
96

> a2 >
121
96
. In this case, we have

1 <
a2 + 1

2
<

29

24
<

4a2 + 1

5
,

so that SA ≻ SB ≻ B2, and the optimal scheme is again SA.
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Remark. Note that SA allows N1 and R1 to consume a positive
amount of product B, and SB allows N1 and R1 to consume a positive
amount (1 unit) of product A. This happens because for the second-
stage transaction these types become important once N3 and R3 are
removed from the picture. This difference from the optimal bundling
scheme B∗ can be good or bad. With the current parameter values,
we have SA ≻ B1. Comparing SB to B2, we see that with the former,
N2 and R2 fail to consume product A, whereas B2 allows the seller
to sell A to all types of the buyer. Again, this can be good or bad.
With the latter the seller ensures that all types of the buyer pays a1
in buying product A, but with the former the seller cannot commit
not to give up N2 and R2 when selling A to N2, N3, R2 and R3. It
should not be surprising that with z = 0 the seller’s action in the first-
stage transaction is always profit-efficient; a bundling strategy can at
best attain the same profit-efficiency regarding the first-stage traded
commodity. With the current parameter values, B2 fails to extract N3
and R3’s rent from A, because rent concession for A is necessary for
the bundling strategy to reduce rent concession for B.

The above has assumed z = 0. With 0 < z < 1, sequential schemes
generally lead to profit losses in the first-stage transactions, because
of the so-called ratchet effect: the rational buyer knows that revealing
her type in the first-stage transaction will reduce her rent from the
second-stage transaction, and hence the seller must concede more rents
in the first-stage transactions than with a bundling scheme. The rent
concession typically depends on z as well as other parameters.

29. Example 7. (Coupon Competition within a Distribution
Channel)
Consider a non-integrated distribution channel composed of a manu-
facturer (M) and a retailer (R), facing two segments of consumers (the
highs and the lows). M produces costlessly a single product and is re-
stricted to use linear pricing schemes. We shall allow M and R to offer
coupons to consumers. The populations of the highs and the lows are
α and 1 − α respectively, and each consumer has unit demand. Let
VH and VL be the highs’ and the lows’ reservation prices for M’s prod-
uct. The highs would incur a fixed redemption cost H if they want
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to carry and redeem at least one coupon.6 Similarly, L represents the
fixed redemption cost that the lows must incur to carry and redeem at
least one coupon. Assume that consumers seek to maximize consumer
surplus and both M and R seek to maximize expected profits.

The interactions among M, R and the two segments of consumers will
be modelled as an extensive game, and the timing of the sequence of
relevant events is as follows.

(a) R must first announce a retail coupon cR > 0.

(b) Given cR, M must announce its price promotion (w, cM), where w
is the wholesale price for R (the push promotion) and cM ≥ 0 is
a manufacturer coupon for consumers (the pull promotion).

(c) Given (w, cM), R can decide whether to buy M’s product at the
price w. If R chooses not to, then the game ends and everyone
gets a zero payoff. If R accepts M’s offer w, then R must choose
a retail price p.

(d) Finally, upon seeing (p, cM , cR), consumers simultaneously decide
whether to spend a redemption cost to carry the coupons, and
whether to buy the product at the price p.

We shall denote the manufacturer’s and the retailer’s equilibrium ex-
pected profits by πM and πR respectively. Assume that7

1 > α > 0, H > L ≥ 0, ∆ ≡ (VH −H)− (VL − L) > 0. (13)

We shall look for the subgame-perfect Nash equilibria for the above
extensive game.

Consider the subgame where retailer has chosen cR. We can divide M’s
feasible contracts (w, cM) into four classes, according to whether the

6Note that with at least one carried coupon, carrying an additional coupon incurs no
marginal cost.

7The inequality ∆ > 0 ensures that the definitions for the highs and for the lows
are independent of the manufacturer’s and retailer’s pull promotion strategies. In other
words, even if all consumers choose to redeem coupons in equilibrium, the consumers with
reservation price VH still constitute the segment with a higher valuation. This assumption
greatly simplifies our analysis.
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lows will be served and whether the highs will redeem coupons. More
specifically, we have

• Class 1: M wants R to serve both the highs and the lows, and to
allow all buyers to redeem coupon(s). In this case, M’s problem
is:

max
w,cM

πM = w − cM (14)

subject to

cR + cM > H
(IC) (VL + cR + cM − L− w)− cR ≥ α(VH + cR + cM −H − w)− αcR,
(IR) (VL + cR + cM − L− w)− cR ≥ 0.

(15)
Note that the first constraint makes sure that the highs would
want to redeem the coupons, if they decide to make a purchase.
The IC constraint ensures that R would rather charge a low price
VL+ cR+ cM −L and serve both the highs and the lows than give
up the lows by charging a high price VH + cR + cM −H. The IR
constraint, on the other hand, ensures that by accepting M’s offer
(w, cM), R can make a non-negative profit.

• Class 2: M wants R to serve only the highs, and cR + cM > H.
In this case, M’s problem is:

max
w,cM

πM = αw − αcM (16)

subject to

cR + cM > H
(IC) (VL + cR + cM − L− w)− cR ≤ α(VH + cR + cM −H − w)− αcR,
(IR) α(VH + cR + cM −H − w)− αcR ≥ 0.

(17)
Note that in this case the IC constraint ensures that R would
rather serve the lows only than serve all consumers, and the IR
constraint makes sure that R would get a non-negative profit by
doing so.

• Class 3: M wants R to serve both the highs and the lows, but to
allow only the lows to redeem the coupons; i.e. L < cR+ cM ≤ H.
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In this case, M’s problem is:

max
w,cM

πM = w − (1− α)cM (18)

subject to

L < cR + cM ≤ H
(IC) (VL + cR + cM − L− w)− (1− α)cR ≥ α(VH − w),
(IR) (VL + cR + cM − L− w)− (1− α)cR ≥ 0.

(19)

• Class 4: M wants R to serve only the highs, but to still require
L < cR + cM ≤ H. In this case, M’s problem is:

max
w,cM

πM = αw (20)

subject to

L < cR + cM ≤ H
(IC) (VL + cR + cM − L− w)− (1− α)cR ≤ α(VH − w),
(IR) α(VH − w) ≥ 0.

(21)

Derive the optimal contract in each of the 4 classes above. Then,
move backwards to consider R’s problem of choosing cR. Show that
R will announce cR = H in equilibrium, which forces M to choose
(w, cM) = (ŵ, 0), where

ŵ =
VL − L− α(VH −H)

1− α
. (22)

Solution. I shall solve only the class-1 problem in detail, and leave the
rest 3 problems to the reader.8

8First make the observation that under the optimal class-2 or class-4 contract, R must
receive zero profits. This happens because in the two maximizatoin problems an increase in
w only relaxes R’s IC constraints, and hence the optimal w must make R’s IR constraints
binding, implying zero profits for R.

Next, consider M’s maximization problem of finding the optimal class-1 or class-3 con-
tract with cR > H. Apparently, no class-3 contracts can be consistent with cR > H,
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Formally, the class-1 problem can be stated as

max
w,cM

πM = w − cM

subject to

cR + cM > H
(IC) (VL + cR + cM − L− w)− cR ≥ α(VH + cR + cM −H − w)− αcR,
(IR) (VL + cR + cM − L− w)− cR ≥ 0.

Note that we have computed the retailer’s optimal pricing strategy
before writing down the IR and IC constraints. If all consumers will
be redeeming the coupons, then the valuation of the highs becomes

VH + cR + cM −H > VL + cR + cM − L,

because cR + cM ≥ cR > H. On the other hand, it can be easily seen that for a class-1
contract satisfying cR > H only w − cM matters to M, and hence we can assume that M
optimally chooses cM = 0. It follows that the optimal w must make R’s IC constraint
binding, so that w = ŵ is optimal to M. It follows that R’s profit is α(VH −H− ŵ) in this
case, which is independent of cR (as long as cR > H).

Finally, consider M’s maximization problem of finding the optimal class-1 or class-3
contract with cR ≤ H. In this case, any class-1 (w, cM ) must satisfy cM > H − cR ≥ 0;
and any class-3 (w, cM ) must satisfy 0 ≤ cM ≤ H − cR.

• Consider first a class-1 (w, cM ) satisfying cR ≤ H and cM > H − cR ≥ 0. This
maximization problem does not depend on cR, and although it depends on w− cM ,
it does not depend on cM separately. Thus it is optimal for M to choose any cM >
H − cR, and set

w − cM = w0 ≡ VL − αVH +H − L

1− α
= ŵ +H > ŵ.

This implies that R’s profit would be α(VH −H − w0) < α(VH −H − ŵ).

• Next, consider a class-3 (w, cM ) satisfying cR ≤ H and 0 ≤ cM ≤ H − cR. We can
re-write πM as (w − cM ) + αcM , and now it becomes obvious that only (w − cM )
appears in R’s IC and IR constraints. Since given w−cM , πM is strictly increasing in
cM , implying that cM = H−cR, indicating the fact that R’s and M’s pull promotions
are strategic substitutes. Given cM = H − cR, R’s IC constraint must be binding at
the optimal w, which yields

w + cR = w0, (23)

so that R’s profit is α(VH − w) = α(VH − w0 + cR).

Summing up the above findings, we can conclude that it is optimal for R to announce
in the first stage cR = H, which then induces M to choose cM = 0 and w = ŵ accordingly.
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where the right-hand side is the lows’ valuation after carrying the
coupons. Thus the retailer can choose to price at VL + cR + cM − L or
VH + cR + cM −H. (Other prices are obviously dominated.) Pricing at
the former level means that the retailer chooses to serve all consumers
(every consumer can get a non-negative consumer surplus by buying
the product from the retailer), and pricing at the latter means that the
retailer chooses to serve only the highs.

In the class-1 problem, we have assumed that the manufacturer wants
to choose (w, cM) to make sure that the retailer would rather serve all
consumers, and hence we require that (w, cM) must be such that the
retailer can get a non-negative profit by doing so (IR constraint), and
doing so is better than dropping the lows (the IC constraint).9 The first
constraint is to make sure that the highs will also redeem the coupons
(which implies that the lows will too).

Now, to solve this problem, the first step is to determine if the objective
function is increasing or decreasing in respectively w and cM . A look
at the functional form tells us that it is increasing in w but decreasing
in cM . Next, by rewriting the IC as

g(w, cM) = (VL+cR+cM−L−w)−cR−{α(VH+cR+cM−H−w)−αcR} ≥ 0,

we see that g is decreasing in w. Similarly, the IR constraint is

h(w, cM) = (VL + cR + cM − L− w)− cR ≥ 0,

where h is decreasing in w also. In order to maximize the objective
function, we should make w as high as possible, given any feasible
value of cM . However, the fact that both g and h are decreasing in w
means that we cannot keep raising w without limits. Given a fixed cM ,
a continual increase in w will ultimately lead to either g(w, cM) < 0 or
h(w, cM) < 0. This implies that given cM , there must exist an optimal
solution for w, and that optimal w must make either g(w, cM) = 0 or
h(w, cM) = 0; that is, either the IC constraint or the IR constraint will
be binding at the optimal (w, cM). The question is which constraint.

9Here notice that if the retailer chooses to serve only the highs, then only the highs will
redeem the coupons in equilibrium, and hence the retailer has to pay αcR. A consumer
will not redeem the coupon if he does not purchase the product.
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We claim that given cM , the optimal w will make the IC constraint
but not the IR constraint binding. To prove our claim, we only need
to show that a contradiction will arise if the IR constraint is binding,
since either the IR or the IC constraint must be binding at the optimal
w.

Note that if h(w, cM) = 0, then

w = VL + cM − L.

Replacing this result into g(w, cM) ≥ 0, we have

0 ≥ α{(VH+cR+cM−H−w)}−αcR = α{VH+cM−H−w} = α{(VH−H)−(VL−L)} > 0,

which is a contradiction.

Thus we conclude that given cM , the optimal w must make the IC but
not the IR constraint binding. From here we can express w in terms of
cM :

g(w, cM) = 0 ⇒ w =
VL − L+ αVH − αH + (1− α)cM

1− α
.

Hence the optimal cM must solve the following maximization problem:

max
cM

πM =
VL − L+ αVH − αH + (1− α)cM

1− α
− cM (24)

subject to

cR + cM > H

(IR) (VL + cR + cM − L− VL−L+αVH−αH+(1−α)cM
1−α

)− cR ≥ 0.
(25)

Note that the IC constraint disappears in this new maximization prob-
lem, since we have used it to express w as a function of cM !

Now we go through the process again: first check if πM as a function
of cM is increasing or decreasing. A close look at the functional form
reveals that πM is independent of cM ! Moreover, h is independent of
cM also! It follows that any non-negative cM that satisfies the first
constraint cM ≥ H − cR is equally good, which does not affect the
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value of the objective function. Thus, for cR > H already, we can pick
cM = 0; and for cR ≤ H, we can pick any cM > H− cR, say H− cR+1.

Having solved the above reduced maximization problem, we can now
determine the optimal w. Using the relation between w and cM , we
conclude that (asterisk indicates the optimal or equilibrium value)

(w∗, c∗M) =

{
(VL−L+αVH−αH

1−α
, 0), cR > H;

(VL−L+αVH−αH+(1−α)(H−cR+1)
1−α

, H − cR + 1), cR ≤ H.

Note that these arrangements all give rise to the same π∗
M , which is

π∗
M =

VL − L+ αVH − αH

1− α
.

We can also obtain π∗
R. We have

π∗
R = h(w∗, c∗M) = VL−L−VL − L+ αVH − αH

1− α
=

α

1− α
[(VH−H)−(VL−L)] > 0.

This finishes my derivation for the optimal class-1 contract.
Remark. In the current model, the distribution channel as a whole
can best benefit from pull promotions provided by the two channel
members if and only if the lows redeem the coupons but the highs
do not. This imposes an upper bound on the total amount of R’s
and M’s pull promotions (i.e., cR+cM ≤ H), leading to a crowding-out
relationship between cR and cM . Another important observation is that
whenever M wants to induce R to serve all consumers, in equilibrium
R’s IC constraint will be binding, implying that R’s equilibrium profit
is strictly decreasing in w. Hence R wishes to induce M to pick a low
w. To this end, R can benefit from committing to the largest possible
cR, because by doing so, it induces M to reduce cM , and therefore w.

30. Example 8. (Optimal Design of a Product Line and a Return
Policy)
A seller wants to design two products to serve two segments of con-
sumers. Segment i has population πi ∈ (0, 1) with π1 + π2 = 1. A
product is featured by its quality, and producing a product with qual-
ity α ≥ 0 will cost the seller C(α) = cα2

2
per unit, where c > 0. A
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consumer in segment i has gross valuation θiα for a product with qual-
ity α. A consumer can buy at most one product from the seller, and
the quantity is, for simplicity, 1 unit. Assume that θ2 > θ1 > 0, and
consumers all seek to maximize consumer surplus. Assume also that
c > θ2. The seller moves first by designing a product line and choosing
the prices {(αi, pi); i = 1, 2}, and then seeing the two products and
their prices offered by the seller, consumers decide to or not to buy a
product.10

(i) Assume that the seller can distinguish the two segments of con-
sumers. Show that under the first best contract,

αFB
i =

θi
c
, pFB

i =
θ2i
c
.

Explain why the seller’s decisions about product quality are “socially
efficient.”
(ii) Now assume instead that the seller cannot tell a θ1-consumer from
a θ2-consumer. Show that under the second-best contract,

αSB
1 = max(0, αFB

1 − (θ2 − θ1)π2

cπ1

).

(iii) Now we assume that the seller must choose a return policy, in addi-
tion to the above product line decision. Here we confine αi ∈ [0, 1], and
interpret αi as the probability that product i may be working. A con-
sumer in segment j obtains a gross utility θj from using a product that
works. A product that fails generates zero utility for all consumers. Un-
der these new interpretations, θjα becomes the “expected gross utility”
for a consumer from segment j who purchases a product that may work
with probability α. Here we are assuming risk-neutral consumers, who
cannot resell what they purchase from the seller to other consumers.
Again, the product is a search good; that is, consumers learn αi when
they see product i on the selling spot.

The seller’s contract now becomes {(αi, pi, p
′
i); i = 1, 2}, where p′i is the

re-imbursement the seller promises to make to a consumer who returns

10Here we are assuming that consumers cannot resell what they purchase from the seller
to other consumers. The product is referred to as a search good, in the sense that its
quality can be ascertained by the buyer at the selling point.
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product i when it fails subsequently. (Assume that neither the seller
nor consumers have time preferences; that is, there is no discounting.)
Note that p′i = 0 is the same as a no returns policy for product i. For
simplicity, assume that (i) a product that fails has no salvage value
for the seller; and (ii) a consumer from segment j has to incur a cost
Kj ≥ 0 to return a product to the seller, and moreover K2 > K1 (rich
people have higher θ’s, and their opportunity costs of time are also
higher). We shall focus on the case where

θ1
c
− (θ2 − θ1)π2

cπ1

> 0. (Θ)

This condition implies that the optimal product line with a no-returns
policy is such that

α1 =
θ1
c
− (θ2 − θ1)π2

cπ1

, α2 =
θ2
c
,

p1 = θ1[
θ1
c
− (θ2 − θ1)π2

cπ1

],

and

p2 =
θ22
c
− (θ2 − θ1)[

θ1
c
− (θ2 − θ1)π2

cπ1

],

and the seller’s payoff under this no-returns contract is

π1{θ1[
θ1
c
− (θ2 − θ1)π2

cπ1

]− c

2
[
θ1
c
− (θ2 − θ1)π2

cπ1

]2}

+π2{
θ22
c
− (θ2 − θ1)[

θ1
c
− (θ2 − θ1)π2

cπ1

]− c

2
[
θ2
c
]2}.

Solve for the optimal contract {αi, pi, p
′
i; i = 1, 2} for the seller.

Solution. The seller seeks to

max
{αi,pi,p′i;i=1,2}

2∑
i=1

πi{pi −
cα2

i

2
− (1− αi)1{p′i≥Ki}p

′
i}

subject to
θiαi − pi + (1− αi)max(0, p′i −Ki)
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≥ max[0, θiαj − pj + (1− αj)max(0, p′j −Ki)], ∀i, j ∈ {1, 2}.
Note that in the seller’s objective function, 1A is the indicator func-
tion for event A, which equals 1 if event A occurs and 0 if other-
wise. The constraints compactly give IR1, IR2, IC1, and IC2. A
contract {αi, pi, p

′
i; i = 1, 2} is feasible if it satisfies the above con-

traints. We shall divide the set of feasible contracts into 4 subsets: (1)
p′1 < K1, p′2 < K2; (2) p′1 ≥ K1, p

′
2 < K2; (3) p′1 < K1, p

′
2 ≥ K2; and

(4) p′1 ≥ K1, p
′
2 ≥ K2.

Class 1. The seller seeks to

max
{αi,pi,p′i<Ki;i=1,2}

π1[p1 −
cα2

1

2
] + π2[p2 −

cα2
2

2
]

subject to, without loss of generality, p′1 = p′2 = 0 and

(IR1) θ1α1 − p1 ≥ 0,

(IC1) θ1α1 − p1 ≥ θ1α2 − p2,

(IR2) θ2α2 − p2 ≥ 0,

(IC2) θ2α2 − p2 ≥ θ2α1 − p1.

Note that the set of class-1 contracts coincides with the feasible con-
tracts in part (ii). By Theorem AS-1 of Lecture 4, the maximization
problem can be re-written as

max
{αi;i=1,2}

π2[θ2α2 −
cα2

2

2
− (θ2 − θ1)α1] + π1(θ1α1 −

cα2
1

2
). (26)

Under condition (Θ), the seller’s optimal choice is

α1 =
θ1
c
− (θ2 − θ1)π2

cπ1

, α2 =
θ2
c
,

which generates for the seller the payoff

π1{θ1[
θ1
c
− (θ2 − θ1)π2

cπ1

]− c

2
[
θ1
c
− (θ2 − θ1)π2

cπ1

]2}

+π2{
θ22
c
− (θ2 − θ1)[

θ1
c
− (θ2 − θ1)π2

cπ1

]− c

2
[
θ2
c
]2}.

60



Class 2. The seller seeks to

max
{αi,pi,p′i;i=1,2}

π1[p1 −
cα2

1

2
− (1− α1)p

′
1] + π2(p2 −

cα2
2

2
)

subject to p′2 = 0 and11

(IR1) θ1α1 − p1 + (1− α1)(p
′
1 −K1) ≥ 0, p′1 ≥ K1,

(IC1) θ1α1 − p1 + (1− α1)(p
′
1 −K1) ≥ θ1α2 − p2,

(IR2) θ2α2 − p2 ≥ 0,

(IC2) θ2α2 − p2 ≥ θ2α1 − p1 + (1− α1)(p
′
1 −K2).

At optimum either IR2 is or is not binding. We claim that IR2 is
binding at optimum, and the proof is contained in the footnote.12

11Adding up the two IC’s yields

(K2 −K1)(1− α1) + (θ2 − θ1)(α2 − α1) ≥ 0,

and hence we do not obtain monotonicity as we did in Theorem AS-1 of Lecture 4.
12Suppose instead that IR2 is not binding. Then IR1 must be binding at optimum:

otherwise raising slightly both p1 and p2 can enhance the seller’s payoff, a contradiction
to the assumed optimality. It follows that

p′1 = K1 +
p1 − θ1α1

1− α1
.

Moreover, IC2 must also be binding: otherwise raising slightly p2 can enhance the seller’s
payoff, generating another contradiction. Hence the maximization problem can be re-
written as

max
{αi,pi,p′

i
;i=1,2}

π1{p1 −
cα2

1

2
− [θ1α1 − p1 − (1− α1)K1]}

+π2{θ2(α2 − α1) + p1 + (1− α1)K2 − p1 + θ1α1 − (1− α1)K1 −
cα2

2

2
}

subject to
0 ≥ θ1α2 − p2,

p′1 ≥ K1 ⇔ p1 − θ1α1 ≥ 0,

θ2α2 − p2 ≥ 0.

The maximization problem can be furhter re-written as

max
{αi,pi,p′

i
;i=1,2}

π1{−
cα2

1

2
− θ1α1 + (1− α1)K1}
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Given that IR2 must be binding at optimum, we deduce that IR1 implies
IC1, and hence we can remove IC1. The seller’s maximization problem
is thus re-written as

max
α1,α2,p1,p′1

π1[p1 −
cα2

1

2
− (1− α1)p

′
1] + π2(θ2α2 −

cα2
2

2
)

subject to

(IR1) θ1α1 − p1 + (1− α1)(p
′
1 −K1) ≥ 0, p′1 ≥ K1,

(IC2) 0 ≥ θ2α1 − p1 + (1− α1)(p
′
1 −K2).

Now that the objective function is increasing in p1 − (1 − α1)p
′
1, at

optimum IR1 must be binding also, and the maximization problem can
be further re-written as

(P2) max
α1,α2,p1,p′1

π1[θ1α1 − (1− α1)K1 −
cα2

1

2
] + π2(θ2α2 −

cα2
2

2
)

subject to
p′1 ≥ K1,

+π2{(1− α1)(K2 −K1)− (θ2 − θ1)α1 + θ2α2 −
cα2

2

2
}

subject to

θ1α2 ≤ p2 = (1− α1)(K2 −K1)− (θ2 − θ1)α1 + θ2α2 ≤ θ2α2,

p1 − θ1α1 ≥ 0.

The latter maximization problem can be further simplified as

max
{αi,pi,p′

i
;i=1,2}

π1{−
cα2

1

2
− θ1α1 + (1− α1)K1}

+π2{(1− α1)(K2 −K1)− (θ2 − θ1)α1 + θ2α2 −
cα2

2

2
}

subject to
0 ≤ (1− α1)(K2 −K1) + (θ2 − θ1)(α2 − α1),

(1− α1)(K2 −K1)− (θ2 − θ1)α1 ≤ 0.

It is clear that for α1 ∈ [0, 1], the second constraint can never be satisfied, and hence we
have a contradiction.
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(IC2) 0 ≥ θ2α1 − θ1α1 − (1− α1)(K2 −K1).

It follows that the optimal class-2 contract is such that (without loss
of generality letting p′1 = K1)

α1 = min(1,
θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
), α2 =

θ2
c
,

p1 = θ1 min(1,
θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
), p2 =

θ22
c
,

p′1 = K1, p′2 = 0.

The optimal class-2 payoff for the seller is

π1{θ1min(1,
θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
)

−(1− α1)K1 −
c

2
[min(1,

θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
)]2}

+π2{
θ22
c
− c

2
[
θ2
c
]2}.

Class 3. Here, only α2 is allowed for returns; i.e. p′1 = 0. Formally,
the seller seeks to

max
{αi,pi,p′i;i=1,2}

π2[p2 −
cα2

2

2
− (1− α2)p

′
2] + π1(p1 −

cα2
1

2
)

subject to p′1 = 0 and

(IR2) θ2α2 − p2 + (1− α2)(p
′
2 −K2) ≥ 0, p′2 ≥ K2,

(IC2) θ2α2 − p2 + (1− α2)(p
′
2 −K2) ≥ θ2α1 − p1,

(IR1) θ1α1 − p1 ≥ 0,

(IC1) θ1α1 − p1 ≥ θ1α2 − p2 + (1− α2)(p
′
2 −K1).

Now at optimum the IR1 constraint must be binding, for if not, then
by IC2, we know that IR2 will not be binding either, and a tiny increase
in both p1 and p2 will be feasible and enhance the seller’s payoff, which
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is a contradiction. Thus the maximization problem can be re-written
as

max
{αi,pi,p′i;i=1,2}

π2[p2 −
cα2

2

2
− (1− α2)p

′
2] + π1(θ1α1 −

cα2
1

2
)

subject to

(IR2) θ2α2 − p2 + (1− α2)(p
′
2 −K2) ≥ 0, p′2 ≥ K2,

(IC2) θ2α2 − p2 + (1− α2)(p
′
2 −K2) ≥ (θ2 − θ1)α1,

(IC1) 0 ≥ θ1α2 − p2 + (1− α2)(p
′
2 −K1).

Now that the objective function is increasing in p2 − (1− α2)p
′
2, either

IR2 or IC2 must be binding. Since (θ2 − θ1)α1 ≥ 0, we conclude that it
is IC2 that has to be binding, and IR2 will follow from IC2. It follows
that we can further re-write the maximization problem as

max
{αi,pi,p′i;i=1,2}

π2[θ2α2− (1−α2)K2−
cα2

2

2
− (θ2− θ1)α1] +π1(θ1α1−

cα2
1

2
)

(27)
subject to

p′2 ≥ K2,

(IC1) (θ2 − θ1)(α2 − α1)− (1− α2)(K2 −K1) ≥ 0.

At this point, we are able to prove that the optimal class-3 contract
is dominated by the optimal class-1 contract. Call the maximization
problem of finding the optimal class-3 contract “the constrained ver-
sion of problem 3,” and call the same maximization problem with IC1

removed “the unconstrained version of problem 3.” Apparently, the
seller is better off if allowed to implement the latter than to implement
the former. Because (1− α2)K2 ≥ 0, it is clear that the optimal value
of the objective function in finding the optimal class-1 contract must
be higher than the optimal value of the objective function in the un-
constrained version of problem 3. By transitivity, the optimal value
of the objective function in finding the optimal class-1 contract must
also be higher than the optimal value of the objective function in the
constrained version of problem 3. Thus the optimal class-3 contract is
dominated by the optimal class-1 contract.
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Class 4. This class of feasible contracts allows returns of both prod-
ucts. The seller seeks to

max
{αi,pi,p′i;i=1,2}

π1[p1 −
cα2

1

2
− (1− α1)p

′
1] + π2[p2 −

cα2
2

2
− (1− α2)p

′
2]

subject to

(IR1) θ1α1 − p1 + (1− α1)(p
′
1 −K1) ≥ 0, p′1 ≥ K1,

(IC1) θ1α1−p1+(1−α1)(p
′
1−K1) ≥ θ1α2−p2+(1−α2)(p

′
2−K1), p′2 ≥ K2,

(IR2) θ2α2 − p2 + (1− α2)(p
′
2 −K2) ≥ 0,

(IC2) θ2α2 − p2 + (1− α2)(p
′
2 −K2) ≥ θ2α1 − p1 + (1− α1)(p

′
1 −K2).

We claim that α2 ≥ α1; that is, monotonicity is restored in this case.
Again, this can be easily proved by adding up the two IC’s and rear-
ranging:

(θ2 − θ1 +K2 −K1)(α2 − α1) ≥ 0.

We shall show that the optimal class-4 contract is dominated by the
optimal class-2 contract. Note that if we define

P1 = p1 − p′1(1− α1), P2 = p2

we can restate the seller’s problem of finding the optimal class-2 con-
tract as

(P2′) max
{αi,pi,p′i;i=1,2}

π1[P1 −
cα2

1

2
] + π2(P2 −

cα2
2

2
)

subject to p′2 = 0 and

(IR1) θ1α1 − P1 − (1− α1)K1 ≥ 0, p′1 ≥ K1,

(IC1) θ1α1 − P1 − (1− α1)K1 ≥ θ1α2 − P2,

(IR2) θ2α2 − P2 ≥ 0,

(IC2) θ2α2 − P2 ≥ θ2α1 − P1 − (1− α1)p
′
1.
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Moreover, since our earlier analysis shows that IC1 will be redundant,
we can replace it by

(IC1) θ1α1 − P1 − (1− α1)K1 ≥ −∞.

Now, to best relax IC2, we should optimally choose p′1 ∈ [K1, K2], and
if we define

P1 = p1 − p′1(1− α1), P2 = p2 − p′2(1− α2),

then we can rewrite the resulting seller’s maximization problem as

(P4) max
{αi,pi,p′i;i=1,2}

π1[P1 −
cα2

1

2
] + π2[P2 −

cα2
2

2
]

subject to

(IR1) θ1α1 − P1 − (1− α1)K1 ≥ 0, p′1 ∈ [K1, K2],

(IC1) θ1α1 − P1 − (1− α1)K1 ≥ θ1α2 − P2 − (1− α2)K1, p′2 ≥ K2,

(IR2) θ2α2 − P2 − (1− α2)K2 ≥ 0,

(IC2) θ2α2 − P2 − (1− α2)K2 ≥ θ2α1 − P1 − (1− α1)p
′
1.

It follows that to best relax IC2, we should set p′1 = K2, so that the
last constraint becomes

(IC2) θ2α2 − P2 ≥ θ2α1 − P1 − (α2 − α1)K2.

Now take a closer look at the following two maximization problems:

(P2′) max
{αi,pi,p′i;i=1,2}

π1[P1 −
cα2

1

2
] + π2(P2 −

cα2
2

2
)

subject to p′2 = 0 and

(IR1) θ1α1 − P1 − (1− α1)K1 ≥ 0, p′1 ≥ K1,

(IC1) θ1α1 − P1 − (1− α1)K1 ≥ −∞,

(IR2) θ2α2 − P2 ≥ 0,
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(IC2) θ2α2 − P2 ≥ θ2α1 − P1 − (1− α1)p
′
1.

(P4) max
{αi,pi,p′i;i=1,2}

π1[P1 −
cα2

1

2
] + π2[P2 −

cα2
2

2
]

subject to

(IR1) θ1α1 − P1 − (1− α1)K1 ≥ 0, p′1 ∈ [K1, K2],

(IC1) θ1α1 − P1 − (1− α1)K1 ≥ θ1α2 − P2 − (1− α2)K1, p′2 ≥ K2,

(IR2) θ2α2 − P2 − (1− α2)K2 ≥ 0,

(IC2) θ2α2 − P2 ≥ θ2α1 − P1 − (α2 − α1)K2.

Observe that if we set p′1 ≥ α2−α1

1−α1
K2 in problem (P2′), then the feasible

set defined by the constraints in (P4) becomes a subset of the feasible
set defined by the constraints in (P2′).13 This shows that the optimal
class-4 contract is indeed dominated by the optimal class-2 contract.

The upshot of the above findings is that the seller’s optimal contract is
either the optimal class-1 contract or the optimal class-2 contract. We
record this result as a proposition:

Proposition 7 The seller’s optimal contract is as follows.

• If the following condition holds,

π1{θ1[
θ1
c
− (θ2 − θ1)π2

cπ1

]− c

2
[
θ1
c
− (θ2 − θ1)π2

cπ1

]2}

+π2{
θ22
c
− (θ2 − θ1)[

θ1
c
− (θ2 − θ1)π2

cπ1

]− c

2
[
θ2
c
]2}

≥ π1{θ1min(1,
θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
)

13This happens because each and every constraint in (P2′) is implied by the correspond-
ing constraint in (P4).
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−(1− α1)K1 −
c

2
[min(1,

θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
)]2}

+π2{
θ22
c
− c

2
[
θ2
c
]2},

then

α1 =
θ1
c
− (θ2 − θ1)π2

cπ1

, α2 =
θ2
c
,

p1 = θ1[
θ1
c
− (θ2 − θ1)π2

cπ1

],

p2 =
θ22
c
− (θ2 − θ1)[

θ1
c
− (θ2 − θ1)π2

cπ1

],

and
p′1 = p′2 = 0.

• If the following condition holds,

π1{θ1[
θ1
c
− (θ2 − θ1)π2

cπ1

]− c

2
[
θ1
c
− (θ2 − θ1)π2

cπ1

]2}

+π2{
θ22
c
− (θ2 − θ1)[

θ1
c
− (θ2 − θ1)π2

cπ1

]− c

2
[
θ2
c
]2}

< π1{θ1min(1,
θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
)

−(1− α1)K1 −
c

2
[min(1,

θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
)]2}

+π2{
θ22
c
− c

2
[
θ2
c
]2},

then

α1 = min(1,
θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
), α2 =

θ2
c
,

p1 = θ1min(1,
θ1 +K1

c
,

K2 −K1

K2 −K1 + θ2 − θ1
), p2 =

θ22
c
,

p′1 = K1, p′2 = 0.
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