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1. Definition 1. A game described by (i) the set of players, (ii) the
strategies available to each player, and (iii) the payoff of each player as
a function of the vector of all players’ strategic choices is called a game
depicted in normal form.

2. Example 1. The following is a two-player normal-form game.

player 1/player 2 L R
U 0,1 -1,2
D 2,-1 -2,-2

• Who are the players? Players 1 and 2.

• What strategies are available to player 1? U and D. What strate-
gies are available to player 2? L and R.

• What does each player get given players’ choices of strategies?
Players 1 and 2 get respectively 0 and 1, if the vector of the two
players’ strategies is (U,L); that is, if player 1 plays U and player
2 plays L. Let us write

u1(U,L) = 0, u2(U,L) = 1. (1)

Similarly, we have

u1(U,R) = −1, u2(U,R) = 2, u1(D,L) = 2, (2)

u2(D,L) = −1, u1(D,R) = −2, u2(D,R) = −2. (3)

The functions u1(·, ·) and u2(·, ·) are referred to as the two players’
payoff functions.
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3. Definition 2. A (pure strategy) Nash equilibrium (NE) for a two-
player normal-form game where the set of player 1’s strategies is X
(hereafter referred to as player 1’s strategy space) and the set of player
2’s strategies is Y (hereafter referred to as player 2’s strategy space) is
a pair (x∗, y∗) such that x∗ ∈ X, y∗ ∈ Y , and

u1(x
∗, y∗) ≥ u1(x, y

∗), ∀x ∈ X, (4)

u2(x
∗, y∗) ≥ u2(x

∗, y), ∀y ∈ Y. (5)

The game in Example 1 has X = {U,D} and Y = {L,R}. This game
has two pure-strategy NEs, (U,R) and (D,L).

4. Definition 3. A mixed strategy for player 1 in the above two-player
normal-form game is a probability distribution f over X, and a mixed
strategy for player 2 is a probability distribution g over Y. A mixed
strategy Nash equilibrium is a pair (f, g) such that facing g, f is one of
player 1’s best choices over X, and facing f , g is one of player 2’s best
choices over Y .

Recall the game in Example 1. The probability distribution f(U) =
f(D) = 1

2
is one mixed strategy for player 1. The probability distribu-

tion g(R) = 1
3
g(L) = 2

3
is a mixed strategy for player 2. It turns out

that this pair (f, g) is the unique (non-degenerate) mixed-strategy NE
for the game in Example 1, because

g(L)u1(U,L) + g(R)u1(U,R) = g(L)u1(D,L) + g(R)u1(D,R), (6)

f(U)u2(U,L) + f(D)u2(D,L) = f(U)u2(U,R) + f(D)u2(D,R). (7)

There is an obvious reason for the above two equations: if given his
rival’s mixed strategy, a player strictly prefers one pure strategy to
the other, then he will assign zero probability to the latter; that is, a
mixed strategy can never be his best response. Thus in a mixed strategy
Nash equilibrium, where each player assigns a positive probability to
every pure strategy, a player has to feel indifferent about his two pure
strategies.
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5. Example 2. Consider a two-player game, where the two must pick an
integer from the set {1, 2, · · · , 100} at the same time. If they pick the
same number, then they each get 1; or else, they each get zero. Find
the pure strategy NE’s. Find the mixed strategy NE’s.

6. Definition 4: A dynamic game is usually described in extensive form
and represented by a game tree. For example, consider the following
game tree:

(1)—



Up— (2)—

 Right— (0, 1)

Left— (−1, 2)
...

Down— (2)—

 Right— (2,−1)

Left— (−2,−2)

In this game tree, the first mover’s (player 1’s) decision node is the root
of the tree, and each of the two pure strategies available to the first
mover is represented by a branch emanating from that decision node.
These branches, labeled up and down respectively, lead to the second
mover’s decision nodes. Note that player 2’s two decision nodes are
connected by a dotted line, and these two decision nodes define player
2’s information set at the time player 2 must choose between right and
left. Formally, an information set is a set of decision nodes for a player,
who, while knowing that he is sitting on one of those nodes contained
in the information set, cannot tell which node in the information set he
is exactly sitting on.The remaining game tree starting from a singleton
information set is called a subgame of the original game.

7. Definition 5. A subgame perfect Nash equilibrium (SPNE) is an NE
for a game described as a game tree, which specifies NE strategies in
each and every subgame.

8. Example 3. A bricks-and-mortar store F can produce and sell prod-
uct X costlessly to 2 consumers A and B, where A knows everything
about internet, while B has no knowledge about it. F cannot distin-
guish A from B, but F knows that A (respectively, B) is willing to pay
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2 (respectively, 5) dollars for 1 unit of X, and they both have unit de-
mand for X.
(i) First suppose that e-commerce is unavailable. F first announces
price p, and given p, A and B decide whether to buy X from F. What
is p in equilibrium? What is F’s profit?
(ii) Now suppose instead that F can first spend t > 0 and set up an
online outlet, and if t is spent, then F would announce the online price
q and the offline price p to A and B. A can then decide where (at the
online or offline outlet) to buy X, but B can only buy from F’s offline
store. Should F spend t, and what is F’s equilibrium prices?
(iii) Re-consider (ii) but assuming that B’s reservation value is 3.9.
(iv) Would a higher demand would make it more likely that t is spent?

Solution. For part (i), F should set p at 5 dollars, which is also F’s
profit. For part (ii), if t is spent, then F should announce p = 5 and
q = 2, so that F would gain q − t by spending t. Thus F should spend
t if and only if t < 2.1 For part (iii), F’s profit is 4 dollars if giving up
the online outlet, while selling through both online and offline outlets
would yield a profit of 3.9+2− t, and hence F should sell through both
channels if t < 1.9.2

Note that the assumption that B has a higher reservation value than
A does is crucial in the above analysis. If the reservation values are
reversed, F cannot price discriminate between A and B.

Finally, for part (iv), note that F’s incentive to spend t may be reduced
when A’s reservation value increases: if A is already served without the
internet, then the benefit from spending t is equal to the difference in
A’s and B’s reservation values, and this difference decreases with A’s

1Note that A is not served without on-line markets, and t is the cost that F incurs in
order to extract the 2 dollars from A in the presence of on-line markets.

2Note that in (iii) selling to A online would create a loss: F would charge A slightly
less than 2 dollars, but F has to spend t > 0. Spending t can still be beneficial because
F can then charge B 3.9 instead of 2 dollars. Why? With A being directed to the on-line
markets, B is identified as the only segment left to be served at the original store, and
hence F can fully extract the consumer surplus from B. The extra 1.9=3.9-2 dollars that
F can make from serving B must be greater than the loss incurred when F moves A from
the offline outlet to the online outlet. Thus F should take this dual channels strategy if
and only if t < 1.9.
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reservation value.

For example, let t = 1.85 and B’s valuation for X be 3.9. Suppose
that A’s valuation for X now increases from vA = 2 to vA = 2.1. If
vA = 2, then F would get 3.9 − 2 − t > 0 by spending t; but F would
get 3.9− 2.1− t < 0 instead, if vA = 2.1. Thus an increase in demand
(on A’s part), other things equal, may reduce F’s incentive to create an
online outlet.

By contrast, an increase in B’s demand does weakly encourage F to
spend t: it does not affect F’s preference about spending t if F would
choose not to serve A in the absence of the internet, but it weakly
increases F’s benefit from spending t if F would choose to serve A in
the absence of the internet.

9. We have thus far assumed that each player knows the rivals’ payoff
functions. Such a game is a game with complete (or symmetric) in-
formation. What if at least one player in the game does not know for
sure another player’s payoff function? We call it a game with informa-
tion asymmetry, or a game with incomplete information, or simply a
Bayesian game. In a Bayesian game, at least one player Z has more
than one possible payoff function. We say that this player Z has more
than one type. At least one other player W cannot be sure which
type player Z has. In this case, we shall look for an equilibrium called
Bayesian equilibrium (BE). This is nothing but a Nash equilibrium of
an enlarged version of the original game, where each different type of
Z is now treated as a distinct player.

10. Definition 6: Recall the two-player game where player 1’s strategy
space is X and player 2’s strategy space is Y , and assume now that
player 2 has two possible types (or two possible payoff functions), θ1
and θ2, which, from player 1’s perspective, may occur with probabilities
π1 and π2 respectively. Certainly, player 2 knows his own type for sure.

For all x ∈ X, y ∈ Y , and θ ∈ {θ1, θ2}, let u1(x, y) be player 1’s payoff,
and u2(x, y; θ) the type-θ player 2’s payoff. (This is referred to as a
private-value model. If u1 also depends on θ, then this is a common-
value model.) A Bayesian equilibrium for this two-player game is noth-
ing but the Nash equilibrium of the three-player game where the two
types of player 2 are treated as two different players. Thus a Bayesian
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equilibrium is a triple (x∗, y∗1, y
∗
2) such that x∗ ∈ X, y∗1 ∈ Y , y∗2 ∈ Y ,

and the following three incentive compatibility conditions hold:

π1u1(x
∗, y∗1) + π2u1(x

∗, y∗2) ≥ π1u1(x, y
∗
1) + π2u1(x, y

∗
2), ∀x ∈ X; (8)

u2(x
∗, y∗1; θ1) ≥ u2(x

∗, y; θ1), ∀y ∈ Y ; (9)

u2(x
∗, y∗2; θ2) ≥ u2(x

∗, y; θ2), ∀y ∈ Y. (10)

In words, x∗ is player 1’s best response, which is on average the optimal
strategic choice of player 1. It is not really player 1’s best response
against player 2 if player 1 is sure that player 2 will use y∗1. Neither is
it player 1’s best response against player 2 if player 1 is sure that player
2 will use y∗2. Since player 1 can only choose one x in X to play against
two possible types of player 2, given his conjecture of (y∗1, y

∗
2), the choice

x∗ must be on average optimal. On the other hand, player 2 knows
his own type, and his best response against player 1’s average optimal
choice x∗ depends on his type. Note that θ denotes player 2’s type, and
it determines u2(x, y)! This is why we say that incomplete information
in this game is equivalent to player 1 not knowing player 2’s payoff
function. Again, player 1’s average optimal choice x∗, player 2’s best
response y∗1 when his type is θ1, and player 2’s best response y∗2 when his
type is θ2, must altogether form a Nash equilibrium. This three-player
Nash equilibrium is what we defined as the Bayesain equilibrium.

11. Example 4. In a Cournot duopoly with a homogeneous product,
firms 1 and 2 must simultaneously choose supply quantities q1 and q2,
and given q1 and q2, the equilibrium product price would be

P (q1 + q2) = ã− q1 − q2, (11)

where the random variable ã may take on 2 with probability 1
3

or 4
with probability 2

3
. Firm 1 knows the realization of ã when choosing

q1, but firm 2 only knows the distribution of ã. Find a BE, assuming
that firms seek to maximize expected profits.

Solution. First observe that firm 1 has two possible types. So, we
shall consider a three-player game, where the two types of firm 1 will
be regarded as two different players, and we shall look for the NE of
this 3-player game.
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By definition, we must find three supply quantities {q∗1(2), , q∗1(4), q∗2},
such that, given any two of them, the third one is the corresponding
player’s best response

In other words, for firm 2,

q∗2 = argmax
q2

1

3
[q2(2− q∗1(2)− q2)] +

2

3
[q2(4− q∗1(4)− q2)].

Similarly, for the firm 1 that has seen ã = 2,

q∗1(2) = argmax
q1

q1(2− q1 − q∗2);

and for the firm 1 that has seen ã = 4,

q∗1(4) = argmax
q1

q1(4− q1 − q∗2).

Solving the above system of equations, we obtain the NE of the three-
player game, or the BE of the original game, which is

(q∗1(2), q∗1(4), q∗2) = (
4

9
,
13

9
,
10

9
).

12. Example 5. Consider firms 1 and 2 competing in the following
Cournot game. The inverse demand is

p = ã− q1 − q2,

where ã is equally likely to take on 4 or 2. Firms can operate costlessly.

First suppose that the firms compete after seeing the realization of ã.
In this case, they choose

q1 = q2 =
ã

3
in state ã, and each firm has equilibrium payoff equal to

1

2
[
16

9
+

4

9
] =

10

9
.

Next suppose that the firms must compete before knowing the realiza-
tion of ã. In this case, given qj, firm i seeks to

max
qi

qi(E[ã]− qi − qj).
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Consequently, they choose

q1 = q2 =
E[ã]

3
= 1.

Each firm gets the payoff

(2− 1− 1) · 1 = 0

in state ã = 2, and the payoff

(4− 1− 1) · 1 = 2

in state ã = 4. Their common expected profit is 1 < 10
9

.

Finally, assume that before competing firm 1 knows the realization of
ã but firm 2 does not. In this case, their output choices in the Bayesian
equilibrium are such that

q2 =
6− q1(4)− q1(2)

4
, q1(4) =

4− q2
2

, q1(2) =
2− q2

2
,

so that

q1(4) =
3

2
>

4

3
> q2 = 1 >

2

3
> q1(2) =

1

2
.

Firm 1’s expected profit is

1

2
[4− 3

2
− 1] · 3

2
+

1

2
[2− 1

2
− 1] · 1

2
=

5

4
>

10

9
.

Firm 2’s expected profit is

1

2
[4− 3

2
− 1] · 1 +

1

2
[2− 1

2
− 1] · 1 = 1 <

10

9
.

Thus a firm does benefit (suffer) from its superior (inferior) demand
information.

Nonetheless, firm 1 can do better by sharing information with firm 2
in state ã = 2: being uninformed firm 2 is producing too much in this
low-demand state, which forces firm 1 to cut back its production, and
letting firm 2 know the demand state will benefit firm 1.

8



However, if firm 2 is rational, then firm 2 knows that firm 1 is willing to
share the demand information with it if and only if the demand state
is ã = 2! Thus we have a separating equilibrium where firm 1 would
lose its high payoff due to superior information (recall that its payoff
with information asymmetry is 5

4
> 10

9
!).

Firm 1 would be better off to “commit” to never sharing demand in-
formation with firm 2.

13. Now we give a formal definition of Bayesian game.
Definition 7. Given a game, an event is mutual knowledge if every
player knows it. Given a game, an event is called the players’ common
knowledge if every player knows it, everyone knows that everyone knows
it, everyone knows that everyone knows that everyone knows it, and so
on. Anything that is not common knowledge is some player’s private
information. A player’s private information is also called his type. A
game where no players have private information (everything relevant is
common knowledge) is a game with complete information. Otherwise,
the game is one with incomplete information, or one with information
asymmetry.

14. A village has three residents, and they all know that a resident’s hair
can be either red (R) or black (B). A resident can see the color of each
neighbor’s hair, but does not know the color of his own hair. The three
residents are not allowed to communicate in any way. They must meet
(quietly) for 1 hour at 9am each day, trying to figure out the color of his
own hair. Suppose that a resident that figured out the color of his own
hair by the evening of date t would be allowed (by Trump, unlikely?)
to immigrate to the USA in the evening of date t. The three residents
all wish to immigrate to the USA as early as they can. Suppose that
exactly one of the three resident has black hair.
(i) Suppose that the three residents’ first meeting is at date 1. When
would a red head get to immigrate to the USA?
(ii) Suppose that at date n ≥ 1, an honest person passed through the
village at 9:20am (whose honesty is well known to the residents), and
he told the three residents during their daily meeting that at least one
of them has red hair. At which date would a red head get to immigrate
to the USA? At which date would the black head get to immigrate to
the USA?

9



15. Definition 8. An incomplete-information game where at least one un-
informed player can act after observing an informed player’s action is
called a dynamic game. A dynamic Bayesian game is called a signal-
ing game if there are only two players, one informed and the other
uninformed, each having one move, and the uninformed moves right
after seeing the informed’s move, with the game ending right after the
uninformed makes his move.

16. Example 6. Consider the following TV game show, where three boxes
are presented to a guest (G) by the host (H). G understands that H
knows which of the three boxes contains a prize even before the show
begins. The show proceeds in 3 steps as follows. (Step 1.) G would
have to choose one box. (Step 2.) Then H would open another box for
G, and if the opened box contains the prize, then the prize is given to
G; or else, (Step 3.) G can choose to or not to swap the box that G
chose in Step 1 with the box that neither G nor H has touched.

Now, suppose that the show has finished Step 2, and H did not open a
box containing the prize. Should G make the swap in Step 3?

(i) First assume that H would like to give the prize to G whenever
possible (type a).
(ii) Next assume instead that H would prevent G from getting the prize
whenever possible (type b).
(iii) Now, suppose that G believes that H may be type a for probability
α. Then G should make the swap if and only if α < α∗, where α∗ =?

Solution. Note that G is faced with two sources of exogenous uncer-
tainty: G does not know which box contains the prize, and G does not
know H’s type. These two random events are stochastically indepen-
dent. Let the box picked by G be labeled box 1, and the box opened
by H box 2. The remaining box is labeled box 3. Given that the prize
is not in box 2, G holds the following beliefs:

• With probability α
2

it may happen that box 3 contains the prize
and H is of type a, and in that event H would have opened box 3
directly, so that the probability that box 2 was opened is zero;

• With probability 1−α
2

it may happen that box 3 contains the prize
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and H is of type b, and in that event H has no choice but to open
box 2, so that the probability that box 2 was opened is one;

• With probability 1
2

it may happen that box 1 contains the prize,
and in that event H would have opened box 3 or box 2 with equal
probability, regardless of H’s type.

Thus from G’s perspective, given that the prize is not in box 2, the
probability that H may open box 2 is equal to

α

2
· 0 +

1− α
2
· 1 +

1

2
· 1

2
,

so that by Bayes Law, G believes that box 1 may contain the prize with
probability

1
2
· 1
2

α
2
· 0 + 1−α

2
· 1 + 1

2
· 1
2

=
1

3− 2α
,

and G should make the swap if and only if this probability is less than
1
2
, or α is less than α∗ = 1

2
.

17. Example 7. M is the owner-manager of a firm which is protected
by limited liability against its creditor(s). The debt due one year from
now has a face value equal to $10. There is a single debtholder, referred
to as C. The total assets in place are worth only $8 in one year. Just
now, a new investment opportunity with NPV=x > 1 + e ≥ 1 became
available, which requires that M make an unobservable effort but no
addition investment. Making the effort would incur a disutility e ≥ 0
to M. M has told C that he will make the effort for the new investment
project only if C agrees to reduce the face value of debt by $1. The
extensive game proceeds as follows. First C can accept (A) or reject
(R) M’s request. Then, M can choose to (I) or not to (N) make the
effort. Both M and C are risk-neutral without time preferences.

(i) Suppose x > 2 + e. Show that there is an NE in which the credi-
tor agrees to reduce the face value of debt and M makes the investment.

(ii) Show that the NE in (i) is not an SPNE. Find an SPNE.
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(iii) How may your conclusion about (ii) change if 1 + e < x ≤ 2 + e?

(iv) Define bankruptcy as a state where the firm’s equity value drops
to zero. Explain why bankruptcy does not take place in (iii).

(v) Verify that the equilibrium firm value is increasing in x, but the
equilibrium equity value may not.

Solution. Note that M can choose one action following A and another
action following R. Hence C has 2 pure strategies, A and R, but M has
4 pure strategies (

A→ I
R→ I

)
,(

A→ N
R→ N

)
,(

A→ I
R→ N

)
,

and (
A→ N
R→ I

)
.

The normal-form bimatrix is as follows.

M/C A R(
A→ I
R→ I

)
(x− 1− e, 9) (max(x− 2, 0)− e,min(8 + x, 10))(

A→ N
R→ N

)
(0, 8) (0, 8)(

A→ I
R→ N

)
(x− 1− e, 9) (0, 8)(

A→ N
R→ I

)
(0, 8) (max(x− 2, 0)− e,min(8 + x, 10))

In part (i), the strategy profile

(

(
A→ I
R→ N

)
, A)
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is indeed a pure strategy Nash equilibrium. However, it is not an
SPNE: given that C has chosen R, M would be better off choosing
I over N. Things are different in part (iii), where the above strategy
profile becomes an SPNE.

For part (iv), as we explained in class, M has the control right before
debt maturity, which is the reason that the firm has a positive equity
value in the SPNE. For example, assume that e = 0 and x = 1.95.
Even though x+ 8 < 10, the equilibrium equity value equals 0.95 > 0.

For part (v), assume that e = 0 and compare the case with x = 2.01 to
the case with x = 1.95. Since x > 0, the new investment project will
be undertaken in an SPNE (Coase Theorem!). Undoubtedly, the firm
value increases in x. However, the equity value is 0.01 in the former
case, but 0.95 in the latter case.
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