
Game Theory with Applications to Finance and

Marketing, I

Solutions to Homework 1

1. Consider the following strategic game:

player 1/player 2 L R
U 1,1 0,0
D 0,0 3,2

Any NE can be represented by (p, q), where p is the probability that
player 1 adopts U and q the probability that player 2 adopts L.

(i) Show that this game has 3 NE’s: (1,1), (0,0), and (2
3
, 3
4
).

(ii) Now, consider the following new version of the above strategic game.
At the first stage, player 1 can invite either A or B to become player
2 for the above strategic game. At the second stage, player 1 and the
selected player 2 then play the above strategic game. A (or B) gets the
player 2’s payoffs described in the above strategic game, if he accepts
the invitation to play the game. Without playing the game, A can get
a payoff of 1

200
on his own, and B can get a payoff of 3

2
on his own.

The game proceeds as follows. First, player 1 can invite either A or
B, and if the invitation is accepted, then the game moves on to the
second stage; and if the invitation gets turned down, then player 1
can invite the other candidate. If both A and B turn down player 1’s
invitations, then the game ends with A getting 1

200
, B getting 3

2
, and

player 1 getting 0.

Which one between A and B should player 1 invite first? Compute
player 1’s equilibrium payoff.

Solution. Part (i) is straightforward. Player 2’s payoff is 1, 2, and 2
3

in respectively the equilibria (p, q) = (1, 1), (0, 0), and (2
3
, 3
4
).

1



Consider part (ii). If player 1 invites A first, then A will get 1
200

if A
turns down the invitation, and A will get at least 2

3
if A accepts the

invitation. Thus A will always accept player 1’s invitation. Player 1
will not get the chance to invite B again. Thus player 1’s payoff from
inviting A first may equal 1, or 3, or 3

4
.

On the other hand, if player 1 invites B first, then B will get 3
2
if B turns

down the invitation, and B will get more than 3
2
if and only if B expects

to attain the equilibrium (0, 0) subsequently. Thus B will accept player
1’s invitation if and only if B is prepared to play L with probability one
in the strategic game subsequently. Thus when B turns down player
1’s invitation player 1 will get the same payoff as he would when he
invited A first, and when B accepts player 1’s invitation player 1 would
get the payoff of 3 for sure. To sum up, forward induction implies that
player 1 should invite B first.

Remark. When a firm recruits new employees, it typically gives
offers first to those job applicants that other firms would also like to
recruit, even if all job applicants are expected to deliver similar job
performances once recruited. This exercise gives an explanation to this
phenomenon. A newly recruited job applicant that gives up a high
salary that he or she could otherwise have by accepting another job
opportunity signals that he or she intends to work hard, and that he or
she expects to earn more by working hard given that his or her intention
is correctly understood (via forward induction) by the employer (so that
the employer is also expected to work hard accordingly).

We have assumed that A and B do not know their co-existence, as in
the case of a firm recruiting new employees. In this case, A and player
1 must interact without knowing the presence of B, and similarly, B
must interact with player 1 without knowing the presence of A. We
show that it is a better choice for player 1 to contact B first, which
would allow player 1 to use forward induction and to ensure (D,R) as
the unique equilibrium outcome after B accepts the job offer (and B
will because B knows that player 1 would interpret B’s accepting the
offer as a clear indication that B is planning to play R).

If instead it is common knowledge that A and B both exist and have
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the assumed reservation payoffs, then forward induction can be used
by all three players. In the latter case, player 1 can ensure that the
(D,R) equilibrium will prevail no matter which job applicant he is to
contact first. Essentially, player 1 can ensure the (D,R) equilibrium by
first contacting B, and hence when player 1 actually chooses to contact
A first, A must interpret that player 1 is planning to play D in the
subsequent normal form game, and in response A would then play R
with probability one.

2. Consider the following strategic game:

player 1/player 2 L M R
U 2,0 2,2 4,4
M 6,8 8,4 5,0
D 10,6 4,4 6,5

(i) Assume that players are restricted to using only pure strategies.
Find the strategy profiles that survive the procedure of iterative dele-
tion of strictly dominated strategies.

(ii) Assume that players are restricted to using only pure strategies.
Find the strategy profiles that survive the procedure of iterative dele-
tion of non-best-response strategies.

(iii) How would your solutions for parts (i) and (ii) change if players
are allowed to use also mixed strategies?1

1Hint: Define for part (i)

S0
1 = S1 = {U,M,D}, S0

2 = S2 = {L,M,R},

and let Sn
j be the subset of Sn−1

j such that Sn
j contains player j’s pure strategies that are

not strictly dominated when player i is restricted to using only pure strategies contained
in Sn−1

i . Then define

S∞
1 ≡

∞∩
n=1

Sn
1 , S∞

2 ≡
∞∩

n=1

Sn
2 .
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Solution. Consider part (i). Define

S0
1 = S1 = {U,M,D}, S0

2 = S2 = {L,M,R}.

Let Sn
j be the subset of Sn−1

j such that Sn
j contains player j’s pure

strategies that are not strictly dominated when player i is restricted to
using only pure strategies contained in Sn−1

i . Then we have

S1
1 = {M,D}, S1

2 = {L,M,R},

S2
1 = {M,D}, S2

2 = {L},
S3
1 = {D}, S3

2 = {L},
Sn
1 = {D}, Sn

2 = {L}, ∀n ≥ 3,

and hence

S∞
1 ≡

∞∩
n=1

Sn
1 = {D}, S∞

2 ≡
∞∩
n=1

Sn
2 = {L}.

That is, in this game {D,L} is the unique strategy profile that survives
the procedure of iterative deletion of strictly dominated strategies.

Consider part (ii). Define

H0
1 = S1 = {U,M,D}, H0

2 = S2 = {L,M,R}.

The strategy profiles that survive the procedure of iterative deletion of strictly dominated
strategies are the elements of the Cartesian product S∞

1 × S∞
2 .

Define for part (ii)

H0
1 = S1 = {U,M,D}, H0

2 = S2 = {L,M,R},

and let Hn
j be the subset of Hn−1

j such that Hn
j contains all player j’s pure-strategy best

responses when player i is restricted to using only pure strategies contained in Hn−1
i .

Then define

H∞
1 ≡

∞∩
n=1

Hn
1 H∞

2 ≡
∞∩

n=1

Hn
2 .

The strategy profiles that survive the procedure of iterative deletion of non-best-response
strategies are the elements of the Cartesian product H∞

1 ×H∞
2 .
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Let Hn
j be the subset of Hn−1

j such that Hn
j contains all player j’s

pure-strategy best responses when player i is restricted to using only
pure strategies contained in Hn−1

i . Then we have

H1
1 = {M,D}, H1

2 = {L,R},

H2
1 = {D}, H2

2 = {L},

Hn
1 = {D}, Hn

2 = {L}, ∀n ≥ 2,

and hence

H∞
1 ≡

∞∩
n=1

Hn
1 = {D}, H∞

2 ≡
∞∩
n=1

Hn
2 = {L}.

That is, in this game {D,L} is the unique strategy profile that survives
the procedure of iterative deletion of non-best-response strategies.

Now, consider part (iii). First consider allowing mixed strategies in
part (i). Let Σj be the set of mixed strategies available for player
j. Let Σ0

j = Σj, and Σn
j be the set of elements in Σn−1

j that are not
strictly dominated mixed strategies from player j’s perspective, given
that player i is restricted to using mixed strategies in Σn−1

i . Now, ob-
serve that Σ1

1 does not contain any mixed strategies that assign a posi-
tive probability to U. That is, Σ1

1 contains only (some) mixed strategies
that randomize over M or D. Observe also that against any element in
Σ1

1, L strictly dominates any other mixed strategy for player 2. Thus
Σn

2 = {L}, ∀n ≥ 2, so that Σn
1 = {D}, ∀n ≥ 3. It follows that

Σ∞
1 ≡

∞∩
n=1

Σn
1 = {D}, Σ∞

2 ≡
∞∩
n=1

Σn
2 = {L},

and hence {D,L} must be the unique strategy profile that survives the
procedure of iterative deletion of strictly dominated strategies, even if
the players are allowed to use mixed strategies.

Finally, consider allowing mixed strategies in part (ii). It is clear that
each mixed strategy of player 1 that can become a best response against
player 2 using any mixed strategies must assign zero probability to U.
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Player 2’s best response (in mixed strategy) against any mixed strategy
of player 1 that assigns zero probability to U is L. Player 1’s best
response (in mixed strategy) against L is D. It follows that, in this
game, {D,L} must be the unique strategy profile that survives the
procedure of iterative deletion of non-best-response strategies, even if
the players are allowed to use mixed strategies.

3. Players 1 and 2 are living in a city where on each day the weather is
equally likely to be sunny (S), cloudy (C), or rainy (R). Players 1 and
2 are supposed to play the following strategic game at date 1.

player 1/player 2 L R
U 15,3 0,0
D 12,12 3,15

(i) Suppose that the above strategic game must be played before players
1 and 2 know anything about the date-1 weather. Verify that the game
has two pure-strategy NE’s and one mixed-strategy NE. Suppose that
before playing the strategic game, players 1 and 2 both believe that they
may attain each pure-strategy NE with probability a < 1

2
and they may

attain the mixed-strategy NE with probability 1 − 2a. Compute the
expected Nash-equilibrium payoff for player 1 given a.

(ii) Now, suppose that for i = 1, 2, player i receives a weather report si
right before playing the above strategic game at date 1. The weather
report s1 tells player 1 whether the weather will or will not be sunny.
The weather report s2 tells player 2 whether the weather will or will not
be rainy. That the two players will receive these two weather reports
is their common knowledge at the beginning of date 1. Consider the
following strategy profile:

• Player 1 uses U if the weather will be sunny, and he uses D if the
weather will not be sunny.

• Player 2 uses R if the weather will be rainy, and he uses L if the
weather will not be rainy.
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Does this strategy profile constitute a Nash equilibrium?2 If it does,
compute player 1’s equilibrium payoff. Compare this payoff to player
1’s expected Nash-equilibrium payoff that you obtained in part (i).
Explain.3

Solution. Consider part (i). Let p be the probability that player 1
may use U, and q the probability that player 2 may use L. We have 3
NE’s for this game, in which (p, q) equals respectively (1, 1), (0, 0), and
(1
2
, 1
2
). Given a, player 1’s expected Nash-equilibrium payoff is equal to

a · 15 + a · 3 + (1− 2a) · 1
4
(15 + 0 + 12 + 3)

= 18a+
15

2
− 15a = 3a+

15

2
.

Consider part (ii).

• First suppose that the true weather state is sunny.

In this event, player 1 knows that the state is sunny, and he knows
that player 2 knows that the state is not rainy, and according to
player 2’s strategy described above, player 1 expects player 2 to

2This strategy profile is not an NE of the original strategic game without weather
reports, which has been analyzed in part (i). In part (ii), with weather reports, we have
a new game where players’ strategies are functions that map weather information into
actions.

3Hint: Show that

• when the state is sunny, given player 2’s strategy described above it is optimal for
player 1 to use U, and given player 1’s strategy described above it is optimal for
player 2 to use L;

• when the state is cloudy, given player 2’s strategy described above it is optimal for
player 1 to use D, and given player 1’s strategy described above it is optimal for
player 2 to use L; and

• when the state is rainy, given player 2’s strategy described above it is optimal for
player 1 to use D, and given player 1’s strategy described above it is optimal for
player 2 to use R.
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use L with probability one. Player 1’s best response against player
2 using L is indeed U, according to our analysis in part (i).

On the other hand, player 2 knows that the weather state is not
rainy, and hence is equally likely to be sunny or cloudy, and ac-
cording to player 1’s strategy described above, player 2 expects
player 1 to use U or D with equal probability. It is clear from
our analysis in part (i) that player 2 indeed feels indifferent about
using L or R, and in equilibrium player 2 uses L with probability
one.

• Next, suppose that the true weather state is cloudy.

In this event, player 1 knows that the state is not sunny, and hence
is equally likely to be cloudy or rainy, and according to player 2’s
strategy described above, player 1 expects player 2 to use L and
R with equal probability. Player 1 feels indifferent about U and
D, according to our analysis in part (i), and in equilibrium player
1 uses D with probability one.

On the other hand, player 2 knows that the weather state is not
rainy, and hence is equally likely to be sunny or cloudy, and ac-
cording to player 1’s strategy described above, player 2 expects
player 1 to use U and D with equal probability. It is clear from
our analysis in part (i) that player 2 indeed feels indifferent about
using L or R, and in equilibrium player 2 uses L with probability
one.

• Finally, suppose that the true weather state is rainy.

In this event, player 1 knows that the state is not sunny, and hence
is equally likely to be cloudy or rainy, and according to player 2’s
strategy described above, player 1 expects player 2 to use L and
R with equal probability. Player 1 feels indifferent about U and
D, according to our analysis in part (i), and in equilibrium player
1 uses D with probability one.

On the other hand, player 2 knows that the weather state is rainy,
and according to player 1’s strategy described above, player 2
expects player 1 to use D with probability one. It is clear from
our analysis in part (i) that player 2’s best response against player
1 using D is indeed R.
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To sum up, the aforementioned strategy profile does constitute an equi-
librium. In this equilibrium, player 1’s payoff is

15 · prob.(sunny) + 12 · prob.(cloudy) + 3 · prob.(rainy)

= 10 > 3a+
15

2
, ∀a ∈ [0,

1

2
].

Remark. To see why this “correlated equilibrium” in part (ii) gener-
ates for each player an expected payoff higher than the expected Nash
equilibrium payoff in part (i), note that by making their date-1 actions
contingent on the date-1 (imperfect) weather reports, the two players
can make sure that the undesirable outcome (U,R) never arises in equi-
librium, and the pleasant outcome (D,L), which is not an NE of the
original normal-form game, can now arise when the weather is cloudy.
Indeed, player 1 would adopt U only when the weather state is sunny,
but player 2 would adopt R only when the weather state is rainy, and
hence (U,R) never arises in any weather state. On the other hand,
(D,L) is now implemented when the weather is cloudy. This cannot be
done in a mixed strategy Nash equilibrium without a correlated device
(i.e., the two weather reports): in the mixed-strategy NE obtained in
part (i), the two players must randomize over their pure strategies in a
stochastically independent manner, which implies that (U,R) may arise
with probability 1

4
!

That the weather reports do not always deliver precise information is
also important in leading to the above result. To see this, suppose
instead that both players’ weather reports tell them the exact weather
state at date 1. In this case, given a realized weather state, the two
players can only attain one Nash equilibrium payoff profile in part (i),
which implies, in particular, that (D,L) can never arise as an equi-
librium profile when the weather is cloudy. With imprecise weather
information when the weather state is cloudy, however, player 1 thinks
that player 2 may adopt L or R with equal probability, and player 2
thinks that player 1 may adopt U or D with equal probability, and
that is why player 1 feels indifferent about U and D and player 2 feels
indifferent about L and R, and in equilibrium player 1 adopts D with
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probability one and player 2 adopts L with probability one. The out-
come (D,L) generates 12 for each player, which, together with the fact
that (U,R) never arises in equilibrium, explains why the two players
expect a payoff from this correlated equilibrium which is higher than
the expected Nash equilibrium payoff of the original game without any
correlated device.4

4. (Retailer’s Opportunistic Pricing Behavior and Consumers’
Coupon Redemption.) There are two consumers with unit demand
for the product produced by a firm. The firm has no production costs.
The two consumers’ valuations for the product are respectively H and
L. The firm has already issued a cents-off coupon with face value v,
and to redeem the coupon the two consumers must incur costs TH and
TL respectively.5

4When the weather reports always deliver precise information, an attainable expected
payoff profile is simply a weighted average of the 3 Nash equilibrium payoff profiles in the
original normal-form game. Indeed, the following are the attainable payoff profiles:

(15, 3), (3, 15), (
15

2
,
15

2
),

2

3
(15, 3) +

1

3
(3, 15) = (11, 7),

2

3
(15, 3) +

1

3
(
15

2
,
15

2
) = (

9

2
,
9

2
),

1

3
(15, 3) +

2

3
(3, 15) = (7, 11),

1

3
(
15

2
,
15

2
) +

2

3
(3, 15) = (

9

2
,
9

2
),

1

3
(15, 3) +

2

3
(
15

2
,
15

2
) = (10, 6),

1

3
(3, 15) +

2

3
(
15

2
,
15

2
) = (6, 10),

1

3
(15, 3) +

1

3
(3, 15) +

1

3
(
15

2
,
15

2
) = (

17

2
,
17

2
).

In the above, if payoff profiles (x, y) and (y, x) are equally likely to arise, then the expected
payoff profile always falls short of 10, where recall 10 is the expected payoff that each player
obtains in the correlated equilibrium of part (ii).

5Therefore consumer H gets a surplus H − (p − v) − TH if he decides to obtain the
coupon and present it to the firm at the time he makes the purchase. Similarly, consumer
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Assume that
2L− v > H ≥ L+ v > L > 0,

and that
H − v ≥ H − TH > L− TL > v − TL > 0.

The extensive game starts after the firm has alreay chosen v, and it is
described as follows.

• Seeing v, the two consumers must decide independently whether
to carry the coupon and redeem it on the shopping day. A con-
sumer with valuation j ∈ {H,L} will incur a cost Tj before the
shopping day if he decides to carry the coupon till the shopping
day. Consumers’ decisions about whether to carry the coupon are
unobservable to the firm.

• Then, on the shopping day, the firm must choose a retail price p
before consumers arrive.

• Then, consumers walk in the store, see p, and decide whether
to make a purchase, and if they have carried a coupon till the
shopping day, (it is obviously a dominant strategy at this moment)
to present the coupon to the firm in order to get a price reduction
equal to v.

(i) Show that given that v satisfies the above conditions, this game has
a unique Nash equilibrium where consumer H will never redeem the
coupon while consumer L and the firm both use mixed strategies in
equilibrium; that is, in equilibrium consumer L feels indifferent about
redeeming and not redeeming the coupon, and the firm feels indifferent
about two optimal prices p2 > p1.

6

L gets a surplus L− (p− v)− TL if he decides to obtain the coupon and present it to the
firm at the time he makes the purchase. Of course, a consumer can always forget about
the coupon, and simply make the purchase. In the latter case, consumer H would get a
surplus H − p and consumer L would get a surplus L− p. Recall that each consumer gets
zero surplus if he chooses to make no purchase.

6Note that the redemption cost Tj is already sunk on the shopping day. If the firm
expects consumer L to carry the coupon with probability one, then p = L + v, so that
consumer L will end up with a negative consumer surplus; and if the firm expects con-
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(ii) Now, suppose instead that 2L > H > M , where

M = 2L− kv,

with

k =
L− v

L+ v
∈ (0, 1).

Re-consider the above extensive game. Solve for the mixed-strategy
NEs.7

Solution. We shall give a detailed analysis for part (i), and then part
(ii) can be analyzed analogously.

Consider part (i). Recall thatH ≥ L+v. Because of TH ≥ v, redeeming
the coupon would reduce consumer H’s valuation. Because consumer
H would not redeem the coupon, the firm would set p = H if the firm
wants to serve consumer H only. Because the firm can set p = L to serve
both consumers H and L and because 2L−v > H, p = H is dominated
by p = L. (If p = L, the worst possible case facing the firm is the
situation where L carries a coupon, so that the firm must reimburse
an amount v to L, implying the firm gets a revenue 2L − v, which is
still greater than H, which is the revenue from serving H alone.) Note
that all p < L are dominated by p = L (both consumers will buy the
product at any such p, with or without a coupon). Note that when
consumer L sees the price p, the redemption cost has been sunk, and
thus all p ∈ (L,L + v) are dominated by p = L + v (at any such p,
consumer L will buy the product if and only if he is carrying a coupon;

sumer L to not carry the coupon with probability one, then p = L, so that consumer L
actually prefers to carry the coupon before the shopping day. Show that there can be
no pure strategy equilibrium. Then, argue that in a mixed strategy equilibrium, the firm
randomizes over at most two prices.

7Verify that the solution to part (i) is still valid if H < M . Show that if H = M , then
we have a continuum of mixed-strategy NEs, where the firm randomizes over the three
prices L, L+v, and H, with the probability of pricing at L being TL

v , and where consumer
L redeems the coupon with probability k. Show that if 2L > H > M , then in equilibrium
the firm randomizes over L and H, with the probability of pricing at L being TL

v , and

with consumer L redeeming the coupon with proability 2L−H
v .
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consumer H will buy the product always if we assume that H ≥ L+v).
When p > L + v, only consumer H may buy the product. Because of
2L > H, all p > L+ v are dominated by p = L. We conclude that only
p = L and p = L+ v are undominated choices for the seller.

Is there a pure-strategy equilibrium where p = L? Given that the firm
sets price at L, consumer L will redeem the coupon. But given that
consumer L will redeem the coupon, the firm has an incentive to raise
the price to L + v (TL will be sunk when consumer L sees p!). Thus
this equilibrium cannot exist.

Is there a pure-strategy equilibrium where p = L + v? Given that the
firm sets price at L + v, consumer L will not redeem the coupon, but
given that consumer L does not redeem the coupon in equilibrium, the
firm is better off pricing at L. Thus, this pure-strategy equilibrium
cannot exist either. We conclude that there exist no pure-strategy
equilibria for this game.

Consider the the mixed-strategy equilibrium where the firm sets p2 =
L+ v with probability x and p1 = L with probability 1− x, consumer
L redeems the coupon with probability y, and consumer H does not
redeem the coupon. Note that at both p1 and p2, consumer H always
buy the product. Since the firm uses a mixed strategy in equilibrium,
it must obtain the same payoff choosing the prices p1 and p2. Thus,

(1 + y)(L+ v)− yv = 2L− yv.

Solving the equation above, we have y = L−v
L+v

. Similarly, since consumer
L uses a mixed strategy in equilibrium, consumer L is indifferent about
redeeming and not redeeming the coupon. Thus,

x(−TL) + (1− x)(v − TL) = 0.

Solving the equation bove, we have x = 1 − TL

v
. Therefore, there is a

unique mixed-strategy equilibrium with x = 1− TL

v
and y = L−v

L+v
.

Now, consider part (ii). Note that by assumption

2L > max(H,M).
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The equilibria can be classified as follows.

• It is easy to verify that the solution to part (i) remains valid if
L+ v ≤ H < M .8

• If instead H < L + v < M , then there exists a pure-strategy
equilibrium where the firm prices at H with probability one.9 10

• If instead H = M , then we have a continuum of mixed-strategy
NEs, where the firm randomizes over the three prices L, L + v,
and H, with the probability of pricing at L being TL

v
, and where

consumer L redeems the coupon with probability k.

• Finally, if H > M ,11 then in equilibrium the firm randomizes over
L and H, with the probability of pricing at L being TL

v
, and with

consumer L redeeming the coupon with probability 2L−H
v

.

5. (Competitive Manufacturers May Make More Profits with
Non-integrated Distribution Channels.) Recall the Cournot game
in Example 1 of Lecture 1, Part I. Assume that c = F = 0 and the
inverse demand in the relevant range is

P (Q) = 1−Q, 0 ≤ Q = q1 + q2 ≤ 1.

(i) Find the equilibrium profits for the two firms.
(ii) Now suppose that the two manufacturing firms cannot sell their
products to consumers directly. Instead, firm i (also referred to as
manufacturer i) must first sell its product to retailer Ri. Then retailers
R1 and R2 then compete in the Cournot game. The extensive game is
now as follows.

• The two firms first announce F1 and F2 simultaneously, where Fi

is the franchise fee that firm i will charge retailer i, which is a

8Note that M is exactly the expected profit that the firm obtains in the mixed-strategy
equilibrium obtained in part (i).

9Again one can verify that the firm cannot price at either L or L+ v in a pure-strategy
equilibrium.

10In this pure-strategy equilibrium, the firm’s expected profit is 2H − v, because con-
sumer L will redeem the coupon with probability one. The firm does not want to deviate
and price at L+ v, because 2H − v > (L+ v)− v = L.

11Verify that M > L+ v always!
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fixed cost of retailer i. R1 and R2 simultaneously decide to or not
to turn down the offers made by the firms. Assume that firm i
and retailer Ri both get zero payoffs if Fi gets turned down by
retailer Ri.

• Then, after knowing whether F1 and F2 get accepted by respec-
tively R1 and R2, the two firms announce w1 and w2 simultane-
ously, where wi is the unit whole price that firm i will charge
retailer i.

• Next, in case the firms’ offers are both accepted, then given (F1, F2, w1, w2),
the two retailers simultaneously choose q1 and q2.

Show that in the unique subgame-perfect Nash equilibrium (SPNE)
each manufacturing firm gets a profit of 10

81
. (Hint: Backward induc-

tion asks you to always start from the last-stage problem, which is the
Nash equilibrium of the subgame where R1 and R2 play the Cournot
game given some (F1, F2, w1, w2). You can show that the equilibrium
(q∗1, q

∗
2) depend on (w1, w2) but not on (F1, F2), because the latter are

fixed costs. Then, you should move backwards to consider the two
manufacturers’ competition in choosing w1 and w2, given some (F1, F2).
Here assume that the two manufacturers know that different choices of
w1 and w2 will subsequently affect R1’s and R2’s choices of q1 and q2.
Finally, you can move to the first-stage of the game, where the two
firms simultaneously choose F1 and F2.)

12

Solution. Let us solve the SPNE using backward induction. First
consider the subgame where (F1, F2, w1, w2) are given, and the two
retailers are about to choose q1 and q2. Retailer i, given qj, seeks to

max
qi

ΠR
i (qi, qj;wi, Fi) ≡ qi(1− qi − qj − wi)− Fi.

12This exercise intends to show why employing independent retailers may be a good idea
even if using a firm’s own outlets can be cheaper. Essentially, employing an independent
retailer amounts to delegating the retailer the choice of output, knowing that the retailer,
unlike the manufacturer, will be choosing output given a positive unit cost wi! A higher
unit cost credibly convinces the rival retailer that less output will be produced, and with
both manufacturers producing less outputs, their profits become higher.
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The first-order condition gives retailer i’s reaction function

ri(qj;wi) =
1− qj − wi

2
, ∀i, j ∈ {1, 2}, i ̸= j.

Thus there is a unique NE in this subgame, which is13

(q∗1(w1, w2), q
∗
2(w1, w2)) = (

1− 2w1 + w2

3
,
1 + w1 − 2w2

3
).

Correspondingly, the two retailers’ profits are

ΠR
1 (q

∗
1(w1, w2), q

∗
2(w1, w2);w1, F1) =

(1− 2w1 + w2)
2

9
− F1

and

ΠR
2 (q

∗
2(w1, w2), q

∗
1(w1, w2);w2, F2) =

(1− 2w2 + w1)
2

9
− F2.

Now, consider the stage where (F1, F2) are given and the two manufac-
turers are about to choose w1 and w2. Manufacturer i, given wj, seeks
to

max
wi

Fi + wiq
∗
i (wi, wj), ∀i, j ∈ {1, 2}, i ̸= j.

The first-order condition gives

wi =
1 + wj

4
, ∀i, j ∈ {1, 2}, i ̸= j.

Note that w1 and w2 are indeed strategic complements!14 Thus there
is a unique NE in this subgame where the two manufacturers both set
the unit wholesale price at 1

3
:

w∗
1 = w∗

2 =
1

3
.

13Why does q∗i increase with wj? Again, this results from the fact that q1 and q2 are
strategic substitutes. A higher wj means that retailer j is faced with a higher unit cost,
and hence qj ought to be lower, which then implies that retailer i should optimally respond
by choosing a higher qi.

14When manufacturer i expects manufacturer j to choose a higher wj , it realizes that,
keeping its choice wi unchanged, subsequently the two retailers will choose higher q∗i and
lower q∗j , which marginally encourages manufacturer i to raise wi in the first place: the
drawback of raising wi is that it leads to a lower q∗i , and hence it is less costly to do this
when q∗i rises because of a higher wj ! This explains strategic complementarity between wi

and wj .
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In this equilibrium, for i = 1, 2, manufacturer i’s profit is

Fi +
6

81
.

The correspondingly profits of the two retailers are

ΠR
1 (q

∗
1(
1

3
,
1

3
), q∗2(

1

3
,
1

3
);
1

3
, F1) =

4

81
− F1

and

ΠR
2 (q

∗
2(
1

3
,
1

3
), q∗1(

1

3
,
1

3
);
1

3
, F2) =

4

81
− F2.

Now, consider the stage where the two manufacturers are about to
choose F1 and F2. Manufacturer i’s problem is

max
Fi

Fi +
6

81

subject to

ΠR
i (q

∗
i (
1

3
,
1

3
), q∗j (

1

3
,
1

3
);
1

3
, Fi) =

4

81
− Fi ≥ 0.

There is a unique SPNE in this game where F1 = F2 = 4
81
, and hence

the two manufacturers’ equilibrium profits are both 10
81
.

Remark. We must emphasize here the role of the timing of the game.
That the two firms are able to first offer F1 and F2 to respectively R1
and R2 and then to subsequently choose w1 and w2 is important to the
above result. If instead the two manufacturers must offer (F1, w1) and
(F2, w2) to R1 and R2 at the first stage of the game, then given wj,
firm i would like to choose wi = 0, because a zero unit wholesale price
can serve as a commitment that convinces Rj that Ri would produce
more given any quantity qj (or, simply, Ri’s reaction function will be
shifted upwards).15

This commitment is valuable, because output choices are strategic sub-
stitutes, which implies that Rj will reduce output qj if Rj believes that

15In this case, given (Fj , wj), manufacturer i seeks to

max
(Fi,wi)

Fi + wiq
∗
i (wi, wj),
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it is faced with a more aggressive reaction function. Consequently,
choosing wi = 0 can raise Ri’s profit, which in turn implies that, man-
ufacturer i in offering wi = 0, can choose a higher Fi to extract Ri’s
profit.

In the current setting, however, given that F1 and F2 were offered and
accepted in the preceding stage, the two firms in choosing w1 and w2

would never choose a zero unit wholesale price, because a zero whole-
sale price would result in no additional income for the manufacturer.
Indeed, at this stage, as we have shown, regardless of F1 and F2, the
two firms choose w1 = w2 > 0. Retailer Ri can infer this fact (as we
do) when it must decide whether to accept Fi. This explains why in
equilibrium the two manufacturers are able to set F1 = F2 =

4
81
.

Note that when a single manufacturer chooses a positive unit wholesale
price, it induces its downstream retailer to reduce output (because the
unit wholesale price is the retailer’s unit cost, and a higher unit cost

subject to
q∗i (1− q∗i − q∗j − wi)− Fi ≥ 0.

Optimality requires that the latter constraint be binding, and hence

Fi = q∗i (1− q∗i − q∗j − wi),

or equivalently, manufacturer i seeks to

max
wi≥0

q∗i (1− q∗i − q∗j ) ≡ H(wi;wj) =
1

9
(1− 2wi + wj)(1 + wi + wj),

where the new objective function is simply the profit function facing an otherwise-identical
vertically integrated channel (that is, the firm that is both manufacturer i and Ri). Since
q∗i and q∗j are respectively decreasing and increasing in wi, it is easy to verify that this
new objective function is decreasing in wi given wj , and hence we obtain a corner solution
wi = 0. Indeed, direct differentiation yields

∂H

∂wi
=

1

9
(−4wi − wj − 1) < 0,⇒ w∗

i = 0.

The same argument applies to manufacturer j as well, and hence when the two manu-
facturers must offer (F1, w1) and (F2, w2) to R1 and R2 at the first stage of the game,
the latter two retailers behave just like firms 1 and 2 in Example 1 in Lecture 1, Part
I (with zero production costs). As can be easily checked, in the current situation, with
w1 = w2 = 0, the two retailers will choose q∗1 = q∗2 = 1

3 .
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leads to a lower output choice), which, by the fact that output choices
are strategic substitutes, in turn encourages the other retailer to expand
output, which hurts the manufacturer’s downstream retailer. However,
with both manufacturers offering positive unit wholesale prices, the net
effect of positive wholesale prices is to induce both retailers to select an
output level that is lower than the output level that the two manufac-
turers would choose in the absence of independent retailers (or, in the
case of vertically integrated distribution channels). This lower output
level then leads to a higher equilibrium retail price, which raises the
sum of the manufacturer’s and the retailer’s profits in each distribution
channel. The sum of profits of the manufacturer and the retailer co-
incides with the manufacturer’s equilibrium profit in the current case,
because by assumption the manufacturer can offer a two-part tariff to
its downstream dealer, leaving the latter with a zero profit.16

6. (Entry Deterrence by a Monopolistic Incumbent.) Consider
the following extensive game in which firms A and B may compete in
quantity at date 1 and date 2. Both firms seek to maximize the sum
of expected date-1 and date-2 profits. The inverse demand at date
t ∈ {1, 2}, in the relevant region, is Pt = 1−Qt, where Pt is the date-t
product price and Qt = qAt + qBt is the sum of the two firms’ supply
quantities at date t. Assume that there are no production costs for the
two firms.

• At date 1, originally firm A is the only firm in the industry. Firm

16We have assumed that the two firms have homogeneous products and the demand is
linear. When the two firms’ products are differentiated or when the demand functions
are not linear, raising the equilibrium product prices by using an independent retailer
may reduce a manufacturer’s sales volume by too much and hence may or may not be a
good idea; see Patrick Rey and Joseph Stiglitz, 1995, The Role of Exclusive Territories
in Producers’ Competition, Rand Journal of Economics, 26, 431-451. See also T. W.
McGuire and R. Staelin, 1983, An Industry Equilibrium Analysis of Downstream Vertical
Integration, Marketing Science, 2, 161-191. Note that if a manufacturer i sells through
more than one retailer in a small district, then intra-brand competition between these
retailers will lead to the Bertrand outcome where all retailers hired by manufacturer i offer
wi as the retail price—the distribution channel of manufacturer i is essentially vertically
integrated! This highlights the importance of hiring exactly ONE independent retailer (a
practice referred to as exclusive territory), if manufacturer i would like to raise its retail
price by hiring independent retailers.
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A must first choose qA1. Upon seeing firm A’s choice qA1, firm B
must decide whether to spend a cost K > 0 to enter the industry.
If K is spent, then B must choose qB1. Then the two firms’ date-1
profits πA1 and πB1 are realized, where πB1 = 0 if firm B decides
not to enter the industry.

• At date 2, if firm B did not enter at date 1, then firm A, the
monopolistic firm in the industry, must choose qA2. If, on the
other hand, firm B has entered at date 1, then the two firms choose
quantities qA2 and qB2 simultaneously. Then, the two firms’ date-2
profits πA2 and πB2 are realized, where πB2 = 0 if firm B did not
enter the industry at date 1.

Now we solve for the subgame perfect Nash equilibrium for this game.
(i) Suppose that K = 1

5
. Find the equilibrium qA1 and qA2.

(ii) Suppose that K = 1
9
+ 1

25
. Find the equilibrium qA1 and qA2.

(iii) Suppose that K = 1
25
. Find the equilibrium qA1 and qA2.

Solution. Let us solve the game by backward induction. Consider
the subgame at date 2.

• If both firms exist, it is easy to show (or recall from Lecture 1,
part I) that qA2 = qB2 = 1

3
= P2, and the corresponding date-2

profit is 1
9
for each firm.

• If only firm A exists at date 2, then it will get the monopoly profit
1
4
by producing qA2 =

1
2
= P2.

Now, move backwards to consider the date-1 subgame where qA1 has
been chosen, and firm B has spent K. In this case, firm B’s optimal
supply quantity is 1−qA1

2
; recall Lecture 1, part I. This implies that firm

B’s profit over the two dates is

−K +
(1− qA1)

2

4
+

1

9
.

Next, consider the date-1 subgame where qA1 has been chosen, and firm
B is about to decide whether to spend K. From the preceding analysis,
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we know that firm B’s optimal decision is as follows: spending K if and
only if

K <
(1− qA1)

2

4
+

1

9
.

Note that we have assumed that firm B will stay out if entering does
not generate a positive profit for it.

Now, we can finally consider firm A’s choice of qA1.

• If qA1 is such that

K ≥ (1− qA1)
2

4
+

1

9
,

then firm B will not enter at date 1, and hence firm A’s profit over
the two dates is

qA1(1− qA1) +
1

4
.

• If qA1 is such that

K <
(1− qA1)

2

4
+

1

9
,

then firm B will enter at date 1, and hence firm A’s profit over
the two dates becomes

qA1 ×
1− qA1

2
+

1

9
.

Note that in either of the two cases considered above, in the absence
of the constraint involving K, firm A’s unconstrained optimal date-1
supply quantity must maximize qA1(1−qA1); that is, the unconstrained
optimal supply quantity is 1

2
, which is the optimal supply quantity for

a monopolistic firm.

Thus we can summarize firm A’s optimal date-1 output policy as fol-
lows.

(a) If

K ≥
(1− 1

2
)2

4
+

1

9
=

1

16
+

1

9
,
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then firm B would not enter when firm A chooses its unconstrained
optimal supply quantity qA1 = 1

2
. Thus it is indeed optimal for

firm A to choose qA1 =
1
2
, and it follows that qA2 =

1
2
also. In this

case we say that firm A’s date-1 output policy blocks the entry of
firm B.

(b) If

K <
(1− 1)2

4
+

1

9
=

1

9
,

then firm B will still enter even if firm A chooses qA1 = 1 (which
minmaxes firm B at date 1), and in this case firm A’s optimal date-
1 output strategy is qA1 = 1

2
, which leads to qB1 = 1−qA1

2
= 1

4
, so

that firm A’s profit over the two dates is qA1 ×P1 +
1
9
= 1

8
+ 1

9
. In

this case we say that firm A’s date-1 output policy accomodates
the entry of firm B.

(c) If
1

16
+

1

9
> K ≥ 1

9
,

then firm B will enter if and only if K < (1−qA1)
2

4
+ 1

9
, where note

that the right-hand side is strictly decreasing in qA1 for qA1 ∈ [0, 1].
Thus firm A’s date-1 output qA1 determines whether firm B will
enter, and the higher qA1 is, the less likely that the constraint

K < (1−qA1)
2

4
+ 1

9
may hold. We say in this case that firm A’s

date-1 output policy deters the entry of firm B, if firm B does not
enter in equilibrium. Firm A’s optimal date-1 output that results
in firm B entering the industry has been solved above, which is
qA1 = 1

2
, and firm A’s payoff from accomodating the entry is

correspondingly 1
8
+ 1

9
. On the other hand, firm A’s optimal date-

1 output that induces firm B to not enter can be obtained by
solving the following maximization program:

(P) max
qA1∈[0,1]

qA1(1− qA1) +
1

4

subject to

K ≥ (1− qA1)
2

4
+

1

9
,
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and at optimum the above constraint must be binding: if not, then
the optimal qA1 would equal 1

2
, which, by the fact that K < 1

16
+ 1

9
,

would induce rather than deter B’s entry. Thus firm A’s optimal
date-1 output is

q∗A1 = 1−
√
4(K − 1

9
) ∈ (

1

2
, 1].

We claim that, indeed, choosing this entry-deterring output is
better than choosing qA1 = 1

2
to accomodate entry. To see this,

recall that by accomodating firm A’s payoff is 1
8
+ 1

9
, which is less

than 1
4
, the payoff that firm A would obtain by choosing qA1 = 1

to deter B’s entry. Note that the date-1 output choice qA1 = 1 is
feasible but is generally suboptimal; it is optimal (i.e., q∗A1 = 1)
only when K = 1

9
. Thus we conclude that choosing q∗A1 to deter

entry at date 1 is indeed the optimal strategy for firm A given
that 1

16
+ 1

9
> K ≥ 1

9
.

To sum up, our solutions for parts (i)-(iii) are as follows.

• (i) For K = 1
5
= 25

125
> 25

144
= 1

16
+ 1

9
, entry is blocked, and we have

qA1 = qA2 =
1
2
.

• (ii) For K = 1
9
+ 1

25
, which lies between 1

9
and 1

16
+ 1

9
, entry is

deterred, and qA1 =
3
5
and qA2 =

1
2
.

• (iii) For K = 1
25

< 1
9
, entry can only be accomodated, and hence

qA1 =
1
2
and qA2 =

1
3
.

This exercise explains why a monopolistic firm may not always produce
the monopoly output stated in an economics textbook. Observationally
firm A is a monopolistic firm at date 2, but this could be a consequence
of its non-monopolistic output choice q∗A1: if it insists on producing
the monopoly output 1

2
, it may induce entry at date 1, which would

destroy its monopolistic status at date 2. In part (ii), for example, the
monopolistic firm must produce at 3

5
> 1

2
in order to deter entry. In

this sense, even a monopolistic firm has potential competitors, and the
presence of potential competitors is enough to force the monopolistic
firm to produce more, so that its output choice may get closer to the
socially efficient output level. See the formal analysis in Dixit, A.,
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1980, The role of investment in entry deterrence, Economic Journal,
90, 95-106.

7. (Signal Jamming and Cournot Competition) Consider firms 1
and 2 that engage in Cournot competition at t = 1 and t = 2, fac-
ing random demand functions at both periods. The inverse demand
function at t = 1 is

p̃1 = ã− q1 − q2,

where ã is a positive random variable with E[ã] = 1 and qj is firm j’s
output level at t = 1. The inverse demand function at t = 2 is

p̃2 = b̃−Q1 −Q2,

where b̃ is a positive random variable and Qj is firm j’s output level
at t = 2. Each firm seeks to maximize the sum of expected profits
over the two periods. That is, both firms are risk-neutral without time
preferences.

The game proceeds as follows.

• At the beginning of t = 1, both firms must simultaneously make
output choices q1 and q2 without seeing the realization of ã.

• At the beginning of t = 2, after knowing qj and the realization p1
of p̃1, firm j must choose Qj. The two firms make output choices
at the same time, without seeing the realization of either ã or b̃.
At this time, firm j does not see qi that was chosen by its rival,
firm i.

(i) First assume that b̃ and ã are independently and identically dis-
tributed. Solve the equilibrium output choices (q∗1, q

∗
2, Q

∗
1, Q

∗
2) in the

unique SPNE.

(ii) Ignore part (i). Now assume instead that b̃ = λã, where λ < 2 is a
constant known to both firms. Solve the unique symmetric SPNE.
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(iii) Do the two firms get higher date-1 expected profits in part (ii) or
in part (i)? Why?

(iv) Suppose that λ = 1. Do the two firms get higher date-2 expected

25



profits in part (ii) or in part (i)? Why?17

17Hint: Verify that (q∗1 , q
∗
2 , Q

∗
1, Q

∗
2) = ( 13 ,

1
3 ,

1
3 ,

1
3 ) in part (i). For part (ii), let

(q∗, Q∗(p1, q)) denote the unique symmetric SPNE, where both firms choose q∗ at t = 1,
and both choose Q∗(p1, q) after choosing q at t = 1 and subsequently learning that the
realization of p̃1 is p1. Then in equilibrium, p̃1 = ã−2q∗, or ã = p̃1+2q∗. At the beginning
of t = 2, given the realization p1 of p̃1 and its own output choice qi at t = 1, and given that
firm j does not deviate from its equilibrium strategy, firm i knows that ã = p1 + qi + q∗.
Moreover, firm i knows that that firm j would believe that ã = p1 + 2q∗ and seek to
maximize

max
Q

[λ(p1 + 2q∗)−Q∗(p1, q
∗)−Q]Q,

where note that firm j does not know firm i has chosen qi rather than q∗. That is, firm i
believes that firm j would choose the Q that satisfies

Q =
λ(p1 + 2q∗)−Q∗(p1, q

∗)

2
,

which has to be Q∗(p1, q
∗) also. Hence firm i believes that firm j would choose

Q∗(p1, q
∗) =

λ(p1 + 2q∗)

3
.

Firm i, knowing that it has chosen qi rather than q∗ at t = 1, seeks to maximize the
following date-2 profit:

max
Q

[λ(p1 + qi + q∗)−Q∗(p1, q
∗)−Q]Q,

so that given (p1, qi), firm i’s optimal date-2 output level is

Qi =
λ(p1 + qi + q∗)− λ(p1+2q∗)

3

2
,

which yields for firm i the following date-2 profit

1

4
[
2λp1
3

+
λq∗

3
+ λqi]

2.

At t = 1, expecting firm j to choose q∗, firm i seeks to

max
qi

[1− qi − q∗]qi +
1

4
E[(

2λp̃1
3

+
λq∗

3
+ λqi)

2],

which is concave in qi because λ < 2. Show that the optimal qi must satisfy the first-order
condition for this maximization problem; that is,

1− q∗ − 2qi +
λ

6
(
2λE[p̃1]

3
+

λq∗

3
+ λqi) = 0,

or using E[p̃1] = 1− qi − q∗, and qi = q∗ in equilibrium, show that

q∗ =
1

3
+

λ2

27
.

Show that then Q∗(p1, q
∗) = λã

3 .
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Solution. Consider part (i). Since b̃ and ã are independent, the two
firms do not care about their date-2 decisions Q1 and Q2 when they
engage in the date-1 Cournot competition. Being risk-neutral, given
qj, firm i seeks to

max
qi

qi(E[ã]− qi − qj) = qi(1− qi − qj),

so that this game has the same equilibrium as the Cournot game pre-
sented in Example 1 of Lecture 1, Part I. That is, in equilibrium ,

q∗1 = q∗2 =
1

3
.

Similarly, at date 2, given Qj, firm i seeks to

max
Qi

Qi(E[b̃]−Qi −Qj) = Qi(1−Qi −Qj),

so that this game also has the same equilibrium as the Cournot game
presented in section 11 of Lecture 1, Part I. That is, in equilibrium ,

Q∗
1 = Q∗

2 =
1

3
.

This finishes part (i).

Now, for part (ii), let (q∗, Q∗(p1, q)) denote the unique symmetric SPNE,
where both firms choose q∗ at t = 1, and both choose Q∗(p1, q) after
choosing q at t = 1 and subsequently learning that the realization of p̃1
is p1. Then in equilibrium, p̃1 = ã− 2q∗, or ã = p̃1 +2q∗. At the begin-
ning of t = 2, given the realization p1 of p̃1 and its own output choice
qi at t = 1, and given that firm j does not deviate from its equilibrium
strategy, firm i knows that ã = p1 + qi + q∗. Moreover, firm i knows
that that firm j would believe that ã = p1 + 2q∗ and seek to maximize

max
Q

[λ(p1 + 2q∗)−Q∗(p1, q
∗)−Q]Q,
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where note that firm j does not know firm i has chosen qi rather than
q∗. That is, firm i believes that firm j would choose the Q that satisfies

Q =
λ(p1 + 2q∗)−Q∗(p1, q

∗)

2
,

which has to be Q∗(p1, q
∗) also. Hence firm i believes that firm j would

choose

Q∗(p1, q
∗) =

λ(p1 + 2q∗)

3
.

Firm i, knowing that it has chosen qi rather than q∗ at t = 1, seeks to
maximize the following date-2 profit:

max
Q

[λ(p1 + qi + q∗)−Q∗(p1, q
∗)−Q]Q,

so that given (p1, qi), firm i’s optimal date-2 output level is

Qi =
λ(p1 + qi + q∗)− λ(p1+2q∗)

3

2
,

which yields for firm i the following date-2 profit

1

4
[
2λp1
3

+
λq∗

3
+ λqi]

2.

At t = 1, expecting firm j to choose q∗, firm i seeks to

max
qi

[1− qi − q∗]qi +
1

4
E[(

2λp̃1
3

+
λq∗

3
+ λqi)

2],

which is concave in qi because λ < 2. It follows that the optimal qi
must satisfy the first-order condition for this maximization problem;
that is,

1− q∗ − 2qi +
λ

6
(
2λE[p̃1]

3
+

λq∗

3
+ λqi) = 0,

or using E[p̃1] = 1− qi − q∗, and qi = q∗ in equilibrium, we have

q∗ =
1

3
+

λ2

27
.

It follows that Q∗(p1, q
∗) = λã

3
.
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Now, consider part (iii). Comparing part (i) to part (ii), we see that
both firms make lower expected profits at date 1 in part (ii). This
happens because in part (ii) firms cannot resist the temptation of ex-
panding outputs as means of manipulating their rivals’ beliefs about
the realization of ã. By secretly expanding its output qi, firm i wants
to make its rival j believe in a lower realization of ã, which implies
a lower demand (whose intercept is λã) at date 2, and if firm i suc-
ceeds in making its rival believe in a lower date-2 demand, then it can
benefit from choosing a higher date-2 output Qi given that its rival
will on average choose a lower output Qj. In equilibrium this incentive
is correctly recognized by its rival j, but the incentive to engage in
signal-jamming still changes the two firms’ date-1 profits. Both firms
are worse off in part (ii), because of a lower product price resulting
from output expansion (q∗ > 1

3
).

Finally, consider part (iv). Note that in part (ii)

E[Q∗(p1, q
∗)] =

λE[ã]

3
=

E[ã]

3
=

1

3
,

where recall that 1
3
is the two firms’ date-2 output choice in part (i).

Signal-jamming does not fool any player in equilibrium (that is, both
firms can infer correctly the realized ã from the realized date-1 price),
but in part (ii), since ã = b̃, the two firms’ common date-2 output
choice depends on the realization of ã. This is in sharp contrast with
part (i), where ã and b̃ are independent, so that the firms’ date-2 output
choices can never depend on the realized ã. Now, since in part (ii)
each firm’s date-2 expected profit is a convex function of its date-2
output Q∗(p1, q

∗), and since Q∗(p1, q
∗) is a mean-preserving spread of

the firms’ date-2 output choice (which is 1
3
) in part (i), the two firms

actually obtain higher expected date-2 profits in part (ii) than in part
(i). Indeed, each firm gets the following expected date-2 profit in part
(i),

1

3
(E[b̃]− 1

3
− 1

3
) =

1

9
,

but in part (ii) its expected date-2 profit becomes

E[
ã

3
(ã− ã

3
− ã

3
)] =

E[ã2]

9
>

(E[ã])2

9
=

1

9
,
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where the inequality follows from Jensen’s inequality and the fact that
the function h(z) = z2 is strictly convex. Thus the two firms make
higher expected date-2 profits in part (ii) than in part (i).
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