Game Theory, Solutions to Quiz 2

Name: \qquad ID: \qquad

Questions	1	2	3	4	5
Solutions	BD	false	ABCD	BC	ABC

1. Consider the following voting game. There are three voters $(i=1,2,3)$ and three candidates $(j=X, Y, Z)$. The candidate receiving the most votes would win; in case each and every candidate receives one vote, then each of them would win with probability $\frac{1}{3}$. A winning candidate's payoff is one, and a losing candidate's payoff is zero. The following table summarizes the three voters' payoffs after one of the candidates is announced the winner.

voter/candidate	X	Y	Z
1	2	1	0
2	0	2	1
3	1	0	2

A pure-strategy NE for this game will be denoted by $\left(a_{1}, a_{2}, a_{3}\right)$, where $a_{i} \in\{X, Y, Z\}$ denotes the candidate chosen by voter i.
(i) Which statements below are correct? \qquad No. 1 .
(A) (X, X, Y) is a pure-strategy NE.
(B) $(\mathrm{X}, \mathrm{Y}, \mathrm{X})$ is a pure-strategy NE.
(C) (Y,X,X) is a pure-strategy NE.
(D) (X, Y, Z) is a pure-strategy NE.
(E) The above 4 statements are all false.
(ii) Determine whether the following statement is true or false: No. 2 .
Given that the voters' payoffs are now given in the following table, (X,Y,Z) becomes a pure-strategy NE.

voter/candidate	X	Y	Z
1	2	1	0
2	0	1.98	1.03
3	1	0	2

(iii) Now, suppose instead that there are 9 voters, whose payoffs are summarized in the table below.

voters/candidate	X	Y	Z
$1-3$	2	1	0
$4-5$	0	1	0
$6-9$	0	0	1

Assume that voters would never use (weakly) dominated strategies. We shall consider only symmetric pure-strategy NEs; that is, in equilibrium players having the same payoff functions must vote for the same candidate. Such an equilibrium will be denoted by (a, b, c), where a is the candidate chosen by voters $1-3, b$ the candidate chosen by voters $4-5$, and c the candidate chosen by voters $6-9$.
(iii-1) Which statements below are correct? No. 3 .
(A) (X, Y, Z) is a pure-strategy NE.
(B) Voters 1-3 may vote for X or Y in a pure-strategy NE.
(C) Voters 4 and 5 would only vote for Y in a pure-strategy NE.
(D) Voters 6-9 would only vote for Z in a pure-strategy NE.
(E) The above 4 statements are all false.
(iii-2) Which statements below are correct? No. 4 .
(A) There is a pure-strategy NE where X is the winner.
(B) There is a pure-strategy NE where Y is the winner.
(C) There is a pure-strategy NE where Z is the winner.
(D) The above 4 statements are all false.
(iii-3) Which statements below are correct? No. 5 .
(A) The absence of X would benefit Y .
(B) The presence of X has benefited Z .
(C) The absence of Z would benefit X .
(D) The above 4 statements are all false.

Solution. Consider part (i). (A) is false, because voter 2 can deviate unilaterally and choose Y , which allows him to obtain a payoff of 2 .
(B) is true: voter 3 gets 0 if he deviates and votes for Y , and he gets 1 again if he votes for Z instead; and what voter 2 does is immaterial given the other two voters choose to stick to their equilibrium behavior.
(C) is also false: voter 2 would deviate and vote for Y.
(D) is correct: each voter's equilibrium payoff is 1 , and he cannot obtain a higher payoff by making a unilateral deviation. To sum up, the answer for part (i) is BD.

Consider part (ii). Now the statement is false! While (X,Y,Z) is a pure-strategy NE in part (i), this is no longer true in part (ii). Voter 2 can deviate and vote for Z instead and obtain a payoff of 1.03 , which is strictly greater than his equilibrium payoff $\frac{3.01}{3}!^{1}$

Consider part (iii). First observe that voting for X or Z is a dominated strategy for voters $4-5$, and voting for X or Y is a dominated strategy for voters 6-9. Thus in a pure-strategy NE (a, b, c), we must have $b=Y$ and $c=Z$. Also, voting for Z is a dominated strategy for voters $1-3$, and hence we are left with two possible equilibria: (X, Y, Z) and (Y, Y, Z). It is easy to verify that both of them are symmetric pure-strategy NEs. Thus the answer for (iii-1) is ABCD.

The answer to part (iii-2) is now obvious: Z would be the winner in equilibrium (X, Y, Z) and Y would be the winner in equilibrium (Y, Y, Z). Thus the answer for part (iii-2) is BC.

Note that more than half of the voters (voters 1-5, to be specific) hate candidate Z , and yet Z still wins the campaign in equilibrium (X, Y, Z). Why?

[^0]This happens because in equilibrium (X, Y, Z) voters 1-5 fail to vote for the same candidate, namely Y. (By contrast, in the other equilibrium, (Y, Y, Z), voters 1-5 all vote for Y , and hence Y wins and Z loses.)

Note that (X, Y, Z) is not a strong equilibrium, as voters 1-3 can jointly deviate and vote for Y, which would generate a payoff of 1 for voters 1-3, better than the zero payoff that voters 1-3 obtain in equilibrium (X, Y, Z). The equilibrium (Y, Y, Z), on the other hand, is coalitionproof: a self-enforcing coalition consisting of no more than 8 voters can never strictly improve the well-being of the coalition members given that the voters outside of the coalition would still behave as in equilibrium $(Y, Y, Z) .{ }^{2}$

Note also that, although voters 1-3 attach 2 utils to the event that X wins and yet voters $4-5$ attach only 1 util to the event that Y wins, X can never win this campaign, unlike Y. Why not?

The difference lies in the fact that voters 1-3 are still willing to consider Y, but voters 4 and 5 would never consider X. Thus voters 1-3 are potential switchers, exhibiting less loyalty to their favorite candiate X. Although the group consisting of voters 1-3 is larger in size than the group consisting of voters $4-5$, and voters 1-3 feel more strongly (2 utils) about their favorite candidate than voters 4 and 5 do, the former group's favorite candidate can never win. In this sense, loyalty is more important than the the size in an election.

Finally, consider part (iii-3). Note that if X chooses to withdraw from the election, then Y will definitely win the campaign, which hurts Z . In other words, X 's running the campaign implies that Z may win with a positive probability, and hence it benefits Z . Also, if Z decides to withdraw, then X can become a winner, although Y can be a winner too. Thus the answer for (iii-3) is ABC.

[^1]
[^0]: ${ }^{1}$ The new payoffs in part (ii) indicate that voter 2 does not like Y and hate Z as much as in part (i), and voter 2 would indeed rather give up his favorite candidate Y (who may win with probability $\frac{1}{3}$ only) and go for the sure payoff of 1.03 by voting for his second-favorite candidate Z.

[^1]: ${ }^{2}$ To see this, note that voters 4-9 are voting for their favorite candidates already. Given that voters $6-9$ would still vote for Z, voters 1-3 cannot get more than 1 by jointly voting for X .

