
Game Theory with Applications to Finance and

Marketing, I

Solutions to Homework 3

1. We shall consider in this exercise two applications of the perfect Folk
theorem.

(a) Consider the following stage game G(1):

1/2 L R
U 3,3 2,4
D 4,2 0,0

Now consider the infinitely repeated version G(∞) of the stage
game G(1). Assume that in G(∞) the two players have a com-
mon discount factor δ ∈ (0, 1).

(i) Find the worst possible SPNE for in G(∞) for player 1.

(ii) Find the worst possible SPNE for in G(∞) for player 2.

(iii) Show that there exists δ∗ ∈ (0, 1) such that whenever δ ∈
[δ∗, 1), there exists an SPNE for G(∞) supported by the two
SPNE’s stated in parts (i) and (ii), such that along the equilib-
rium path, player 1 plays U and player 2 plays L in each and every
period until a unilateral deviation occurs. Find δ∗.

(iv) Redo part (iii), but now assume that the SPNE is supported
by the trigger strategies. Denote the cutoff level of δ by δ∗∗. Com-
pare δ∗ to δ∗∗.

Solution. The stage game G(1) has 3 NEs: (U,R), (D,L) and
one mixed-strategy NE where player 1 adopts U with probability
2
3
and player 2 adopts R with probability 1

3
. The minmax value

for each player is 2, which can be drived as follows. If player 2
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adopts L and R with probability p and 1 − p respectively, then
player 1’s best response is U if p ≥ 2

3
and D if otherwise, so that

m1
2 = argmin

p
4p · 1{p≥ 2

3
} + (2 + p) · 1{p≤ 2

3
} = 0,

proving that v1 = 2. By symmetry, we also have v2 = 2.

Now, the worst possible SPNE for player 1 in G(∞) is obviously to
repeat the pure-strategy NE (U,R) forever. Similarly, the worst
possible SPNE for player 2 in G(∞) is obviously to repeat the
pure-strategy NE (D,L) forever. Apparently, these two SPNE’s
coincide with Friedman’s trigger strategies designed for players 1
and 2 respectively, and hence we can conclude that δ∗ = δ∗∗. Thus
we will be done after we finish part (iii) and obtain δ∗.

Thus we consider part (iii). Consider the SPNE in G(∞) where
player 1 plays U and player 2 plays L in each and every period
until a unilateral deviation occurs. If player 1 conforms to the
equilibrium strategy today, her payoff is

3(1 + δ + δ2 + · · ·) = 3

1− δ
;

and her payoff becomes

4 + 2(δ + δ2 + · · ·) = 4 +
2δ

1− δ

if she chooses to deviate and plays D, and after that the worst
possible SPNE for player 1 in G(∞) will be in effect. Hence player
1 will not deviate if and only if

3− 2δ ≥ 4− 4δ ⇔ δ ≥ δ∗ = δ∗∗ =
1

2
.

(b) Consider the following stage game G(1) and its infinitely repeated
version G(∞), where for simplicity, we shall assume that players
can use only pure strategies:
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1/2 L M R A
L 0,0 2,4 0,0 6,0
M 4,2 0,0 0,0 0,0
R 0,0 0,0 3,3 0,0
B 0,6 0,0 0,0 5,5

Assume that in G(∞) the two players have a common discount
factor δ ∈ (0, 1).

(i) Find the worst possible SPNE for in G(∞) for player 1.

(ii) Find the worst possible SPNE for in G(∞) for player 2.

(iii) Show that there exists δ∗ ∈ (0, 1) such that whenever δ ∈
[δ∗, 1), there exists an SPNE for G(∞) supported by the two
SPNE’s stated in parts (i) and (ii), such that along the equilib-
rium path, player 1 plays B and player 2 plays A in each and every
period until a unilateral deviation occurs. Find δ∗.

(iv) Redo part (iii), but now assume that the SPNE is supported
by the trigger strategies. Denote the cutoff level of δ by δ∗∗. Com-
pare δ∗ to δ∗∗.

Solution. It is easy to show that the worst possible SPNE
for player 1 in G(∞) is obviously to repeat the pure-strategy NE
(L,M) forever. Similarly, the worst possible SPNE for player 2 in
G(∞) is obviously to repeat the pure-strategy NE (M,L) forever.
Apparently, these two SPNE’s coincide with Friedman’s trigger
strategies designed for players 1 and 2 respectively, and hence we
can conclude that δ∗ = δ∗∗. Thus we will be done after we finish
part (iii) and obtain δ∗.

Thus we consider part (iii). Consider the SPNE in G(∞) where
player 1 plays B and player 2 plays A in each and every period
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until a unilateral deviation occurs. If player 1 conforms to the
equilibrium strategy today, her payoff is

5(1 + δ + δ2 + · · ·) = 5

1− δ
;

and her payoff becomes

6 + 2(δ + δ2 + · · ·) = 6 +
2δ

1− δ

if she chooses to deviate and plays L, and after that the worst
possible SPNE for player 1 in G(∞) will be in effect. Hence player
1 will not deviate if and only if

5− 2δ ≥ 6− 6δ ⇔ δ ≥ δ∗ = δ∗∗ =
1

4
.

2. This exercise verifies the common sense that the outcome of a bar-
gaining game is highly unpredictable even if players are symmetrically
informed.

Recall the Rubinstein’s bargaining game that we mentioned in sections
2 and 3 of Lecture 2. Whenever consensus has not been reached by
date n, player 1 can make a take-it-or-leave-it offer to player 2 at date
n if n is an odd integer, and player 2 can make a take-it-or-leave-it offer
to player 1 at date n where n is an even integer. Here let us modify
the game by assuming that the offers must be in multiples of 0.01.

Show that if both players’ discount factor is δ = 1
2
then there are two

pure-strategy SPNEs, and if δ is very close to 1 (say δ > 0.99) then
assocated with each x ∈ {0, 0.01, 0.02, · · · , 0.99, 1} there is an SPNE
where player 1 starts by offering x at date 1 and player 2 accepts it
right away.1

1Here we assume (rather realistically) that there is a finite set of feasible offers, which
leads to multiple equilibria for the Rubinstein bargaining game. A similar result can
obtain if we assume that there are more than two people participating in the bargaining;
see exercise 4.9 of Fudenberg and Tirole (1991, Game Theory).
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Solution. If player 2 never offers x > xk because player 1 cannot resist
accepting xk, then player 2 will reject any offer x > 1− δ(1−xk) made
by player 1. (Recall that x indicates player 1’s share of the dollar.)
Thus player 1’s payoff upon rejecting player 2’s offer is at most

δ[1− δ(1− xk)],

which implies that when player 2 offers δ[1 − δ(1 − xk)] to player 1,
player 1 had better accept it right away, implying in turn that player
2 would never offer

x > xk+1 = {δ[1− δ(1− xk)] + 0.01},

where {z} is the quantity that we would obtain by rounding z downward
to the nearest 0.01.

Similarly, if player 1 never offers x < yk because player 2 would accept
any offer less than or equal to yk, then player 1 will reject any offer
x < δyk made by player 2. Thus upon rejecting player 1’s offer player
2 expects to get no more than δ(1 − δyk), and hence player 2 cannot
reject an offer of δ(1 − δyk) made by player 1, implying that player 1
never offers

x < yk+1 = {1− δ(1− δyk)− 0.01}.

Now, suppose δ = 1
2
, and let x0 = 1 and y0 = 1 (observe that player 2

never offers x > 1 and player 1 never offers x < 0). We have

x1 = 0.51, x2 = 0.38, x3 = 0.35, xk = 0.34, ∀k ≥ 4;

and
y1 = 0.49, y2 = 0.62, y3 = 0.65, yk = 0.66, ∀k ≥ 4.

Thus in an SPNE player 1 never offers x < 0.66 and always rejects
x < 0.33; and player 2 never offers x > 0.34 and always rejects x > 0.67.

There are thus two SPNEs. In one SPNE, player 1 offers x = 0.66
which is accepted by player 2 right away. (If player 1 deviates and
offers more than 0.66 then player 2 would reject the offer and make a
counter offer of 0.33, which player 1 must accept.) In the other SPNE,
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player 1 offers x = 0.67, which is accepted by player 2 right away. (If
player 2 deviates and rejects the offer, then player 1 would reject any
counter offer less than or equal 0.33.)

There is also a mixed strategy equilibrium where player 1 randomizes
between 0.66 and 0.67, and player 2 accepts 0.66 with probability one
but rejects 0.67 with probability 1

67
.

That replacing a continuum strategy space by a discrete strategy space
may result in multiple equilibria should not be surprising. In a Bertrand
duopoly where two firms with zero costs are competing for the patron-
age of a buyer with unit demand, there is a unique Nash equilibrium
where both firms price at zero. Suppose now that prices must be in
muitiples of 0.01, and the buyer’s willingness to pay v > 0.01. Appar-
ently it is an equilibrium where both firms price at zero, but observe
that it is also an equilibrium where both firms price at 0.01.2

Now, the same procedure that we took above to deal with the case of
δ = 1

2
can be used to show that if δ > 0.99 then xk = 1 and yk = 0

for all k ≥ 1, implying that every x ∈ {0, 0.01, 0.02, · · · , 0.99, 1} is an
equilibrium outcome.

3. (Relationship Banking) Consider the following extensive game,
called G(1). In this game G(1), there are two dates (date 1 and date
2), and two players (a bank B and a borrowing firm F). At date 1,
F has no money, but it has two mutually exclusive projects at hand,
and it needs to borrow 2 dollars from B to invest in either of them.
Project S is riskless and it can generate Y dollars at the end of date 1.
Project R is risky, and F must incur a personal disutility −k < 0 at the
beginning of date 1 if F decides to invest in project R. If project R is
taken, then at the end of date 1, with probability π it may generate X
dollars and with probability 1 − π it may generate nothing, but when
the latter unpleasant outcome occurs, if B is willing to lend another 2
dollars to F at the beginning of date 2, then project R can be continued
for one more period, and it willl generate r dollars for sure at the end

2Price discreteness has been used to explain the dealers’ collusive behavior found in the
Nasdaq dealership market; see for example Anshuman and Kalay (1998, Market Making
with Discrete Prices, Review of Financial Markets).
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of date 2, together with a non-monetary private benefit u > 0 to F.3

At each date t = 1, 2, B has exactly 2 dollars for lending. Moreover, we
assume that at the beginning of date 1, B cannot commit to lending F
any money at date 2; B will lend F money at date 2 only if doing so is
optimal (or subgame perfect) for B at date 2. To simplify the analysis,
assume that

X = 12 = u, Y = 4, π =
1

2
, r = 1, k = 5.

Finally, assume that F will choose project S whenever F feels indiffer-
ent about project S and project R.

The timing of G(1) can be summarized as follows.

• At date 1, after F asks B to lend it 2 dollars, B must choose the
face value of debt D ≥ 0.4

• The game ends if F rejects B’s offer D. If F accepts B’s offer, then
F must choose between project R and project S. Choosing project
R incurs a disutility −k to F at this point.

• Then at the end of date 1, the date-1 cash flow z̃ is realized, where
z̃ = Y if F has chosen project S in the previous stage, and z̃ may
equal either X or zero if F has chosen project R in the previous
stage. Given z̃, B gets min(D, z̃), and F gets z̃ − min(D, z̃) =
max(z̃ −D, 0).

• Then at the beginning of date 2, B can decide whether to lend
another 2 dollars to F and change the face value of debt from D
to D′ ≥ 0.5 The game ends if B chooses not to lend 2 dollars the
second time.

3Only monetary payoffs such as X,Y and r can be shared with B. The private benefit
u cannot be given to B although it is also measured in monetary terms.

4If F accepts this offer, then F gets 2 dollars from B at the beginning of date 1, and
F must repay B the minimum of D and whatever it has at the end of date 1—we are
assuming that F is protected by limited liability.

5Obviously this will not happen if F has chosen project S, or if F has chosen project
R, and project R has successfully generated cash flow X.
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• If B has chosen to lend another 2 dollars to F at the previous
stage, then at the end of date 2, the date-2 cash flow is realized,
and B gets min(D′, r). At this point, F gets r − min(D′, r) =
max(r −D′, 0) together with the private benefit u.

(i) Assume that over the two-date period, F and B are risk-neutral
about monetary payoffs and they have no time preferences (so that
the payoffs obtained at the two dates can be added together without
discounting). Find the SPNE of the above extensive game. Which
project is chosen in equilibrium? What is the equilibrium D? What is
the bank’s equilibrium payoff? What is F’s equilibrium payoff?6

(ii) Now, consider the infinitely repeated version G(∞) of the above
stage game G(1), where at stage n = 1, 2, · · · , F and B must play
G(1) repeatedly. Assume that F and B have a common discount fac-
tor ρ ∈ (0, 1) that applies to two consecutive stages, although we still
assume that within each stage (or within each G(1)), there is no dis-
counting for F and B. Find a smallest ρ∗ such that if ρ is greater than
ρ∗ then there is an SPNE sustained by the trigger strategy, where F
invests in project R at the first date in each stage n, and B will lend an-
other 2 dollars at the second date of each stage n if and only if project
R generates no cash at the first date in stage n.7

6Hint: First consider the subgame where at the beginning of date 2, B is considering
whether it should lend another 2 dollars to F, after B has lent F the first 2 dollars, and
after F has chosen project R which generated the date-1 earnings z̃ = 0. Should B lend
another 2 dollars to F in this subgame? Now, move backward to consider F’s investment
decision at date 1, given that F has accepted a loan contract specifying a face value D.
Determine F’s optimal investment decision for non-negative D. Now, move backward
again to consider B’s choice of D at the beginning of date 1. What is B’s optimal choice
of D? Which project will F choose to implement given this optimal D? What is B’s
equilibrium payoff? What is F’s equilibrium payoff?

7Hint: For part (ii), conjecture that in the best SPNE from the bank’s perspective, at
each stage the bank will lend F another 2 dollars in case F chooses project R in that stage
and produces a date-1 cash flow z̃ = 0. The bank may be tempted to deviate at date 2
in each stage n. Verify that the immediate gain from such a deviation is 1, and the loss
in each future stage is the difference between the bank’s profit obtained in part (i) and 7

2 .
Solve for ρ∗ by letting the bank’s no-deviation IC constraint binding at ρ∗.
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Solution. Consider part (i). Consider the subgame where at the
beginning of date 2, B is considering whether it should lend another 2
dollars to F, after B has lent F the first 2 dollars, and after F has chosen
project R which generated the date-1 earnings z̃ = 0. We claim that
B’s optimal strategy in this subgame is not to lend another 2 dollars
to F. To see this, note that by refusing to lend another 2 dollars, B’s
payoff is zero in this subgame; and B’s payoff would become

−2 + 1 < 0,

if B chose to lend F another 2 dollars and optimally set D′ ≥ r = 1.

Now, having solved the date-2 subgame equilibrium and shown that B
would never lend another dollars to F at the beginning of date 2, we
can now move backward to consider F’s date-1 investment decision. If
F chooses project S, F’s payoff will be max(Y −D, 0) = max(4−D, 0),
and if F chooses project R instead, then F’s payoff will be

1

2
max(X −D, 0) +

1

2
max(0−D, 0)− k

=
1

2
max(12−D, 0) +

1

2
max(0−D, 0)− 5

=


1− D

2
, D ≤ 12;

−5, D > 12.

Thus we can summarize F’s investment decision as follows.

• If D > 12, then max(4 − D, 0) = 0 > −5, and so F will choose
project S.

• If 12 ≥ D > 4, then max(4 − D, 0) = 0 > 1 − D
2
, and so F will

choose project S.

• If 4 ≥ D > 2, then max(4 − D, 0) ≥ 0 > 1 − D
2
, and so F will

choose project S.

• If 2 ≥ D ≥ 0, then max(4 − D, 0) ≥ 2 > 1 − D
2
, and so F will

again choose project S.
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We conclude that F will always choose project S.

Now, we can move backward to consider B’s choice of D at the begin-
ning of the game. Given that F accepts only D ≤ 4, and given that
F will choose project S after accepting a loan contract with D ≤ 4,
B’s payoff as a function of D is D − 2, and hence B’s optimal choice
is D∗ = 4. It follows that B’s equilibrium payoff is 2, F’s equilib-
rium payoff is max(4− 4, 0) = 0, and project S will be implemented in
equilibrium. This finishes part (i).

Now, consider part (ii), The equilibrium for G(1) obtained in part (i)
is inefficient because B would get 7

2
if B could commit to lending F

another two dollars when the date-1 earnings generated by project R
is z̃ = 0. To see this, note that with this commitment, F would choose
project R over project S, even if D = X = 12 and D′ = r = 1. Indeed,
by choosing project R over project S in this case, F’s payoff would be

−k + (1− π)u = −5 +
1

2
× 12 = 1 > 0.

Now, with this commitment, and with F choosing project R, B can
optimally choose D ≥ X = 12 and D′ ≥ r = 1 to obtain

−2 + π ×min(D,X) + (1− π)[−2 + min(D′, r)]

= −2 +
1

2
× 12 +

1

2
× [−2 + 1] =

7

2
> 2,

where 2 is B’s equilibrium payoff in part (i). Now we show that in
G(∞), B possesses such a commitment power if ρ is sufficiently large.
Indeed, assuming that F and B will play the SPNE obtained in part
(i) forever from stage n on whenever B has refused to lend another 2
dollars upon seeing z̃ = 0 at stage n − 1, we claim that B will lend
another 2 dollars at all stages n in equilibrium if ρ ≥ ρ∗ = 2

5
. To find

ρ∗, note that for B to not deviate at stage n − 1, it is necessary and
sufficient that

(−2 +D′) +
7

2
[ρ+ ρ2 + · · ·] ≥ 2[ρ+ ρ2 + · · ·]

⇔ (−2 + r) +
7

2
[ρ+ ρ2 + · · ·] ≥ 2[ρ+ ρ2 + · · ·]
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⇔ (
7

2
− 2)[ρ+ ρ2 + · · ·] ≥ 1

⇔ ρ

1− ρ
≥ 2

3

⇔ ρ ≥ ρ∗ =
2

5
,

where, note that with full bargaining power, B will propose D′ = r = 1
when lending another 2 dollars. This finishes part (ii).

Remark. This exercise is about a bank’s willingness to rescue a trou-
bled borrowing firm. If the bank can commit to practice this kind of
relationship banking, then the borrowing firm is encouraged to under-
take a more efficient long-term, risky project, which will benefit both
the lending bank and the borrowing firm. In a static setting, where
by definition relationships are out of the question, the self-interested
lending bank never rescues a troubled borrowing firm.8

In an infinitely repeated version of the stage game, rescuing becomes
possible if the bank is sufficiently patient. Recall that ρ can also stand
for the conditional probability that the borrowing firm may remain
active in the next period given that it is active in the current period.
Thus our result shows that efficiency can prevail only if the bank is
sufficiently optimistic about the borrowing firm’s future viability.

4. Consider a Hotelling main street denoted by the unit interval [0, 1]. The
population of consumers is 1, and consumers are uniformly distributed
along the Hotelling main street. We shall refer to the consumer located
at x ∈ [0, 1] by “consumer x.”

In the following stage game G(1), there are two firms (firm 0 and firm 1)
producing a homogeneous product (called product Y) and trying to sell
it to the consumers living along the Hotelling main street. Consumers

8The bank has a hard-budget-constraint problem in this case, as opposed to the more
familiar soft-budget-constraint problem emphasized in the banking literature; for the latter
see for example Dewatripont, M., and E. Maskin, 1995, Credit and Efficiency in Centralized
and Decentralized Economies, Review of Economic Studies, 62, 541-555.
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have unit demand. For i = 0, 1, firm i is located at the point i ∈ [0, 1].
For all x ∈ [0, 1], consumer x must incur a transportation cost x if he
wants to visit firm 0, and he must incur a transportation cost 1− x if
he wants to visit firm 1. Consumers’ common valuation for product Y
is v. Let pi be the unit price for product Y charged by firm i. Then
consumer x will buy from firm 0 if and only if

(IR) v − p0 − x ≥ 0 and (IC) v − p0 − x ≥ v − p1 − (1− x).

Similarly, consumer x will buy from firm 1 if and only if

(IR) v − p1 − (1− x) ≥ 0 and (IC) v − p0 − x ≤ v − p1 − (1− x).

Given (p0, p1), if there exists x∗ ∈ [0, 1] such that

v − p0 − x∗ = v − p1 − (1− x∗) ≥ 0,

then x∗ is firm 0’s sales volume, and 1 − x∗ is firm 1’s sales volume.
Assume that firm i’s unit production cost is ci, where c1 = 1 and c0 = 0.

The above stage game G(1) proceeds as follows.

• Firm 0 and firm 1 must simultaneously announce p0 and p1.

• Then, given (p0, p1), consumers must simultaneously decide whether
to buy 1 unit of product Y from firm 0, or to buy 1 unit of product
Y from firm 1, or not to buy anything.

• Then profits are realized for the two firms, and the game ends.

(i) Suppose that v = 5
4
. Find the Nash equilibrium (p∗0, p

∗
1) for the

stage game G(1).9 What is firm 0’s equilibrium sales volume? What
is firm 0’s equilibrium profit Π0? What is firm 1’s equilibrium profit Π1?

(ii) Now, suppose that v = 4,10 and consider the infinitely repeated
version G(∞) of G(1), where firm j’s discount factor is ρj ∈ (0, 1).

9Since v is very small, we conjecture that in equilibrium (i) the two firms are local
monopolists; and (ii) some consumers are left unserved.

10Since v is rather large, we conjecture that in equilibrium of G(1) no consumers are
left unserved.
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Show that there exist ρ∗0 and ρ∗1 such that whenever ρ1 ≥ ρ∗1 and
ρ0 ≥ ρ∗0, there exists an SPNE for G(∞) sustained by the trigger strat-
egy, where in each and every period the two firms’ equilibrium prices
are (p0, p1) = (13

4
, 15

4
).11 Compute ρ∗1 and ρ∗0.

Soluton.

Consider part (i). Since v is very small, we conjecture that the two
firms are local monopolists in equilibrium. That is, given p∗0, firm 0’s
sales volume is x with v−p∗0−x = 0, so that firm 0’s equilibrium profit
is

f(p∗0) ≡ (v − p∗0)(p
∗
0 − c0),

which must satisfy

f ′(p∗0) = 0 ⇒ p∗0 =
v + c0

2
=

5

8
,

implying that in equilibrium firm 0’s sales volume is

v − p∗0 =
5

4
− 5

8
=

5

8
,

and firm 0’s profit is

f(p∗0) =
5

8
· (5
8
− 0) =

25

64
.

Similarly, we can derive

p∗1 =
v + c1

2
=

9

8
,

implying that in equilibrium firm 1’s sales volume is

v − p∗1 =
5

4
− 9

8
=

1

8
,

11Conjecture that in each and every period all consumers are served in the SPNE of
G(∞).
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and firm 1’s profit is

(p∗1 − c1) ·
1

8
=

1

64
.

As conjectured, in equilibrium consumers located in the interval [0, 5
8
]

purchase from firm 0, and consumers located in the interval [7
8
, 1] pur-

chase from firm 1. Consumers located in (5
8
, 7
8
) are left unserved.

Consider part (ii). Since v is large relative to other parameters, we
conjecture that in equilibrium of G(1) all consumers are served. There
must exist some x ∈ [0, 1] such that consumers located at x feel indif-
ferent about purchasing from firm 0 or purchasing from firm 1. That
is, given the equilibrium prices (p0, p1) for G(1),

v − p0 − x = v − p1 − (1− x) ⇒ x =
p1 − p0 + 1

2
.

It follows that given p1, p0 is the solution to

max
p

p1 − p+ 1

2
· (p− c0),

and that given p0, p1 is the solution to

max
p

p0 − p+ 1

2
· (p− c1),

so that we have

p0 =
p1 + c0 + 1

2
, p1 =

p0 + c1 + 1

2
,

implying that

p0 =
4

3
, p1 =

5

3
.

It follows that firm 0’s equilibrium sales volume is

p1 − p0 + 1

2
=

2

3
,

and firm 1’s equilibrium sales volume is

p0 − p1 + 1

2
=

1

3
.
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In equilibrium, consumers located in the interval [0, 2
3
] purchase from

firm 0, and consumers located in the interval (2
3
, 1] purchase from firm

1.12 Firm 0’s equilibrium profit is

2

3
· (4
3
− 0) =

8

9
,

and firm 1’s equilibrium profit is

1

3
· (5
3
− 1) =

2

9
.

Now, we claim that in the above-mentioned SPNE for G(∞), given the
two firms’ equilibrium prices (p0, p1) = (13

4
, 15

4
) all consumers are served

in each and every period. Indeed, consider a consumer located at 3
4
.

This consumer would obtain a surplus of

4− 13

4
− 3

4
= 0

if he chooses to purchase from firm 0, and he would obtain

4− 15

4
− 1

4
= 0

if he chooses to purchase from firm 1. All consumers in the interval
[0, 3

4
) are then better off purchasing from firm 0 and obtaining a positive

surplus than purchasing from firm 1. Similarly, all consumers in the
interval (3

4
, 1] are better off purchasing from firm 1 than from firm 0.

In this SPNE, firm 0’s per-period profit is

(
13

4
− 0) · 3

4
=

39

16
,

and firm 1’s per-period profit is

(
15

4
− 1) · 1

4
=

11

16
.

Now, let us determine ρ∗0. We claim that if firm 0 wishes to deviate
from the above SPNE in period n, then its optimal deviation is to price

12Consumers located at 2
3 may purchase from firm 1 instead, but that is immaterial.
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at 11
4
, which generates a sales volume of 1 and a period-n profit of 11

4
.

To see this, note that the optimal deviating price q for firm 0 must
solve the following maximization problem:

max
q

(q − c0)min[1, v − q,
15
4
+ q + 1

2
]

=



q, if q ∈ [0, 11
4
];

q(19
8
− q

2
), if q ∈ [11

4
, 13

4
];

q(4− q), if q ≥ 13
4
.

The solution is q = 11
4
.

Now, by the trigger strategy, following its deviation in period n, firm 0
will lose (39

16
− 8

9
) in each and every period m ≥ n+1. Thus firm 0 will

not deviate in period n if and only if

11

4
− 39

16
=

5

16
≤

ρ0(
39
16

− 8
9
)

1− ρ0

⇔ ρ0 ≥ ρ∗0 ≡
45

268
.

Similarly, from firm 1’s perspective, if if firm 1 wishes to deviate from
the above SPNE in period n, then its optimal deviation is to price
at 21

8
, which generates a sales volume of 13

16
and a period-n profit of

13
16
(21
8
− 1) = 169

128
. To see this, note that the optimal deviating price q

for firm 1 must solve the following maximization problem:

max
q

(q − c1)min[1, v − q,
13
4
− q + 1

2
]

=



(q − 1), if q ∈ [0, 9
4
];

(q − 1)(17
8
− q

2
), if q ∈ [9

4
, 15

4
];

(q − 1)(4− q), if q ≥ 15
4
.
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The solution is q = 21
8
.

Now, by the trigger strategy, following its deviation in period n, firm 1
will lose (11

16
− 2

9
) in each and every period m ≥ n+1. Thus firm 1 will

not deviate in period n if and only if

169

128
− 11

16
=

81

128
≤

ρ1(
11
16

− 2
9
)

1− ρ1

⇔ ρ1 ≥ ρ∗1 ≡
729

1265
.

This finishes part (ii).

Remark. The theory of infinitely repeated games allows us to formally
define brand image and reputation for competitive firms. This exercise
shows that these concepts are related to firm-specific characteristics
such as the unit cost of production (ci) and product quality (as reflected
by the magnitude of v).

5. Consider the following strategic game, where y is a real number.

player 1/player 2 L R
U (2, 1) (1, 5)
D (y, 10) (0, 10)

(i) Find all the (pure- and mixed-strategy) Nash equilibria of the above
strategic game.

(ii) Suppose that y = 3. Call the above strategic game G(1). Consider
the finitely repeated version of G(1), denoted by G(T ), where a player
j’s payoff in G(T ) is simply

∑T
t=1 uj(s

t
1, s

t
2), where uj(s

t
1, s

t
2) is player

j’s payoff in the t-th stage game G(1) that he plays, given that the two
players’ actions taken at that time are respectively st1 ∈ {U,D} and
st2 ∈ {L,R}.
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• What is the minimum T such that (D,R) appears on the equilib-
rium path of G(T )?

• What is the minimum T such that (U,L) appears on the equilib-
rium path of G(T )?

(iii) Suppose that y = 3
2
. Consider the infinitely repeated version G(∞)

of the above stage game G(1), where the two players’ common discount
factor in G(∞) is δ. It can be shown that for the trigger strategy to
sustain an SPNE in G(∞) in which the two players play (D,L) in each
and every stage, it is necessary and sufficient that δ ≥ δ∗. Compute
δ∗.13

Solution. Consider part (i). A Nash equilibrium can be denoted by
(p, q), where p is the probability that player 1 adopts U and q is the
probability that player 2 adopts L.

• Can there be an NE with p = 1? In such an equilibrium, p = 1
must be one of player 1’s equilibrium best responses against player
2’s equilibrium strategy q; that is,

2q + (1− q) = 1 + q ≥ yq ⇒ (y − 1)q ≤ 1.

The last inequality always holds if q = 0, and given p = 1, q = 0
is indeed player 2’s unique equilibrium best response. Hence there
exists a unique NE with p = 1, which is (p, q) = (1, 0).

• Can there be an NE with p = 0? In such an equilibrium, p = 0
must be one of player 1’s equilibrium best responses against player
2’s equilibrium strategy q; that is,

2q + (1− q) = 1 + q ≤ yq ⇒ (y − 1)q ≥ 1,

which requires that

y ≥ 2, q ≥ 1

y − 1
.

13Hint: Show that with y = 3
2 , there is a unique NE in G(1), which gives the minmax

values in G(1) to both players. Thus in G(∞) the trigger strategy coincides with the worst
possible SPNE from each player’s perspective.
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When y = 2, then in such an equilibrium we must have q = 1,
and it is easy to verify that (p, q) = (0, 1) is indeed a pure-strategy
NE. This NE (p, q) = (0, 1) remains an NE if y > 2, but when
y > 2, there also exists a continuum of mixed-strategy NE’s with
p = 0 and 1 > q ≥ 1

y−1
.

• Can there be an NE with 1 > p > 0? In such an equilibrium, U
and D must both be player 1’s equilibrium best responses against
player 2’s equilibrium strategy q; that is,

2q + (1− q) = 1 + q = yq ⇒ (y − 1)q = 1,

which requires that

y ≥ 2, q =
1

y − 1
.

When y = 2, we must have q = 1, but against player 1’s mixed
strategy 1 > p > 0, q = 1 is dominated by q = 0 from player
2’s perspective! In fact, we must have q = 0 in any NE with
1 > p > 0, but given q = 0, D is dominated by U from player 1’s
perspective, and hence any strategy with 1 > p > 0 is dominated
by p = 1, showing again that such an equilibrium cannot exist.

The NE’s for part (i) can now be summarized as follows.

• If y < 2, then this game has a unique NE in pure strategy, which
is (p, q) = (1, 0).

• If y = 2, then this game has two pure-strategy NEs, which are
(p, q) = (1, 0) and (p, q) = (0, 1).

• If y > 2, then this game has two pure-strategy NEs, (p, q) = (1, 0)
and (p, q) = (0, 1), together with a continuum of mixed-strategy
NEs with p = 0 and 1 > q ≥ 1

y−1
.

Consider part (ii). Apparently, by part (i), G(1) has 2 pure-strategy
NEs, (D,L) and (U,R). Can (D,R) appears in the SPNE of G(2)? If it
does, then it must appear in the first stage of G(2). If this is the case,
then player 2 would wish to deviate and choose U in the first stage but
he cannot: the two playes will play (D,L) in the second stage if they
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play (D,R) in the first stage, but they will play (U,R) in the second
stage if (D,R) did not appear in the first stage. Indeed, this profile of
intertemporal strategies removes player 1’s incentive to deviate from
playing (D,R) in the first stage. To sum up, it is indeed an SPNE in
G(2) that  (D,R) → (D,L)

Not (D,R) → (U,R)

 .

Similarly, one can verify that it is an SPNE in G(2) that (U,L) → (D,L)

Not (U,L) → (U,R)

 .

Thus we conclude that to both questions in part (ii), the minimum T
required is 2.

Now, consider part (iii). It is clear that with y = 3
2
, there is a unique NE

in G(1), which is (U,R). Thus there is a unique trigger strategy that can
be used to sustain any SPNE. Note that (U,R) gives the minmax values
in G(1) to both players. Thus no other SPNE can provide more severe
penalty than the trigger strategy in sustaining (D,L) as a perpetual
SPNE outcome.

To sustain (D,L) in each and every stage of G(∞), we must take care of
player 1’s incentive to deviate and play U in any stage. The one-time
gain from this deviation is 2 − 3

2
= 1

2
. The present value of the lost

payoffs in the future due to the penalizing trigger strategy is

δ(3
2
− 1)

1− δ
,

so that we need
1

2
≤

δ(3
2
− 1)

1− δ
⇒ δ ≥ δ∗ =

1

2
.

6. Consider a single-product manufacturer M that wishes to sell its prod-
uct to two segments of consumers, referred to as H (the highs) and L

20



(the lows), whose populations are respectively α and 1−α. Consumers
have unit demand at each date n, for all positive integers n. H-buyers
and L-buyers are respectively willing to pay V and v for 1 unit of the
product. For simplicity, M has no production costs.

At each date n, there is a (different) physical retailer Rn that can sell
the product to the consumers on behalf of M. Except for the wholesale
price charged by M, R can operate costlessly. M, R, and the consumers
are all risk-neutral.

The above physical market is modelled as an infinitely repeated game
as follows.

• At date 0, M can decide whether to build and operate its own
online channel by spending a cost F .14

14The marketing literature has shown that a dual-channel strategy may be beneficial
for a manufacturer for several reasons.

– First, buyers may be endowed with heterogeneous costs/benefits of visiting a physical
or online outlet, and it may be efficient to direct different buyers to purchase at
different outlets. For example, a monopolistic manufacturer M is trying to serve
two buyers A and B, both willing to spend 10 for M’s product. Suppose that trading
online is costless for A but prohibitively costly for B (because B is unfamiliar with the
internet), and trading at the physical outlet is costless for B but prohibitively costly
for A (because A has a high transportation cost). If building online and physical
outlets is costless, then M should serve A at its online outlet and B at its physical
outlet.

– Second, a dual-channel strategy may allow M to better discriminate buyers, even if
doing so may reduce efficiency. Take again the above example, but assume that A
is willing to pay 6 for the product instead of 10. Both A and B can trade costlessly
in the physical market, but A and B must incur respectively 1 and 10 if they wish
to trade online. Efficiency would require that M serve both A and B at the physical
outlet. However, if M can build an online outlet costlessly, then M can set an online
price 5 and an offline price 10 and direct A and B to trade respectively at the online
and physical outlets. Letting A to trade online is inefficient, but it allows M to
identify B at the physical outlet and extract B’s surplus.

– Third, a dual-channel strategy can be valuable for imperfectly competitive manufac-
turers who wish to reduce competition. When a firm builds an online channel, it
induces some buyers in the physical market to migrate to the online market, and this
may alleviate competition in the physical market.
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• At each date n = 1, 2, · · ·, after learning the interactions between
M and {R1, R2, · · · , Rn−1}, M and Rn must play the following
date-n stage game.

At the beginning of date n, M andRn will first learn about whether
there is a demand for M’s product at date n. Given that there
is a demand at date n − 1, with probability 1 − qM the demand
may vanish from date n on.15 The game ends at the first date the
demand for M’s product vanishes in the physical market. On the
other hand, if there is a demand at date n, then the date-n stage
game proceeds as follows.

– M must first announce its online price Pn and then must offer
a wholesale price wn to the physical retailer Rn, which Rn

can either accept or reject. If Rn accepts wn, then Rn must
announce its retail price pn.

– Then consumers learn about both pn and Pn (where pn = +∞
if Rn has rejected wn and where Pn = +∞ if M did not build
its online channel at date 0) and they must simultaneously
decide whether to buy from Rn at the price pn or to buy
online from M at the price Pn, or to make no purchase at
all. M must incur a unit cost c > 0 when selling through its
online channel, and all buyers must incur a cost λ > 0 to buy
online.16

– In case some consumers have chosen to buy from M at the
price Pn, M can decide whether to avoid trade by telling those

In addition to these reasons, this exercise provides yet another rationale for the dual-
channel strategy: if a manufacturer can build an online channel to compete with its phys-
ical retailer, then it can prevent the physical retailer from pricing too high and dropping
too many low-valuation buyers (which is against the manufacturer’s interest).

15An interpretation is that with probability 1 − qM a new brand may emerge at date
n and take all the existing customers from M. With this interpretation, qM measures the
strength of M’s brand image.

16The assumption that c, λ > 0 implies that selling the product via the physical channel
is more efficient than selling it via the online channel. The assumption that the highs and
the lows share the same parameter λ implies that the manufacturer cannot adopt a dual
channel strategy to better screen consumers. However, we shall show that a dual channel
strategy can still be beneficial to M.
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consumers that the product has been sold out (i.e., to renege),
or to sell to those consumers at the price Pn as promised. We
assume that renege has no direct costs for M.

– Consumers that have tried to purchase online at the price
Pn without success (in case M chose to renege Pn) can then
decide whether to return to the physical market and purchase
from Rn at the price pn.

– Then the the date-n profits are realized for M and Rn respec-
tively. Then the game moves on to date n+ 1.

We assume that each Rn seeks to maximize expected profits, M seeks
to maximized the sum of expected profits accrued at all transaction
dates, and consumers seek to maximize expected consumer surplus.17

Assume that

V > v > λ > 0 > v − c− λ, 1 > α, qM > 0. (1)

(i) Suppose that F = +∞ and that M and Rn are the same firm, for
all n. (This implies that wn = 0 for all n.) Find the equilibrium pn
and M’s equilibrium payoff, assuming that

v > α(2− α)V.

(ii) Suppose that F = +∞ and that M and Rn are different firms, for
all n. Find the equilibrium wn and pn, assuming that

v > α(2− α)V.

(iii) Suppose that F = +∞ and that Rn are the same physical retailer
R at each date n. Like M, R also seeks to maximize the sum of expected

17A distribution channel consists of an upstream manufacturer M and a downstream
retailer R. Channel efficiency is attained by the distribution channel, if the sum of M’s
and R’s profits are maximized in equilibrium. Apparently, when M and R are the same
firm, there is no conflict of interests between the two firms, and the integrated firm’s
marketing strategy always fulfills channel efficiency.
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profits accrued at all transaction dates. Find the equilibrium wn and
pn, assuming that

α(2− α)V > v > αV [1 + (1− α)(1− qM)] > αV.

Show that this game has an SPNE supported by the trigger strategy,
where in equilibrium wn = v−α(1−qM )V

1−α(1−qM )
∈ (0, v) and pn = v for all

n. Show that if instead Rn are different firms, then we would have
wn = V = pn in equilibrium.

(iv) Suppose that v > α(2−α)V and that Rn are different firms. Define

Π0
M ≡ v − αV

1− α
[1 + qM + q2M + · · ·] = v − αV

(1− qM)(1− α)
, (2)

and

q∗M ≡ max[F, c+ λ− v]

v +max[F, c+ λ− v]− v−αV
1−α

. (3)

Show that this game has an SPNE supported by the trigger strategy
such that in equilibrium wn = pn = v and Pn = v − λ for all n if and
only if qM ≥ q∗M .18

Solution. Consider part (i). By assumption, there is a vertically
integrated M at each and every date n. If M sets pn = v, then M’s

18Hint: Show that pricing at pn = wn = v is indeed Rn’s equilibrium best response
as long as Rn believes that M will never renege Pn. Show that consumers facing pn = v
and Pn = v − λ will choose to trade with Rn. Show that when pn > v consumers all wish
to trade online at date n, and in the latter event, by reneging at date n, M’s payoff from
date n on is

qMΠ0
M ,

and by selling to the consumers at Pn as promised, M’s payoff from date n on becomes

(v − c− λ) +
qMv

1− qM
.
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date-n payoff is v; if M sets pn = V , then M’s date-n payoff is αV .
Since

v > α(2− α)V ⇒ v > αV,

M’s optimal choice is pn = v and M’s date-n equilibrium payoff is v
also. In equilibrium the date-0 present value of M is then qMv

1−qM
.

Consider part (ii). In this case, in the subgame where Rn chooses pn,
Rn would choose pn = v if and only if

(v − wn) ≥ α(V − wn) ⇒ wn ≤ v − αV

1− α
.

Among those wn that satisfy the above inequality, M’s favorite is wn =
v−αV
1−α

, which yields for M the date-n payoff v−αV
1−α

. Among those wn

that violate the above inequality, M’s favorite is wn = V , which implies
that pn = V also, yielding for M the date-n payoff αV . Thus M would
choose wn = v−αV

1−α
over wn = V if and only if

v − αV

1− α
≥ αV ⇔ v ≥ α(2− α)V.

We conclude that in equilibrium wn = v−αV
1−α

and pn = v.

Consider part (iii). Call the stage game where M and R can interact
for only once (at date 1) G(1). According to part (ii), in equilibrium of
G(1) we have w1 = V = p1. (The same is true then if Rn’s are different
retailers.) Now, in G(∞), if M and R were the same firm, then the ver-
tically integrated firm would choose pn = v at each date n, according
to part (i), which would fulfill the channel efficiency.19 This outcome,
by part (ii), is not a Nash equilibrium outcome in G(1), given that

19A distribution channel consists of an upstream manufacturer M and a downstream
retailer R. Channel efficiency is attained by the distribution channel, if the sum of M’s
and R’s profits are maximized in equilibrium. Apparently, when M and R are the same
firm, there is no conflict of interests between the two firms, and the integrated firm’s
marketing strategy always fulfills channel efficiency.
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R and M are not the same firm and given that v < α(2 − α)V . How-
ever, thanks to the fact that R, like M, is also a long-term player in part
(iii), we shall show that pn = v can arise as an SPNE outcome in G(∞).

Indeed, if in an SPNE M offers wn and R chooses pn = v at each date
n, then R’s equilibrium date-n payoff would be v − wn; and when the
trigger strategy is at work, R’s date-n payoff would become 0 (because
wn = pn = V ). Hence for R to conform to the equilibrium pricing
strategy pn = v, we must have

α(V − wn)− (v − wn) ≤
qM(v − wn)

1− qM

⇔ α(1− qM)(V − wn) ≤ v − wn

⇔ [1− α(1− qM)]wn ≤ v − α(1− qM)V,

so that, as asserted, M would offer

wn =
v − α(1− qM)V

1− α(1− qM)
.

Now, consider part (iv). Now Rn’s are short-term players, unlike in
part (iii), and hence we cannot fulfill channel efficiency by simply let-
ting M interact with physical retailers. However, we have removed the
assumption that F = +∞ in part (iv), so that M can use a dual-channel
strategy to enhance channel efficiency.

We are asked to show that there is an SPNE where M spends F at
date 0 and prices online at Pn = v − λ at each date n ≥ 1 as long
as qM is sufficiently large. In this equilibrium, Rn cannot price higher
than v if Rn wishes to win the patronage of any consumer: otherwise,
a consumer would rather buy online from M. Thus M can set wn = v
accordingly to extract all the surplus from R. However, there is this
problem of

(v − λ)− c = Pn − c < 0,
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and hence M would like to renege Pn when consumers really come and
try to make a purchase online. The one-time gain from reneging is
c− (v − λ). Following reneging the trigger strategy would be at work,
and by our analysis in part (ii), M’s date-n payoff with the trigger
strategy is

v − αV

1− α
.

Thus M will not renege at date n when consumers really come and try
to buy online if and only if

(v − c− λ) +
qMwn

1− qM
= (v − c− λ) +

qMv

1− qM
≥ 0 + qMΠ0

M

⇔ qM ≥ c+ λ− v

c+ λ− v−αV
1−α

.

When the above inequality holds, recognizing that M will never renege
its online prices, Rn will choose pn = v at each and every date n, so
that no consumers would really come and try to buy online. Finally,
M should be willing to spend F at date 0. Thus we require that

F ≤ qMv

1− qM
− qMΠ0

M

⇔ qM ≥ F

v + F − v−αV
1−α

.

The above two inequalities can be compactly written as

qM ≥ q∗M =
max[F, c+ λ− v]

v +max[F, c+ λ− v]− v−αV
1−α

,

since the function
h(z) ≡ z

v + z − v−αV
1−α

is strictly increasing in z. This finishes part (iv).

Remark. The marketing literature has shown that a dual-channel
strategy may be beneficial for a manufacturer for several reasons.
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• First, buyers may be endowed with heterogeneous costs/benefits of
visiting a physical or online outlet, and it may be efficient to direct
different buyers to purchase at different outlets. For example, a
monopolistic manufacturer M is trying to serve two buyers A and
B, both willing to spend 10 for M’s product. Suppose that trading
online is costless for A but prohibitively costly for B (because B is
unfamiliar with the internet), and trading at the physical outlet
is costless for B but prohibitively costly for A (because A has a
high transportation cost). If building online and physical outlets
is costless, then M should serve A at its online outlet and B at its
physical outlet.

• Second, a dual-channel strategy may allow M to better discrim-
inate buyers, even if doing so may reduce efficiency. Take again
the above example, but assume that A is willing to pay 6 for the
product instead of 10. Both A and B can trade costlessly in the
physical market, but A and B must incur respectively 1 and 10 if
they wish to trade online. Efficiency would require that M serve
both A and B at the physical outlet. However, if M can build an
online outlet costlessly, then M can set an online price 5 and an
offline price 10 and direct A and B to trade respectively at the on-
line and physical outlets. Letting A to trade online is inefficient,
but it allows M to identify B at the physical outlet and extract
B’s surplus.

• Third, a dual-channel strategy can be valuable for imperfectly
competitive manufacturers who wish to reduce competition. When
a firm builds an online channel, it induces some buyers in the phys-
ical market to migrate to the online market, and this may alleviate
competition in the physical market.

In addition to these reasons, this exercise provides yet another ratio-
nale for the dual-channel strategy: a manufacturer usually must use
an independent retailer’s service in the physical market, and there is
always a conflict of interests between the manufacturer and the physi-
cal retailer. If a manufacturer can build an online channel to compete
with its physical retailer, then it can prevent the physical retailer from
pricing too high and dropping too many low-valuation buyers (which
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is against the manufacturer’s interest). Such an online pricing strategy
by the manufacturer is referred to as a “flank-attack” strategy against
the physical retailer.

The problem with this “flank-attack” strategy is whether or not it is
credible for the manufacturer to set a low online price. An overly low
online price may not be able to cover the unit cost. However, if the
physical retailer does not believe that the manufacturer can really trade
at that low price at its online outlet, then such a pricing strategy is not
credible, and the physical retailer would simply ignore it.

This exercise shows that, building on the perfect folk theorem, if the
manufacturer has a strong image (i.e., qM is sufficiently large), then it
is credible for M to stand by its promised online price, and this makes
the flank-attack strategy work. In equilibrium, M is able to force the
physical retailer to cooperate and price low, serving both high- and
low-valuation buyers and fulfilling channel efficiency.

We have assumed in part (iv) that Rn’s are different firms. We claim
that the manufacturer does not gain if the physical retailers are the
same firm R, and hence M will choose a dual-channel strategy (together
with the above flank-attack pricing strategy) over a single-channel
strategy (together with the SPNE pricing strategy supported by the
trigger strategy as in part (iii)) if and only if qM ≥ q∗M .

With the single-channel strategy, M can spare F at date 0. When the
trigger strategy is at work, R will get

v − v − αV

1− α

at each date, so that facing wn R would not deviate and price above v
if and only if

α(V − wn) +
qM(v − v−αV

1−α
)

1− qM
≤ v − wn

1− qM
,
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implying that M should choose

w∗
n =

qM(v−αV
1−α

) + (1− qM)(v − αV )

1− α(1− qM)

=
qM(v−αV

1−α
) + (1− qM)(1− α)(v−αV

1−α
)

1− α(1− qM)

=
[qM + (1− qM)(1− α)](v−αV

1−α
)

1− α(1− qM)

=
[1− α(1− qM)](v−αV

1−α
)

1− α(1− qM)

=
v − αV

1− α
< v,

which yields for M a date-0 present value of

qMw∗
n

1− qM
.

The intuition is that, the long-lived physical retailer R realizes that
it would receive v − w∗

n in each and every period when the trigger
strategy is at work, and hence to induce R to cooperate in an SPNE
that attains channel efficiency M must offer some wn that represents
a weakly deeper trade promotion than w∗

n, and the optimal wn that
meets this requirement from M’s perspective is w∗

n itself. Thus M will
adopt a dual-channel strategy in the presence of a forever-lived R if
and only if, again,

qM ≥ q∗M .

This exercise is adapted from Shan-Yu Chou (2014, The Optimal Product-
line Extension, Pricing, Targeting, and Online-Channel Strategies for
a Manufacturer Facing a Physical Independent Retailer, NTU working
paper).
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