
Game Theory with Applications to Finance and

Marketing

Lecture 3: Static Games with Incomplete Information

1. This note consists of two parts. In the first part, we review some basic
theorems about mutual knowledge and common knowledge. The result
in this part that is most relevant to finance people is Aumann’s theorem
that rational people endowed with the same prior beliefs cannot agree
to disagree about the posterior beliefs of any event, which implies the
no-trade theorem underlying the theory of asset trading. The second
part then considers static games with incomplete information, for which
the relevant equilibrium concept is Bayesian equilibrium. Now we start
with part 1.

2. Definition 1. Given a game, an event is the players’ mutual knowl-
edge in state ω if every player knows it in state ω, and an event is the
players’ common knowledge in state ω if in state ω every player knows
it, everyone knows that everyone knows it, everyone knows that every-
one knows that everyone knows it, and so on. Anything which is not
common knowledge is some player’s private information. A player’s
private information is also called his type; see Harsanyi (1967-68).

3. Let us make the above definition more formal, and derive several impor-
tant results. Consider a (strategic or extensive) game with uncertainty
and with a finite set I of players. To model player i’s (interim) infor-
mation structure under uncertainty, we assume that there is a unique
finite sample space Ω, so that player i’s information structure is repre-
sented by a probability space (Ω,Fi, Pi).1 Recall that an information
partition H of Ω is a collection of subsets (or events) of Ω, such that
elements of H are pairwise disjoint and the union of all elements in H
is exactly Ω. Since Ω is finite, for each Fi, there exists uniquely a finest

1It is generally assumed that player i’s ex-post information structure is (Ω, 2Ω, Pi),
meaning that player i will eventually observe the true state ω ∈ Ω. It is usually assumed
also that player i’s ex-ante information structure is (Ω, {Ω, ∅}, Pi), meaning that player i
starts with trivial information sets. Recall that {{Ω, ∅},Fi, 2Ω} is an information filtration,
that completely describes the dynamic fashion in which the uncertainty facing player i is
resolved.
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information partition Hi contained in Fi such that if F ∈ Fi, then F
can be represented as a union of elements of Hi. Conversely, each Hi

uniquely generates a σ-algebra Fi, for which we write Fi = σ(Hi); see
my notes in Stochastic Processes. Thus given that Ω is finite, there
is a one-to-one correspondence between Fi and Hi, and hence we can
represent player i’s information structure by (Ω, Hi, Pi).

4. Given (Ω, Hi, Pi), for each state ω ∈ Ω, there exists hi(ω) ∈ Hi such
that ω ∈ hi(ω). We call hi(ω) player i’s information set in state ω. To
see why this terminology is adopted, imagine an extensive game where
nature moves first by choosing an element of Ω, and then player i gets
to move. As in Lecture 1, Part 1, when player i moves, he knows in
which information set he is standing, but he does not know precisely on
which node in the information set he is standing. If the true state is ω,
meaning that nature has taken the action ω, then player i only knows
that nature has selected some element in hi(ω), but unless hi(ω) is a
singleton, player i does not know exactly which state in hi(ω) nature
has selected. Thus hi(ω) is indeed player i’s information set, which we
defined in Lecture 1, Part 1, when we first introduced the notion of a
game tree.

5. An event is any element of σ(Hi). We say that an event E occurs in
state ω if and only if ω ∈ E. For example, if the true state is ω, then
the event E = {ω, ω′} (which represents the statement that the true
state is either ω or ω′) is true. Hence we say that E = {ω, ω′} occurs in
state ω. For the same reason, E = {ω, ω′} also occurs in state ω′. Now
by the definition of hi(ω), we have ω ∈ hi(ω), and hence the event hi(ω)
occurs in state ω. We shall say that player i knows event E in state ω
if hi(ω) ⊂ E. This definition is easy to undertand: by the definition of
hi(ω), in state ω, player i knows that the true state is some element of
hi(ω), and if hi(ω) ⊂ E, then player i knows that the true state is some
element of E, and hence player i knows that event E occurs; on the
other hand, if ω′ ∈ hi(ω)

⋂
Ec, then in state ω, player i cannot be sure

if E occurs. (By the same reasoning, we shall say that all the players
know event E in state ω if

⋃
i∈I hi(ω) ⊂ E.) It follows that (i)

hi(ω) ⊂ F, ω′ ∈ hi(ω)⇒ player i knows F in state ω′;
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and (ii) (axiom of knowledge)

hi(ω) ⊂ F, ω′ ∈ hi(ω)⇒ ω′ ∈ F ⇒ F occurs in state ω′.

6. Now let us denote the event (or the set of states where) player i knows
E by Ki(E) = {ω|hi(ω) ⊂ E}. The event that everyone knows E is
denoted by KI(E) = {ω| ∪i∈I hi(ω) ⊂ E}. The event that everyone
knows that everyone knows E is denoted by

K2
I (E) = {ω| ∪i∈I hi(ω) ⊂ KI(E)}.

Recursively defining

Kn+1
I (E) = {ω| ∪i∈I hi(ω) ⊂ Kn

I (E)}, ∀n ∈ Z+,

and
K∞I (E) =

⋂
n∈Z+

Kn
I (E),

we see that, by the axiom of knowledge, the sequence of events {Kn
I (E);n ∈

Z+} converges decreasingly to K∞I (E). We then define an event E as
common knowledge in state ω if and only if ω ∈ K∞I (E).

7. Given {Hi; i ∈ I}, the meet M of these information partitions is the
finest common coarsening of {Hi; i ∈ I}; that is, M is an information
partition of Ω such that (i) for all ω ∈ Ω, and for i ∈ I, hi(ω) ⊂M(ω),
where M(ω) is the element of M that contains ω; and (ii) if M′ is
another common coarsening of {Hi; i ∈ I} in the sense of (i), then for
all ω ∈ Ω, M(ω) ⊂ M ′(ω), where M ′(ω) is the element of M′ that
contains ω.

For example, suppose that I = {1, 2}, and Ω = {ωi; i = 1, 2, · · · , 5}.
Suppose that H1 is depicted as

ω1|ω2, ω3|ω4, ω5

and H2 is depicted as

ω1, ω2|ω3|ω4|ω5
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so that M is

ω1, ω2, ω3|ω4, ω5

Is the event E ≡ {ω1, ω2, ω3, ω4} the two players’ common knowledge
in state ω3? The answer is yes. In state ω3, player 2 knows for sure that
the true state is ω3, and since ω3 ∈ E, player 2 knows E. Player 1, at
the same time, knows that the true state is either ω2 or ω3, and in either
case E is true, and hence player 1 knows E. Moreover, player 1 knows
that player 2 must have seen the event h2(ω2) = {ω1, ω2} or the event
h2(ω3) = {ω3}, and either way player 2 can infer that player 1 must
have known E; and player 2, knowing that ω3 is the true state, believes
that player 1 must have seen h1(ω3) = {ω2, ω3}, so that player 1 would
infer that player 2 must have seen either h2(ω2) or h2(ω3), and since
player 2 knows E in both cases, player 2 knows that player 1 knows
that player 2 knows E. You can continue verifying that ω3 ∈ Kn

I (E)
for all n ∈ Z+ in this manner.

On the other hand, E is not the two players’ common knowledge in
state ω4. In state ω4, player 1 sees h1(ω4) = {ω4, ω5}, and hence player
1 thinks that state ω5 is also likely, but in state ω5, player 2 must have
seen h2(ω5) = {ω5}, so that player 2 knows E in state ω4 but not in
state ω5. By his information, therefore, player 1 cannot tell whether
player 2 knows E in state ω4 or not.

8. The above example shows that by the original definition (involving
K∞I (E)) it is generally difficult to check if an event is the players’
common knowledge in a certain state. However, using M, Theorem 1
provides an easy way to check whether an event E is common knowlege
in a state ω.

Theorem 1. (Aumann, 1976) Event E is common knowledge at ω if
and only if M(ω) ⊂ E.

We shall use the following two lemmas to prove Theorem 1.
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Lemma 1. M(ω) is common knowledge at the true state ω.2

Proof. Note that, by definition of M(ω),

KI(M(ω)) = {ω′| ∪i∈I hi(ω′) ⊂M(ω)} = M(ω).

It follows that for all n, Kn
I (M(ω)) = M(ω), and hence K∞I (M(ω)) =

M(ω). We have
ω ∈M(ω) = K∞I (M(ω)),

and hence M(ω) is common knowledge in state ω.
Lemma 2. If E ′ ⊂ E, then for all n ∈ Z+, Kn

I (E ′) ⊂ Kn
I (E).

Proof. If in state ω it is true that

∪i∈Ihi(ω) ⊂ E ′,

then, since E ′ ⊂ E, it is true that in state ω

∪i∈Ihi(ω) ⊂ E.

This implies that KI(E
′) ⊂ KI(E). Next, suppose for some positive

integer n we have Kn
I (E ′) ⊂ Kn

I (E). Then, we have

Kn+1
I (E ′) = KI(K

n
I (E ′)) ⊂ KI(K

n
I (E)) = Kn+1

I (E).

By mathematic induction, the lemma is proved.
Proof of Theorem 1. Suppose that M(ω) ⊂ E. Lemma 1 implies that

ω ∈M(ω) = K∞I (M(ω)),

and Lemma 2 implies that for all n,

Kn
I (M(ω)) ⊂ Kn

I (E),

which in turn implies that

ω ∈ K∞I (M(ω)) =
∞⋂
n=1

Kn
I (M(ω)) ⊂

∞⋂
n=1

Kn
I (E) = K∞I (E),

2In fact Theorem 1 asserts that M(ω) is the finest event that can be common knowledge
in state ω.
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showing that E is common knowledge in state ω.

Conversely, suppose that there exists ω′ ∈ M(ω)
⋂
Ec, which implies

that ω′ is not an element of E, but there exists a finite sequence
{ω = ω1, ω2, · · · , ωn} contained in M(ω) and a corresponding sequence
{i(1), i(2), · · · , i(n)} in the set {1, 2, · · · , I} such that,

ω′ ∈ hi(n)(ω
n),

and
∀j = 1, 2, · · · , n− 1, ωj+1 ∈ hi(j)(ωj).

That is, at state ω player i(1) cannot rule out the possibility that the
true state is ω2, and if the latter happens, then he knows that player
i(2) cannot rule out the possibility that the true state is ω3, and player
i(2) knows that if the latter happens, then player i(3) cannot rule out
the possibility that the true state is ω4, and so on and so forth. To sum
up, at state ω, player i(1) thinks that player i(2) thinks that player i(3)
thinks that · · · that player i(n− 1) thinks that player i(n) might think
that ω′ could be the true state. Since E does not happen at state ω′,
the occurrence of event E cannot be the I players’ common knowledge
at state ω. ‖

9. Definition 2. An event E is called a public event, if everyone knows
it whenever it happens. Mathematically, E is a public event, if

ω ∈ E ⇒ ω ∈ KI(E).

Theorem 2. A public event is common knowledge in state ω if it
happens in state ω.
Proof. By its mathematic definition, we deduce that for a public event
E,

E = KI(E).

It follows that E = K∞I (E). If E happens at state ω, then ω ∈ E =
K∞I (E), and hence E is common knowledge at state ω. ‖

10. Continue to assume that Ω is a finite space. In this case, any (real-
valued) random variable (r.v.) x has a finite number of possible distinct
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outcomes, say {x1, x2, · · · , xJ}. Apparently, x induces an information
partition

Hx ≡ {x−1({xj}); j = 1, 2, · · · , J}

on Ω (cf. the σ-algebra generated by the r.v. x; see my notes in
Stochastic Processes), where given j, the pre-image

x−1({xj}) = {ω ∈ Ω : x(ω) = xj}.

Equivalently, for each state ω ∈ Ω, define the pre-image of x(ω) by

hx(ω) = x−1(x(ω)),

so that hx(ω) is the element of Hx that contains ω. By our earlier
definition, player i knows hx(ω) in state ω if and only if hi(ω) ⊂ hx(ω).
In this case, we also say that player i knows the realization of x in state
ω. Similarly, we say that the realization of x is the players’ common
knowledge in state ω if and only if

M(ω) ⊂ hx(ω).

This implies that for all ω′, ω′′ ∈M(ω),

x(ω′) = x(ω′′).

That is, if the realization of x is the players’ common knowledge in
state ω, then x(·) does not vary on the set M(ω).

11. Consider two players i and j with an identical ex-post information
structure (Ω, 2Ω, P ) but different interim information structures (Ω, Hi, P )
and (Ω, Hj, P ), where P ({ω}) > 0 for all ω ∈ Ω. (We say the two play-
ers have the same prior beliefs since Pi = Pj = P on 2Ω.). Given any
ex-post distinguishable event E ∈ 2Ω, define player i’s interim proba-
bility of E in state ω by

P (E|hi(ω)) ≡ P (E
⋂
hi(ω))

P (hi(ω))
.

The following Theorem says that rational people (holding the same
prior beliefs) cannot agree to disagree, and it has a direct consequence
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in the theory of asset trading.
Theorem 3. (Aumann, 1976) If it is common knowledge that in
state ω, rational players i and j have interim probabilities qi and qj for
some event E, then qi = qj.
Proof. Given event E, observe that P (E|hi(ω)) is an r.v., and by the
preceding definition, qi = P (E|hi(ω)) is common knowledge of the two
players in state ω only if for all ω′, ω′′ ∈M(ω),

qi = P (E|hi(ω′)) = P (E|hi(ω′′)).

Recall thatM is the finest common coarsening of Hi and Hj, meaning
that in state ω, we can write

M(ω) =
⋃

ω′∈M(ω)

hi(ω
′).

Thus we have, for each ω′ ∈M(ω),

qi =
P (E

⋂
hi(ω

′))

P (hi(ω′))
⇒ P (E

⋂
hi(ω

′)) = qiP (hi(ω
′)),

so that by summing over the distinct hi(ω
′)’s with ω′ ∈M(ω), we have

P (E
⋂
M(ω)) = qiP (M(ω)).

Applying the same arugment to player j, we have

P (E
⋂
M(ω)) = qjP (M(ω)),

and hence we conclude that qi = qj (since P (ω) > 0 for all ω ∈ Ω). ‖

12. We are ready to present some examples. The following example is
due to Aumann (1976). Suppose that players A and B agree ex-ante
that there are four equally likely states, {a, b, c, d}. Players A and B
then receive their own private information to form posteriors about an
event {a, d}. Player A’s information allows him to distinguish {a, b}
from {c, d} and player B’s information allows him to distinguish {d}
from {a, b, c}. These information structures are part of the two players’
common knowledge. Now, suppose that the true state is a. Compute
their posteriors for the event {a, d}. Are these beliefs part of the two
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players’ common knowledge in state a?
Solution. We proceed to solve this problem in three steps. First, we
derive the two players’ posterior beliefs for event E. Second, we show
that this is the two players’ mutual knowledge. Finally, we show that
it is not their common knowledge. Now, the first step. Consider player
A. Since the true state is a, player A knows that the event {a, b} has
occurred, but he cannot tell if the true state is a or b. He knows that
state d is not possible, and hence event E is equivalent to the singleton
event {a}. Obviously, player A’s posterior for E is then

prob.(a)

prob.(a) + prob.(b)
=

1

2
.

On the other hand, player B knows that the event {a, b, c} has occurred.
Again, state d is not possible to player B. Player B’s posterior for event
E is hence

prob.(a)

prob.(a) + prob.(b) + prob.(c)
=

1

3
.

This concludes the first step. Next, are these posteriors the players’
knowledge? We must check if player A knows player B’s posterior, and
if player B knows player A’s posterior. Consider player A. He knows
that the true state is either a or b. But, in either case, player B should
have observed the event {a, b, c}. Hence, player A knows that player
B’s posterior is 1

3
. Now consider player B. She knows that the true

state is either a or b or c. Let us follow her thoughts:

If the true state is a or b, player A should have observed
the event {a, b} and considered event E equivalent to the
event {a}, and in that case player A’s posterior for E would
be 1

2
. What if the true state is c? In this case, player A

should have observed {c, d} and considered event E equiv-
alent to {d}. Once again, player A should have posterior
1
2
(= prob.(d)

prob.(c)+prob.(d)
) for event E.

We conclude that each player, based on his or her own information, is
able to deduce the other person’s posterior for E, and hence E is their
mutual knowledge.
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Finally, we show that these beliefs are not common knowledge. Let
us start with player A’s reasoning about how player B thinks about
player A’s posterior for E. Since player A is sure that the true state
is either a or b, he knows that player B should conclude that player
A’s posterior for E is 1

2
(as in step two). Thus, player A knows that

player B knows that player A’s posterior for E is 1
2
. (Note that player

A certainly knows that B knows B’s posterior for E.)

Now we consider player B’s reasoning about how player A thinks about
player B’s posterior beliefs. According to her information, player B
knows that player A could have seen {a, b} or {c, d}. In the first case,
player A would know that player B has seen {a, b, c}, and hence could
infer both players’ posterior beliefs for E. In the second case, however,
player A could have mistakenly considered d likely, and inferred that
player B could have seen {d} and attached prob. one to E. This means
that player B thinks that, if the true state is c, player A will be unable
to determine whether player B’s posterior for E is 1

3
or 1!

13. Two distinct digits x, y were selected from the set {2, · · · , 9}. Mr. A
learns their product xy privately, and Ms. B learns their sum x + y
privately. We shall let these two people take turn to report if they know
what the two digits are, starting from Mr. A. However, they are only
allowed to report if they know the two digits; they are not allowed to
report what the two digits are.

Suppose that Mr. A learns that xy = 18. Determine the sequence of
reports from the two people.
Solution. There are two possibilities: either the two digits are (2,9) or
(3,6).
(Case 1) If the two digits are (3,6), then Mr. A first reports that he
does not know, followed by Ms. B’s report that she knows, and then
by Mr. A’s report that he knows also.
(Case 2) If the two digits are (2,9), then Mr. A first reports that
he does not know, followed by Ms. B’s report that she does not know
either, which is followed by Mr. A’s report that he knows, and then
by Ms. B’s report that she does not know. Ms. B will then remain
puzzled forever.

To see that these will happen as suggested, suppose first that the two
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digits are (3,6). A thinks that (2,9) is also possible, and so he must first
report that he does not know the two digits. However, B knows that
the sum of the two digits is 9 in this case, and she thinks that the two
digits are either (2,7), or (3,6), or (4,5). If the two digits are not (3,6),
A would have known the two digits and could not have reported that he
did not know! Thus upon seeing that A admits that he does not know,
B learns that the two digits are (3,6). Thus B reports that she knows.
On the other hand, A thinks that if the two digits are (2,9), then B
would have observed x+y = 11, and B would think that both (2,9) and
(3,8) are possible outcomes, and that under (2,9) A would have seen
xy = 18 and under (3,8) A would have seen xy = 24, so that A could
not figure out the two digits in either case. Thus observing A’s report
that A does not know really cannot help B to know the two digits, if
the two digits are actually (2,9). Thus seeing that B reports that she
knows, A learns immediately that the two digits are (3,6) rather (2,9)!
Thus A also reports that he knows now.

What if the true digits are (2,9)? Again, A must report that he does
not know to start with, for (3,6) is also possible from A’s point of view.
On the other hand, B must have seen x + y = 11, and B thinks that
the two digits can be either (2,9), or (3,8), or (4,7), or (5,6). Seeing A’s
report that A does not know allows B to rule out (4,7) and (5,6). But
since both (2,9) and (3,8) are consistent with A’s report that A does
not know to start with, B must report that she does not know at this
stage. However, recall that A knows that the two digits are either (3,6)
or (2,9) at the beginning, and A can infer that B would have reported
that she knows if the two digits are (3,6). Thus A knows that the two
digits are (2,9).

Now, does A’s report that A now knows what the two digits are allow
B to finally know that the two digits are (2,9)? No. Let us show that
(3,8) are also consistent with A’s first reporting that he does not know
and then reporting that he knows. From B’s point of view, (3,8) are
possible, and if the two digits are really (3,8), then A would have seen
xy = 24, and A would think that the two digits are either (3,8) or
(4,6), and A would expect B to report that she knows if the two digits
were (4,6) (A would think that B would see three possibilities: (2,8),
(3,7) and (4,6) and would infer that A would not say that he does not
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know if the two digits are either (2,8) or (3,7)), and thus failing to see
such a report makes A realize that the two digits would be (3,8), and
that is why A reports that he knows upon seeing B’s report that she
does not know. The bottom line is that, upon seeing A’s report that A
now knows the two digits, B still cannot tell whether the two digits are
(2,9) or (3,8). Since A will not contribute any more useful information
from this point on, the two digits remain unknown to B forever.

14. The following example is taken from Milgrom and Stokey (1982). There
are 10 probable states: Ω = {t1, t2} × {x1, x2, x3, x4, x5}. Two risk
neutral players are considering taking the following bet: If t = t1 then
player 2 pays player 1 one dollar; if t = t2, then player 1 pays player 2
one dollar. Assume that the players have common priors as follows.

x/t t1 t2
x1 0.2 0.05
x2 0.05 0.15
x3 0.05 0.05
x4 0.15 0.05
x5 0.05 0.2

At the time the players make their decisions concerning whether to take
the bet, their information partitions are respectively

H1 = {{x1, x2}, {x3, x4}, {x5}}, H2 = {{x1}, {x2, x3}, {x4, x5}}.

Suppose that a player takes the bet only if he senses a strictly positive
expected profit. Show that there exists an equilibrium where both
players refuse to take the bet.
Solution. In state x1,3 player 2 will reject the bet, and recognizing
this, player 1 thinks that if he takes the bet and the bet is eventually
executed, then the true state must be x2, and since taking the bet in
state x2 is a bad idea for player 1, player 1 should reject the bet in the
first place. Thus trade cannot occur in state x1. A similar reasoning
applies to state x5 (with the roles of the two players reversed). This
implies that trade cannot occur in state x5.

3I have abused the terminology a little bit here; it is more precise to say that in event
{(t1, x1), (t2, x1)}. I shall continue adopting this abused terminology for simplicity.
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Observe that, since player 1 cannot distinguish x1 from x2, and since
player 2 cannot distinguish x4 from x5, player 1 will reject the bet in
state x2 and player 2 will reject the bet in state x4.

Now if the true state is x2, then since player 2 knows that player 1 will
reject the bet in state x2, player 2 can infer that if he takes the bet, and
the bet is eventually executed, then the true state has to be x3, and
since betting in state x3 implies zero expected profit, player 2 should
simply reject the bet. This implies that trade cannot occur in state
x2. A similar reasoning applies to state x4 (with the roles of the two
players reversed). It follows that trade cannot occur in state x4 either.

What if the true state is x3? Since player 1 rejects the bet in state x4,
he has to reject the bet in state x3. Similarly, since player 2 rejects the
bet in state x2, he has to reject the bet in state x3. Thus trade cannot
occur in state x3 either.

15. A, B, C, and D are sitting on the stairway between level one and level
two, facing level one and wearing the hats E delivered to them. It is
common knowledge of A, B, C,and D that E owns four blue hats and
three red hats, but none of them saw the hats when E put them on
their heads. A is sitting behind B, and B behind C, and C behind D.
Thus A is sitting closest to level two, and is able to see the hats worn
by B, C, and D; B is able to see the hats worn by C and D; and C is
able to see D’s hat. In turn, A, B, C, and D are asked to say whether
they know the colors of their hats. A said that he did not know, and
then B and C both said they did not know. Finally, D said that he
knew! Determine the color of D’ hat.

16. Two distinct numbers x, y were selected from the set {2, 3, · · · , 99}. Mr.
A was told what xy was, and Ms. B was told what x+ y was. That A
and B would know xy and x + y respectively was A and B’s common
knowledge. B, based on the x + y she was told, said that she knew
for sure that A, based on xy, could not deduce what x and y were. A
said that B was right, but upon listening to this remark from B, he
now knew what x and y were. B, upon hearing A’s reply, said that she
knew what x and y were too! Find x and y. Are they unique?
Solution. To demonstrate the idea, we show that the two numbers
cannot be (2, 26) or (3, 57) or (9, 19). If the two numbers were (2, 26)
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or (9, 19), then B must have seen a sum of 28, and B could not have
ruled out the possibility that the two numbers were (23, 5), and in the
latter case A would have known exactly what the two numbers were.
Similarly, if the two numbers were (3, 57), then B would have seen a
sum of 60, and B could not have ruled out the possibility that the two
numbers were (53, 7), and so B could not have said that A could not
possibly knew what the two numbers were.

So, what are the two numbers? The following useful observations are
made by Eric Wu. At first, x + y ≤ 54. This is true for if x + y ≥ 55,
then B could not rule out the possibility that either x or y was a prime
number exceeding 50 (starting from 53), but in the latter case A would
have been able to figure out what x and y were. Second, x and y cannot
both be prime numbers, for otherwise A would have been able to figure
out what x and y were. It follows that

x+ y ∈ S ≡ {11, 17, 23, 27, 29, 35, 37, 41, 47, 51, 53}.

It can be verified that x + y = 17 stands as the sole possibility. From
here, the two numbers x and y can be solved. The solution is (x, y) =
(4, 13).

17. Now we move on to part 2, where we shall define static and dynamic
games with incomplete information, and present and solve the Bayesian
equilibria for a series of static games with incomplete information.

18. Definition 3. A game where no players have private information (the
entire normal form game is player’s common knowledge in each and
every possible state) is a game with complete information. Otherwise,
the game is one with incomplete information, or one with differen-
tial information. A game with incomplete information is depicted as
a game with imperfect information where some players when making
their moves do not get to observe nature’s earlier decisions about play-
ers’ types.

19. Definition 4. A game with incomplete information is one with infor-
mation asymmetry, if there are only two classes of players in the game,
those who have (the same) private information and those who do not.
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The former is referred to as the informed players, and the latter the un-
informed players. In an agency problem, the informed and uninformed
players are respectively referred to as the agents and the principals.

20. Definition 5. An incomplete-information game where the uninformed
players can move after observing the informed players’ moves is called
a dynamic game, and otherwise a static game.

21. Classification of games. So far, we have been able to classify games
into 4 groups according to whether they are one-shot (static) or dy-
namic games, and whether there are privately informed players in the
games. The following table summarizes the appropriate equilibrium
concepts:

information/time horizon static dynamic
complete NE SPNE

incomplete BE PBE

22. Definition 6. The equilibrium concept for static games with incom-
plete information is Bayesian equilibrium, which, just like NE, is a set
of strategies, one for each type of each player, such that if all types of all
players play their specified strategies, no one wants to deviate unilater-
ally. Essentially, we have extended NE to static incomplete-information
games, where a player possessing different private information is treated
as different players.

23. We can now look at examples. The following example is a variant of
Example 1 in Lecture 1, Part 1.

In a Cournot duopoly, firms face the inverse demand P (q1 + q2) =
a− q1 − q2. But, only firm 1 knows what a is. Firm 2 only knows that
a may be 2 with prob. 1

3
or 4 with prob. 2

3
. Find a BE for this game.

Assume F = c = 0 for simplicity.
First observe that firm 1 has two possible types. Firm 2 has only one
type (no private information). So, a BE is defined by three strategies
q∗1(2), q∗1(4), and q∗2. These must form an equilibrium: given others’
strategies, mine is optimal for myself. Thus, for firm 2,

q∗2 = argmax
q2

1

3
[q2(2− q∗1(2)− q2)] +

2

3
[q2(4− q∗1(4)− q2)].
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Similarly, for firm 1 when a = 2,

q∗1(2) = argmax
q1

q1(2− q1 − q∗2);

and for firm 1 when a = 4,

q∗1(4) = argmax
q1

q1(4− q1 − q∗2).

Each of the above three maximization problems is concave, and so the
FOCs are necessary and sufficient. We have

(q∗1(2), q∗1(4), q∗2) = (
4

9
,
13

9
,
10

9
).

24. Consider two firms engaged in Cournot competition. The inverse de-
mand is

p = 3− q1 − q2.

Firm 2 has marginal cost c2 = 1 and firm 1’s marginal cost c1 is either
1 or 0, with prob. π and 1− π respectively. Find the pure strategy BE
for this incomplete information game.

25. Consider a more complicated version of the preceding problem. Sup-
pose that firm W and firm L are engaged in a Cournot competition
with their unit costs being their private information. For simplicity,
the firms have no fixed costs, The inverse demand is, over the relevant
range,

p = a− qW − qL.

Firm L’s unit cost can be either C or c. Firm W’s unit cost can be
either δC or δc, where δ ∈ (0, 1]. Suppose that firm W believes that
firm L’s unit cost is C with probability h and is considered by firm L
to have unit cost δC with probability g. Let Qw, qw be the Bayesian
equilibrium output levels chosen by respectively the type-C and the
type-c firm W. Let Ql, ql be the equilibrium output levels chosen by
respectively the type-C and the type-c firm L. Verify that in the BE,

Qw =
a+ hC + (1− h)c− δ(gC+(1−g)c)

2
− 3δC

2

3
,
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qw =
a+ hC + (1− h)c− δ(gC+(1−g)c)

2
− 3δc

2

3
,

Ql =
a+ δ[gC + (1− g)c]− hC+(1−h)c

2
− 3C

2

3
,

ql =
a+ δ[gC + (1− g)c]− hC+(1−h)c

2
− 3c

2

3
,

and the corresponding expected profits are, for firm W of type δC,

Γw = hQw[a−Qw −Ql − δC] + (1− h)Qw[a−Qw − ql − δC];

for firm W of type δc,

γw = hqw[a− qw −Ql − δc] + (1− h)qw[a− qw − ql − δc];

for firm L of type C,

Γl = gQl[a−Ql −Qw − C] + (1− g)Ql[a−Ql − qw − C];

and for firm L of type c,

γl = gql[a− ql −Qw − c] + (1− g)ql[a− ql − qw − c].

26. Consider the first-price sealed-bid auction game as follows. Assume
that there are n bidders instead of 2. We shall show that as n tends to
infinity, bidders’ consumer surplus tends to zero; that is, competition
does drive away bidders’ profits. Assume that there exists a symmet-
ric Bayesian equilibrium where all bidders use the pure strategy B(v),
where we recall that the valuation vi of bidder i for the indivisible good
is his private information, which the auctioneer and the other bidders
believe is drawn from the uniform distribution on the interval [0, 1].
Being private values, these vi’s are independent. To begin, let us as-
sume that
(i) B(v) is continuously differentiable and strictly increasing, so that
its inverse function v = B−1(b) exists and that the probability that
B(vi) = B(vj) (i.e. the event that two bidders’ bids equal in equilib-
rium) is zero; and
(ii) let b∗(v) =argmaxb∈[0,1] f(b) = (v − b)[B−1(b)]n−1, then

f ′(b∗(v)) = 0;
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that is, if given his valuation for the good being v and his beliefs that
all his rivals will use the strategy B(·), a bidder’s optimal bid is b∗(v),
then b∗(v) satisfies the so-called first-order condition.
(1) Write down explicitly the equation f−1(b∗(v)) = 0. Then, impose
the symmetric equilibrium assumption (that is, b∗(v) = B(v)) to obtain
an ordinary differential equation (ODE).
(2) Guess that the ODE has a solution taking the form of B(v) = kv
for some constant k. Find k. Show that k tends to 1 as n tends to
∞, thereby concluding that competition leads to zero profits for the
bidders.
(3) Show that assumption (i) is verified by B(v). Show that under
B(v), the maximum of f(b) does take place at some b∗ which satisfies
the first-order condition so that assumption (ii) is also verified.
Solution. In part (1), we have4

f ′(b∗(v))

= −[B−1(b∗(v))]n−1+(v−b∗(v))(n−1)[B−1(b∗(v))]n−2· 1

B′(B−1(b∗(v)))
= 0.

Now we impose the symmetry condition: b∗(v) = B(v). Replacing
b∗(v) by B(v) in the above first-order condition, we have

−vn−1 +
(n− 1)(v −B(v))vn−2

B′(v)
= 0,

or after re-arranging,

B′(v)+B(v)
n− 1

v
= (n−1)⇒ B′(v)vn−1+B(v)(n−1)vn−2 = (n−1)vn−1

⇒ d

dv
[B(v)vn−1] = (n− 1)vn−1 ⇒ B(v)vn−1 =

n− 1

n
vn + C

⇒ B(v) =
(n− 1)v

n
+ Cv1−n,

4Recall that if f, g : < → < are both continuously differentiable, and x = g(y) is
the inverse function for y = f(x), then at the point (x, y) = (x, f(x)), we have g′(y) =
g′(f(x)) = 1

f ′(x) .
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where C is some constant. Now if C > 0, then as v ↓ 0, B(v) ↑
∞, which cannot be compatible with bidders’ IR conditions (bidders
must make non-negative profits because participation in the auction is
voluntary). What if C < 0? Then for v > 0 sufficiently small, bidders
submit negative bids! We shall assume that the auctioneer accepts
only positive bids (which makes sense because it is common knowledge
that all bidders have positive valuations for the object). It follows that
C = 0 and B(v) = kv with k = n−1

n
, which is part (ii). Apparently, as

n ↑ ∞, k ↑ 1, indicating that competition drives away bidders’ profits.
Finally, in part (iii), we recognize that B(v) is a strictly increasing
linear function v, and hence is continuous. Its inverse function does
exist, and the probability that B(vi) = B(vj) is indeed zero because
B(·) is continuous and both vi and vj are continuous random variables.
It remains to check that the first order approach is valid. Note that

f(b) = (v − b)[B−1(b)]n−1 = (v − b)[ nb

n− 1
]n−1

so that

f ′(b) = −[
nb

n− 1
]n−1 + (v − b)[ n

n− 1
]n−1(n− 1)bn−2

= [
n

n− 1
]n−1bn−2{−b+ (n− 1)(v − b)}.

We conclude that

f ′(b) ≥ 0⇔ b ≤ (n− 1)v

n
,

and hence f(b) has a unique peak at b = (n−1)v
n

.5 Since f(b) has a uniqe

interior maximum at b = (n−1)v
n

, f ′(b) = 0 if and only if b = (n−1)v
n

.
Thus the optimal bid does satisfy the bidder’s first-order condition, as
we have conjectured, although f(·) is not a concave function of b!6

5Note that f is quasi-concave, although f may not be concave: for all r ∈ <, the upper
contour set of f , {b : f(b) ≥ r} is a convex set.

6The analysis can be carried over to the case where vi are i.i.d. with common continuous
density function h and distribution function H on some closed interval [0, w], where h(v) >
0 for all v ∈ [0, w]. In this case, define G and g as respectively the distribution function
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and the density function of Y1 ≡ max(v2, v3, · · · , vn). Note that

{Y1 ≤ y} ⇔ {v2 ≤ y}
⋂
{v3 ≤ y}

⋂
· · ·

⋂
{vn ≤ y},

so that

G(y) = prob.({Y1 ≤ y}) = prob.({v2 ≤ y})×prob.({v3 ≤ y})×· · ·×prob.({vn ≤ y}) = [H(y)]n−1.

From here, we have
g(y) = (n− 1)h(y)[H(y)]n−2.

Now, bidder 1’s payoff from bidding b given his valuation is v1 = v is

f(b) = (v − b)G(B−1(b)),

so that

f ′(b) = −G(B−1(b)) +
(v − b)g(B−1(b))

B′(B−1(b))
.

Assume that the optimal solution here is exactly B(v), and assume that this optimal
solution satisfies the first-order condition

f ′(B(v)) = 0,

which implies that
G(v)B′(v) + g(v)B(v) = vg(v),

or equivalently,
d

dv
[G(v)B(v)] = vg(v),

which, by the fact that B(0) = 0, implies that

B(v) =
1

G(v)

∫ v

0

tg(t)dt = E[Y1|Y1 < v].

It is easy to check that (i) B(·) is strictly increasing; i.e.,

w > v2 > v1 > 0⇒ E[Y1|Y1 < v2] > E[Y1|Y1 < v1];

(ii) B(·) is continuous; and (iii) given B(·),

f ′(b) =
g(B−1(b))[v −B−1(b)]

B′(B−1(b))
,

so that
f ′(b) > 0⇔ B(v) > b,

f ′(b) < 0⇔ B(v) < b,

f ′(b) = 0⇔ B(v) = b,

verifying that the first-order condition indeed yields the best response for bidder 1 given
that the other bidders adopt the bidding strategy B(·).
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27. In a private-value auction an indivisible good will be sold to one of the
two bidders whose valuations for the good are their private information
and are drawn independently from the uniform distribution over the
unit interval.
(i) Suppose that the seller has zero valuation for the good, and that
a first-price sealed-bid auction is adopted. Find a symmetric Bayesian
equilibrium for the bidding game.
(ii) Compare the seller’s expected revenue under the first-price sealed-
bid auction to her expected revenue under the second-price sealed-bid
auction.
Solution. From the preceding analysis of the first-price sealed-bid
auction, we know that, for part (i), bi = vi

2
, if vi’s are independently

and identically distributed (i.i.d.) over the unit interval, they have a
uniform distribution. For part (ii), we claim that the seller’s expected
revenue is the same under the two different auction rules. Under the
first-price sealed bid auction, the seller’s expected revenue is

E[
v1

2
|v1 ≥ v2]pro.(v1 ≥ v2) + E[

v2

2
|v2 ≥ v1]pro.(v2 ≥ v1)

= 2
∫ y=1

y=0

∫ x=1

x=y

x

2
· 1dxdy =

1

3
.

Under the second-price sealed bid auction, the seller’s expected revenue
is

2
∫ y=1

y=0

∫ x=1

x=y
y · 1dxdy =

1

3
.

In fact, this is a result called the revenue equivalence theorem, which
says that the above two auctions both maximize the seller’s expected
revenue (and hence optimal for the risk neutral seller) given that bid-
ders are also risk neutral and their valuations are independent drawings
from a common absolutely continuous distribution.7

7The revenue equivalence result for the 4 standard auctions (i.e., English, Dutch, the
first-price sealed-bid, and the second-price sealed-bid auctions) holds as long as the seller
and the bidders are risk neutral and the latter have i.i.d. valuations. In fact, this remains
true even if the latter have correlated valuations that are identically distributed. However,
in these latter cases, these equivalent standard auctions may fail to be optimal. Intuitively,
when the bidders have i.i.d. but discrete valuations, under a standard auction a bidder’s
IC constraint that prevents him from lying and claiming to have a lower valuation may be
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28. Let us extend the analysis in the preceding section by allowing non-
uniform distributions. Assume that vi’s are i.i.d. with a continuous
distribution function F (·) and a strictly positive density function f(·)
on the support [0, 1].8 Note that if f ≡ 1 then this problem is identical
to the one treated in the preceding section.
(i) Consider two realizations vi and v′i of bidder i’s valuation, with
0 ≤ v′i < vi ≤ 1. Suppose that bidder j adopts a bidding strategy
Bj(vj) in equilibrium. Show that if bi and b′i are bidder i’s best response
when his valuation is respectively vi and v′i, then bi ≥ b′i.

9

(ii) Show that with the current distributional assumption, there is a
symmetric equilibrium where for i = 1, 2, bidder i’s bidding strategy
is, given any vi ∈ [0, 1], to bid

B(vi) ≡ E[vj|vj < vi],

where the expectation on the right side uses the distribution function
F (·). Note that this solution implies as a special case the solution that

strictly satisfied, implying that the seller concedes too much information rent to a high-
valuation bidder. When the bidders have correlated valuations, on the other hand, under
the optimal auction the seller can essentially extract all the surplus from the bidders,
which the seller cannot achieve by adoping one of the standard auctions.

8The support S of a real-valued random variable x̃ is the smallest closed subset of <
such that the event that the realization of x̃ lies in S occurs with probability one.

9Hint: By bidding bi rather than b′i, type vi must yield a higher expected payoff; and
by bidding b′i rather than bi, type v′i must yield a higher expected payoff. Write down
these two IC conditions, with Bj(vj) being treated as a fixed random variable, and then
add up the two IC conditions.
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we obtain under the assumption of uniform distribution.10

10Hint: Two ways to prove this result. First, start with the conjecture that B(·) is
the symmetric equilibrium strategy which is strictly increasing and continuous so that
B′(·) > 0 exists on (0, 1). Given that bidder i believes that bidder j will use the strategy
B(·), write down the first-order derivative H ′(bi) of bidder i’s objective function H(bi),
where note that

H(bi) = (vi − bi)prob.(bi ≥ B(vj)) = (vi − bi)prob.(B−1(bi) ≥ vj)

= (vi − bi)F (B−1(bi)).

Then, set the derivative equal to zero at the point bi = B(vi). This will give rise to the
following ordinary differential equation for B(·):

F (vi) = [vi −B(vi)]
f(vi)

B′(vi)
⇔ d[F (vi)B(vi)]

dvi
= vif(vi),

showing that

F (vi)B(vi) = C +

∫ vi

0

tdF (t),

and since it must be that B(0) = 0, C = 0. Second, you can start with the assumption
that bidder j uses the strategy

Bj(vj) ≡ E[z|z < vj ],

where z, vi, vj are i.i.d. with density function f(·), and then show that bidder i’s best
response is

Bi(vi) ≡ E[z|z < vi].

To this end, verify that for bidder j,

B′j(vj) =
f(vi)

F (vj)
[vj −Bj(vj)] > 0,

except at vj = 0. Thus B−1
j (·) : Bj([0, 1]) → [0, 1] is well-defined, where recall that

Bj([0, 1]) is the image set of the function Bj(·). Now for bidder i’s problem of finding the
best response, the first-order derivative of bidder i’s objective function becomes

H ′(bi) = −F (B−1
j (bi)) + (vi − bi)

f(B−1
j (bi))

B′j(B
−1
j (bi))

.

This shows thatH ′(·) need not be a decreasing function. However, use the above expression

B′j(vj) = f(vi)
F (vj) [vj −Bj(vj)] to show that

H ′(bi) = F (B−1
j (bi))[

vi − bi
B−1
j (bi)− bi

− 1],

so that H ′(bi) > 0 (respectively, H ′(bi) < 0) if and only if B−1
j (bi) < vi (respectively,

B−1
j (bi) > vi).
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29. Let us extend the preceding analysis one step further. Now we shall
consider valuations which are discrete random variables. More pre-
cisely, assume that v1 and v2 are i.i.d. with

F (vi) =



0, if vi < v;

p, if vi ∈ [v, v);

1 = p+ p, if vi ≥ v.

In the above, the constants v, v, p, p are such that

0 < v < v < 1, 0 < p < 1.

(i) Show that there exists a symmetric equilibrium for this auction
game,11 where a type-v bidder bids v with probability one, whereas a
type-v bidder submits a random bid b̃, where the distribution function
of b̃ is

G(b) =



0, b < v;

1
p
[
(v−v)p

v−b − p], b ∈ [v, pv + vp);

1, b ≥ pv + vp.

(ii) Show that in equilibrium, a type-v bidder’s expected payoff is 0,
and a type-v bidder’s expected payoff is p(v − v).

11This equilibrium is unique! You are not required to show the uniqueness of equilibrium,
but it should be easy for you to see that there can be no pure-strategy Bayesian equilibrium
of this game. If there were one such equilibrium, then the analysis in the preceding section
shows that the high-valuation bidder i should bid higher than the low-valuation bidder
i in equilibrium. Note that this implies that a pure-strategy BE, if it exists, cannot be
symmetric: otherwise let b > b be the equilibrium bids for respectively a type-v and a
type-v bidder, and observe that necessarily v > b, which however implies that each bidder
has an incentive to deviate by bidding slightly higher when his valuation is v. However, an
asymmetric pure-strategy BE cannot exist either, for if bj > bi ≥ bi, then bidder j has an
incentive to deviate by bidding slightly lower. Finally, the derivation of the unique mixed
strategy equilibrium is rather similar to that of the mixed strategy equilibria for the game
in Example 6 of Lecture 1, Part II. Here, you are not asked to derive the mixed strategy
BE; the equilibrium is already spelt out for you, and all you need to do is to verify that
no bidders of any type can benefit from unilateral deviation from his equilibrium bidding
strategy.
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(iii) Prove or disprove that in equilibrium, the seller’s payoff is

p2v + (1− p2)v − 2pp(v − v).

30. The preceding sections have considered single auctions. Now we con-
sider a double auction. Consider a seller producing a good and selling
it to a buyer. The seller’s production cost c̃ is her private information.
The buyer’s valuation ṽ for the good is his private information. Assume
that ṽ and c̃ are identically, independently, and uniformly distributed
on [0, 1]. The trading mechanism is as follows. The seller and the buyer
must simultaneously submit bids ps and pb. If ps > pb, then there will
be no trade, and each party gets 0 payoff; but if ps ≤ pb, then trade
occurs at the transaction price ps+pb

2
.

(i) First assume complete information. That is, the seller and the buyer
can both see the realizations v and c before submitting bids. Show that
if v < c, then there will be no trade in any Nash equilibrium; and if
v ≥ c, then for each t ∈ [c, v], ps = pb = t is a Nash equilibrium.
(ii) Now, return to the original game with incomplete information.

• Show that there exists a linear Bayesian equilibrium,12 where for
constants a, b, α, β,

ps(c) = a+ bc, ∀c ∈ [0, 1];

and
pb(v) = α + βv, ∀v ∈ [0, 1].

Verify that α = 1
12

, a = 1
4
, and

b = β =
2

3
.

12We need to show (i) that given that the seller will use the strategy ps(c) = a + bc
for all c ∈ [0, 1], where a, b are constants, there exist constants α and β such that for all
v ∈ [0, 1], the type-v buyer’s best response is to submit α+βv; and (ii) that given that the
buyer will use the strategy pb(v) = α+βv for all v ∈ [0, 1], where α, β are constants, there
exist constants a, b such that for all c ∈ [0, 1], the type-c seller’s best response is to submit
a+ bc. Of course, this will give rise to 4 equations for the 4 unknowns a, b, α, β, and you
can obtain the exact numerical values of the 4 parameters by solving the 4 equations.
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• Verify that with these strategies, whenever trade takes place, both
parties get non-negative expected payoffs.

• Verify that incomplete information has resulted in too little trade;
that is, there exist pairs (v, c) with v > c such that with these
parameter values no trade takes place in equilibrium. Explain.

31. So far we have considerd private-value auctions. We now consider an
example where bidders have an unknown common value for the auc-
tioned object.

In a second-price sealed-bid auction, there are two bidders with i.i.d.
signals x1, x2. The object is indivisible with unknown common value
v. Assume that x1, x2 and v are strictly affiliated absolutely continuous
random variables with < being their common support, with the defining
property that

G(x1, x2) ≡ E[v|h(x1), g(x2)]

is a strictly increasing continuous function from <2 into < whenever
h(·) and g(·) are strictly increasing continuous function from < into <
(see Milgrom and Weber, 1982, Econometrica). Show that there is a
continuum of asymmetric equilibrium for this game.
Solution. To solve this problem, first define

H(x1, x2) ≡ E[v|x1, x2].

Then H(·, ·) is a strictly increasing continuous function from <2 into
<. Let φ(·) be any strictly increasing continuous function from < into
<. Let bidder i’s bidding strategy be bi(xi). Then, consider the pair of
bidding strategies

b1(x1) = H(x1, φ(x1)), b2(x2) = H(φ−1(x2), x2).

If we can show that these define a BE, then we are done, for there
are a continuum of such strictly increasing functions φ(·). Given b2(·),
bidder 1’s problem is to, ignoring the probability of a tie,

max
b1

E[(v − b2)1[b1>b2]|x1],

where the expectation is taken over x2 and v. The objective function
can be rewritten as

E[E[(v − b2(x2))1[b1>b2(x2)]|x1, x2]|x1]
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= E[(H(x1, x2)−H(φ−1(x2), x2))1[x2<b
−1
2 (b1)]|x1]

=
∫ b−1

2 (b1)

−∞
[H(x1, x2)−H(φ−1(x2), x2)]f(x2|x1)dx2,

where the first equality follows from the law of iterated expectations
and f(·|x1) in the last expression is the conditional density function of
x2 conditioned on x1. Note that following the assumption that H1 ≥ 0,
the integrand in the above integral is positive if and only if x2 ≤ φ(x1).
Hence, the optimal b∗1 should be such that b−1

2 (b∗1) = φ(x1). We have

b∗1 = b2(φ(x1)) = H(x1, φ(x1)).

One can check that bidder 2 does not want to deviate unilaterally either.
The proof is complete. (Note that a generic bidder’s optimization is in
general not concave!)

32. So far we have applied Bayesian equilibrium analysis to auctions only.
Now let us consider other applications, including stock trading, sale of
a used car, and designing a bank loan, and so on.

Consider the following stock trading game. A security (called the
“stock”) pays a one-time dividend ṽ at time 1, and there are three
traders, T, M1, and M2, trading the stock at time 0. The following is
their common knowledge:
(i) All traders are risk neutral (seeking to maximize expected profits);
(ii) ṽ is uniformly distributed over the unit interval [0, 1];
(iii) M1 and M2 are “dealers” who must simultaneously post ask and
bid prices (A1, B1) and (A2, B2) before trader T enters the market;
(iv) Trader T is a public investor. With probability π ∈ [0, 1], T is
a speculator who somehow has known the realization of ṽ, but with
probability 1− π, T has the same information as M1 and M2 do, and
in this case he wants to trade because he has been hit by some liquidity
shocks, and we assume that it is equally likely that this type of T may
want to buy or sell 1 unit. As in the trading model of Kyle (1985), here
we assume that the event that T is a liquidity trader and the event that
a liquidity trader may want to sell are both independent of ṽ.13

13Notice that the speculative type of T can choose to buy or sell 1 unit or not to trade,
depending on which alternative may bring him the highest expected trading profit, but
the liquidity type of T is forced to either sell 1 unit or buy 1 unit.
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Since the uninformed M1 and M2 cannot move after they see T’s ac-
tions, this game is a static game with incomplete information, for which
the appropriate equilibrium concept if Bayesian equilibrium (BE). A
symmetric BE in pure strategy for this game is

{t(v), (A1, B1), (A2, B2)},

such that (a) A1 = A2 = A and B1 = B2 = B; (b) given A (the ask
price that T is faced with if he wants to buy 1 unit from M1 and M2)
and B (the bid price that T is faced with if he wants to sell to M1 and
M2), t(v) ∈ {−1, 0, 1} is the trading quantity that maximizes T’s ex-
pected profit conditional on him being informed and on his observation
of the realization v of ṽ; (c) M1 and M2 earn zero expected profits by
posting A and B.
(1) Show that from M1 and M2’s perspective, the probability that T is
of the liquidity type and T wants to sell at the bid price B is (1−π) · 1

2
.

(2) Show that from M1 and M2’s perspective, the probability that T
is of the speculative type and T wants to sell at the bid price B is π·
Pro.(ṽ ≤ B).
(3) Show that E[v|T is speculative and wants to sell at B] = E[v|v ≤
B].
(4) Show thatE[v|T is not speculative and wants to sell at B] = E[v] =
1
2
.

(5) Show that by posting a bid price B, M1 and M2’s posterior expected
value for ṽ when a transaction occurs at B is

E[v|T is “willing to” sell at B]

= E[v|T is speculative and wants to sell at B]

×Pro.(T is speculative and wants to sell at B)

Pro.(T wants to sell at B)

+E[v|T is not speculative and wants to sell at B]

×Pro.(T is not speculative and wants to sell at B)

Pro.(T wants to sell at B)

=
B

2
· πB

πB + (1− π) · 1
2

+
1

2
·

(1− π) · 1
2

πB + (1− π) · 1
2

.
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(6) Show that for M1 and M2 to earn zero expected profits by posting
B, it must be that

B = E[v|T is “willing to” sell at B].

From here, show that

B =

√
(1− π)2 + 2π(1− π)− (1− π)

2π
.

(7) Show that 0 ≤ B ≤ 1
2

for all π ∈ [0, 1]. Show that as π increases
B decreases, and as π tends to 1 (and 0 respectively), B tends to zero
(and E[v] respectively).
(8) Similarly, show that

A =
−
√

(1 + π)2 − 2π(1 + π) + (1 + π)

2π
.

(9) Show that A is always between E[v] and 1 and as π increases A
increases. Moreover, A tends to 1 (and E[v] respectively) as π tends
to 1 (and 0 respectively). Interpret.

33. Mr. A is trying to sell a used car to Ms. B. The car may be worth
H or L with prob. a and 1 − a, where H > L > 0, and how much
it is really worth is Mr. A’s private information. Both people seek to
maximize expected profits. The game proceeds as follows. Ms. B first
names a price, and Mr. A can either accept or reject it. Find a BE of
this game.
Solution. Since Ms. B has full bargaining power, she will never choose
a price higher than H. Of course Mr. A never accepts a price lower
than L. Thus Ms. B can confine her attention to the prices contained
in [L,H]. We claim that all prices strictly greater than L are weakly
dominated from Ms. B’s perspective. To see this, note that the type-H
Mr. A will never accept Ms. B’s offer unless the price chosen by Ms.
B is H, but offering H always generates non-positive profits for Ms.
B. On the other hand, offering something less than H and acceptable
to Mr. A implies that the value of the car must be L. Thus Ms. B
offers the price L in any Bayesian equilibrium. The BE ( a strategy
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profile, which assigns one strategy to each type of each player) is thus
as follows:
(i) Ms. B offers the price L;
(ii) the type-H Mr. A accepts Ms. B’s offer if and only if the price
chosen by Ms. B is greater than or equal to H; and
(iii) the type-L Mr. A accepts Ms. B’s offer if and only if the offer is
greater than or equal to L.

34. Mr. Y, the owner of a firm, wants to borrow 1 dollar from competitive
risk neutral banks in order to implement an investment project. The
project may be of type G or type B, which is Mr. Y’s private informa-
tion. Banks think that the project is of type G with prob. a. A type j
project can generate a cash flow X with prob. πj and zero with prob.
(1− πj), j ∈ {G,B}. Assume that

1

aπG + (1− a)πB
> X >

1

πG
.

These inequalities say that the type G project has a positive NPV,
but on average Mr. Y’s project seems to have a negative NPV. The
game proceeds as follows. The banks first set their interest rates for
the dollar, and then the firm borrows from one of the banks that offer
the most favorable terms of trade, or the firm can cease to borrow the
dollar. Find a symmetric BE of this game where all banks charge the
same interest rate.
Solution. There is a continuum of pure strategy Bayesian equilibria.
Let Fi equals one plus the interest rate quoted by bank i, and is referred
to as the equilibrium face value of the debt offered by bank i. Let F
be the minimum of these Fi’s. Any Fi’s such that F > 1

πB
with both

types of the firm not borrowing is an equilibrium, where F equals one
plus the interest rate, and is referred to as the equilibrium face value of
the debt.

To see this, observe that in a pure strategy equilibrium, neither type
of the firm should borrow. Suppose instead that both types borrow
in equilibrium. Then the face value F is determined by the Bertrand
equilibrium of banks’ competition (this will be referred to as the zero-
profit condition for competitive investors):

1 = aπG min(X,F ) + (1− a)πB min(X,F ).
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Either F > X or F ≤ X. Suppose that F ≤ X. Then the last
equation gives F = 1

aπG+(1−a)πB
> X, a contradiction. Thus suppose

that F > X. But then by the above zero-profit condition, we have
1

aπG+(1−a)πB
= X, which is another contradiction.

Next, suppose that only the firm of type G borrows in equilibrium.
Then, the face value F of debt must solve

1 = πG min(X,F )⇒ F =
1

πG
< X.

But then, by borrowing, the firm of type B can get πB(X − F ) > 0,
where 0 is the firm’s equilibrium profit if it does not borrow. Hence, the
firm of type B will deviate and also borrow, which is a contradiction.
Suppose finally that only the firm of type B borrows in equilibrium,
but this implies that the firm of type B can get a non-negative profit
by borrowing and the lending bank can get a non-negative profit by
lending, which is impossible. We thus conclude that the firm never
borrows in equilibrium, regardless of the firm’s type. Given this ob-
servation, the equilibrium proposed at the beginning of this solution is
valid. Note that this game has no mixed strategy equilibria where the
firm randomizes between borrowing and not borrowing.

35. Mr. X is in a car rental business. For simplicity, he has one car, and
for him the value of the car is 1 dollar. Two types of customers may
show up, the light users and the heavy users. The values of the rental
to these two groups are L and H respectively. Renting the car to the
two groups will reduce the value of the car by l and h respectively, from
the perspective of Mr. X. Assume that

0 < l < L < H < h < 1, aL+ (1− a)H < al + (1− a)H,

where a is the subjective probability Mr. X holds regarding how likely
a customer may be a light user. The game proceeds as Mr. X first
posts a rent R, and then customers can each decide to or not to rent
the car at the price R.
(i) Suppose that Mr. X can distinguish whether a customer is a heavy
user, and he can see the customer before deciding the rent. Find an
SPNE.
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(ii) Suppose that whether a customer is a light user is the customer’s
private information. Find a BE.
Solution. Consider part (i). If the consumer is a heavy user, the
monopolist is better off not renting (equivalently, by chargingRH > H).
If otherwise, then the price is set at RL = L. Consider part (ii). Note
that no consumers will rent the car if R ∈ (H,∞), that only the heavy
users will rent the car if R ∈ (L,H], and that all consumers will rent the
car if R ≤ L. Because of the assumed inequalities, setting R ∈ (L,H]
will generate negative expected profits for the Mr. X. On the other
hand, R = L dominates all other strategies in [0, L], but even R = L
results in an expected loss:

L− al − (1− a)h < aL+ (1− a)H − al − (1− a)h < 0.

We conclude that in any SPNE, Mr. X must choose some R > H to
exclude both types of consumers.

This is an example of the lemons problem studied by Akerlof (1970,
QJE). This simple example shows that adverse selection problem can
be so severe that markets are no longer viable. The robustness of this
example certainly depends on the set of contractible variables assumed.
Here we have assumed in part (ii) that the only contractible variable
is the rent R. Suppose instead that the ex-post car damages are also
contractible (that is, h and l are observable and verifiable to the court
of law that is responsible for enforcing the legal contracts). Then ex-
ante Mr. X can make R contingent on the ex-post damages: If ex-post
the damage is h, then the rent is R = RH > H; or else, the rent is
R = RL = L. Verify that this contract attracts only the light users
in equilibrium, and hence the rental market can continue to function.
Thus ex-post damages can be used to screen consumers. When ex-
post damages are not contractible, there still may be other contractible
variables that can be used to design a self-selection mechanism. In this
case, those contractible variables are used as a screening device. We
shall have more to say about screening games in a subsequent Lecture.

So far we have assumed that Mr. X cannot do anything after seeing
consumers’ actions; that is, the incomplete-information game is static.
If instead that he can take actions after seeing consumers’ moves, then
this game becomes dynamic and the consumers can take actions to
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signal to Mr. X about their types. In that case, the rental market
may continue to function in equilibrium, although in general signaling
is costly to consumers, and hence the equilibrium may involve another
inefficiency. We shall review signaling games in a subsequent Lecture.

36. Two players, 1 and 2, are playing the following Bayesian game. Player
1 knows which normal form game he is playing, but player 2 thinks
that both normal forms are equally likely.14 Find a BE.

1/2 a b
A 0,0 1,2
B 2,1 0,0

1/2 a b
A 0,0 0,0
B 2,1 0,0

Solution. Let us look for pure strategy BE’s first. Call the player 1
who knows for sure that he is playing the first normal form game the
“type-1” player 1. Similarly, the player 1 who knows that he is playing
the second normal form game the “type-2” player 1.
First we ask, “Is there a BE where player 2 plays a with probability
one?” Suppose that such a BE exists. Then in the BE, player 2 plays
a, and given a, it can be easily verified that player 1’s best response is
B regardless of his type. On the other hand, given that both types of
player 1 will play B, it can be easily verified that a is indeed player 2’s
best response. Thus such a BE does exist, where both types of player
1 play B and player 2 plays a.
Next we ask, “Is there a BE where player 2 plays b with probability
one?” If such a BE exists, then in equilibrium player 1 plays A if he is
of type 1 and he feels indifferent about A and B if he is of type 2. One
can check that given the two types of player 1’s strategies, playing b is
indeed a best response for player 2. Thus such a BE also exists, where

14Asymmetric information about a normal game can always be modelled as asymmetric
information about the players’ payoff functions. One can show that asymmetric infor-
mation about the set of players, or about the players’ strategy spaces, can always be
equivalently modelled as asymmetric information about their payoff functions.
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player 2 plays b, the type-1 player 1 plays A, and the type-2 randomizes
in any way over A and B.
Finally, let us determine if there are BE’s where player 2 randomizes
over a and b. Suppose that player 2 plays a with prob. π ∈ (0, 1). Then
the type-2 player 1’s best response is B for sure, but the type-1 player
1’s best response is A if π < 1

3
; B if π > 1

3
; and A and B if π = 1

3
. On

the other hand, player 2 will not feel indifferent about a and b unless
the type-1 player 1 also randomizes over A and B. Let η be the prob.
that the type-1 player 1 chooses A. It can be easily shown that π = 1

3

and η = 2
3

together with the type-2 player 1’s playing B constitutes the
unique BE in this remaining case.

37. The Bayesian equilibrium concept allows us to justify mixed-strategy
Nash equilibrium in a static game with complete information as the
limit of Bayesian equilibria for a sequence of static games with incom-
plete information; this is called the purification of mixed-strategy Nash
equilibrium. The following example demonstrates the idea.

Consider the following game in normal form:

Player 1/Player 2 IN OUT
IN −1,−1 2 + t1, 0
OUT 0, 3 + t2 0, 0

(i) First assume that t1 = t2 = 0. Find the mixed strategy equilibria.
(ii) Next, assume that t1 and t2 are respectively private to players 1 and
2. Assume that both t1 and t2 are independently uniformly distributed
over the small interval [− ε

2
, ε

2
], where ε > 0. Find a pure strategy BE

for this incomplete information game. What happens to the BE when
ε ↓ 0?
Solution. The purpose of this problem is to show that a mixed strategy
equilibrium of a game with complete information can be considered the
limit of a sequence of Bayesian equilibria in a sequence of games which
are obtained by adding smaller and smaller incomplete information
to the original complete-information game. Part (i) should be easy.
Suppose players 1 and 2 play “In” with respectively probabilities π1
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and π2. Given the opponent’s randomizing strategy, a player should
feel indifferent about his own pure strategies, i.e.

(−1)π2 + 2(1− π2) = 0,

(−1)π1 + 3(1− π1) = 0,

and therefore

π1 =
3

4
, π2 =

2

3
.

Now, part (ii). Let us first recall the definition of a Bayesian equilib-
rium. A BE is composed of, in this case, two mappings which map
players’ types into actions “In” and “Out”.15 Therefore, the BE is {
a1(t1), a2(t2) }, with the common range of the two functions being {In,
Out }. Note that, for two types of player 1, t1 > t′1, (i) if a1(t′1) = In,
then a1(t1) = In; and (ii) if a1(t1) = Out then a1(t′1) = Out. This
means that, given the distribution of a2(t2) induced from the distribu-
tion of t2, a1(·) must be non-decreasing in “In,” in the sense that we
stated above. The same is true for player 2.

Suppose that player 1 believes that with probability π2, a2(t2) = “In”
and that player 2 believes that with probability π1, a2(t1) = “In.”
Then, let t∗1 and t∗2 be respectively the types of players 1 and 2 who
are just indifferent about playing “In” and “Out.” All t1 > t∗1 and all
t2 > t∗2 will respectively play “In,” according to our discussion in the
preceding paragragh. We have, in equilibrium,

π1 =
ε
2
− t∗1
ε

,

π2 =
ε
2
− t∗2
ε

,

where
(−1)π2 + (2 + t∗1)(1− π2) = 0,

and
(−1)π1 + (3 + t∗2)(1− π1) = 0.

15Mixed strategies are ignored here because we are trying to justify the definition of
a mixed strategy equilibrium for the original game using the concept of limiting pure
strategy equilibrium.
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Rearranging the above four equations, we have

π1 =
3

4
+
ε

4
(
1

2
− π1)(1− π2),

and

π2 =
2

3
+
ε

3
(
1

2
− π2)(1− π1).

It can be shown that the above equations admit a well-defined solution.16

Note that π1 and π2 converge to 3
4

and 2
3

respectively as ε tends to zero;
compare this to the solution to part (i).

Thus a mixed strategy Nash equilibrium in complete information game
can be regarded as the limit of Bayesian equilibria in a sequence of
perturbed games with incomplete information where the perturbations
converge to zero. As complete information is better considered an ide-
alization, it is hard to object the idea of mixed strategy equilibria on
the ground that they require randomizing devices.
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