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1. This note consists of two parts. Part I considers the three dynamic
games with incomplete information that we may encounter most fre-
quently (namely, screening games, signalling games, and reputation
games) and defines the perfect Bayesian equilibrium. In part II, we
consider other useful equilibrium concepts, such as sequential equilib-
rium, Grossman-Perry equilibrium, and divine equilibrium.

2. (Part I.)

3. Screening Games. Let us start with a special screening game, in
which a seller must design the optimal non-linear pricing scheme. Con-
sider a risk-neutral monopolistic manufacturer that intends to sell a
product to n segments of consumers. The unit cost of production is
c ≥ 0. A segment-i consumer receives gross utility θiV (q) if q units of
the product are consumed. Assume that

0 < θ1 < θ2 < · · · < θn.

Let πi > 0 be the population of consumer i. Each consumer seeks
to maximize consumer surplus u(q, T, θ) = θV (q) − T , where T is the
monetary payment required to obtain the q units of the product. The
manufacturer seeks to maximize expected profits, which is

max
{Ti,qi;i=1,2,···,n}

n∑
i=1

πi(Ti − cqi),

where Ti is the seller’s expected revenue from consumers of segment
i, and qi is the sales volume to consumers of segment i. Note that

1



mathematically, the seller’s problem is the same as the seller’s problem
in a different scenario where the seller is faced with only one buyer with
n possible, privately known, taste parameters θ1 < θ2 < · · · < θn, and
with πi being the probability that the buyer’s taste parameter is θi. In
the following, we shall take the latter interpretation unless explicitly
stated otherwise.1

We shall assume the following Spence-Mirrlees (or sorting, or single-
crossing) condition holds:

V ′ > 0 = V (0) > V ′′.

The condition V ′ > 0 implies that at any pair (q, T ),

∂

∂θ
[−

∂u
∂q
∂u
∂T

] > 0.

That is, at (q, T ), if we want to increase q to q+dq, and ask by how much
we should raise T in order to keep the consumer’s surplus unchanged,
then the answer depends on θ, and the higher the consumer’s θ is, the
higher the required increase in T must be. This fact holds for any pair
(q, T ), and it ensures that a menu of separating contracts is possible.2

4. Revelation Principle. The seller (the manufacturer) must design a
selling mechanism, which determines the amount q of the product sold
to the buyer, and the associated monetary payment T .

Any conceivable selling mechanism (or scheme, or contract) can be
represented by a game form3 (S, {(T (s), q(s)), ∀s ∈ S}), where S
is an arbitrary pure strategy space specified for the buyer, with the
only requirement that elements in S are verifiable in the court of law.

1When resale among consumers is allowed, these two problems are no longer mathe-
matically equivalent. Apparently, resale never occurs when there is only one buyer.

2This condition is also necessary to ensure a separating equilibrium in a signaling game,
which will be defined in a later section.

3A game form differs from a normal-form game in that the buyer’s payoff, which depends
on θ, is unknown to the mechanism designer (the seller), and hence is left unspecified. The
seller can specify a game form, but he cannot specify a normal form game for the buyer:
without knowing θ, the seller cannot specify the buyer’s payoff as a function of s ∈ S in
the strategic game.
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Given the game form chosen by the seller, a buyer of type θ can de-
cide to or not to play this game form (giving rise to the IR condi-
tions in program (P ) below), and if the buyer chooses to play this
game form, he can choose a best response s∗(θ) ∈ S, and with this
choice he understands that he will consume the amount q(s∗(θ)) and
is required to pay the seller T (s∗(θ)). Essentially all selling schemes
the seller can possibly think of take this form. However, given any
such game form (S, {(T (s), q(s)), ∀s ∈ S}) and the corresponding
Bayesian equilibrium s∗(θ) of the game form, let us consider the fol-
lowing equivalent direct game form: The seller asks the buyer to report
his θ ∈ Θ ≡ {θi; i = 1, 2, · · · , n}, and given the buyer’s report θ (the
buyer can lie about his true θ if he likes), the buyer will consume
f(θ) and is required to pay the seller W (θ), where f(·) = q(s∗(·)) and
W (·) = T (s∗(·)). In playing the former game form, the buyer chooses
s∗(θ) as his best response when his type is θ, which implies that the
buyer in playing the latter direct game form, one best response for him
is to report his true θ! To see this, suppose that the buyer of type θ
strictly preferred to report another type θ′. However, this would mean
that this type of buyer should have strictly preferred s∗(θ′) ∈ S to
s∗(θ) ∈ S in the original game form, yielding a contradiction. Our con-
clusion is therefore this: in searching for an optimal (meaning expected
profit maximizing) mechanism or game form, the seller can without loss
of generality confine his attention to those game forms that make q and
T contingent on the buyer’s report about his θ (certainly this requires
that θ be describable; we shall come back to this point later), and that
ensure that truthfully reporting his type is always one optimal strat-
egy for the buyer (hence giving rise to the IC conditions in program
(P) below). This has become a well-known theorem in contract theory,
referred to as the revelation principle.

5. Because of the revelation principle, the seller’s problem can be stated
as

(P) max
(qi,Ti), i=1,2,···,n

n∑
i=1

πi[Ti − cqi]

subject to {
(IC) ∀i, j θiV (qi)− Ti ≥ θiV (qj)− Tj;
(IR) ∀i θiV (qi)− Ti ≥ 0.
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In the above, we have written qi = q(θi) and Ti = T (θi) to ease notation.

6. Because of the Spence-Mirrlees condition, program (P) can be replaced
by the following simpler program (P′), in the sense that the two pro-
grams yield the same optimal selling mechanism.
Theorem AS-1 Problem (P) is equivalent to problem (P′):

max
(qi,Ti), i=1,2,···,n

n∑
i=1

πi[Ti − cqi]

subject to4


(LDIC) ∀i ≥ 2 θiV (qi)− Ti ≥ θiV (qi−1)− Ti−1

(IR1) θ1V (q1)− T1 ≥ 0.
(monotonicity) ∀i ≥ j qi ≥ qj

Proof. This theorem can be proved in 3 steps. First, it can be shown
that monotonicity is implied by IC constraints in (P), so that (P′) has
a strictly smaller set of feasible solutions than (P) does. Second, it can
be shown that at the solution of (P′), (IR1) will be binding, and all
the LDIC constraints will be binding. Finally, it can be shown that
a feasible solution to (P′) that makes (IR1) and all LDIC constraints
binding is also a feasible solution to (P). ‖

7. It can be shown that, if

V ′(0) >
c

θi
> V ′(+∞) ≡ lim

y↑+∞
V ′(y),

then the socially efficient level of consumption q∗i for the type-θi buyer,
which maximizes θiV (q)− cq, is such that

θiV
′(q∗i ) = c.

If the seller has full information about the buyer’s parameter θi, then
the seller’s optimal (q∗i , T

∗
i ), which is termed the first-best scheme, is

such that T ∗i = θiV (q∗i ), so that the seller extracts all the consumer
surplus from the buyer. In this case, q∗i must maximize the social

4LDIC stands for “Local Downward Incentive Compatibility” conditions.
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benefit from serving the type-θi buyer, which is θiV (q)− cq. It follows
that θiV

′(q∗i ) = c if

V ′(0) >
c

θi
> V ′(+∞),

and q∗i = T ∗i = 0 if V ′(0) ≤ c
θi

.

Now applying theorem AS-1 it is easy to show that under information
asymmetry, the seller’s optimal scheme, which is termed the second-best
scheme, is such that the type-n consumers’s quantity q∗∗n attains social
efficiency. This is called the property of efficiency at the top. On the
other hand, if

V ′(0) >
c

θ1

>
c

θn
> V ′(+∞),

then for all i < n, θiV
′(q∗∗i ) > c = θnV

′(q∗∗n ), implying the inefficiency
problem of under-consumption for each type i = 1, 2, · · · , n − 1. Also,
the type-1 consumers have no surplus in equilibrium.

8. Example 1. Suppose that n = 2. The full-information optimal
scheme, called the first best scheme, {(q∗i , T ∗i ); i = 1, 2 }, is such that,
assuming an interior solution,5

θiV
′(q∗i ) = c, θiV (q∗i ) = T ∗i ,

where the two equations require respectively (i) type-θi buyer’s con-
sumption efficiency and (ii) no consumer’s surplus for either type. In-
tuitively, with full information, the seller can employ his full bargaining
power to obtain a producer surplus that equals the entire social benefit,
and recognizing that each bit of efficiency gain will ultimately be en-
joyed by himself, the seller chooses the first-best output levels to fulfill
the social efficiency.

5A sufficient condition for an interior first-best solution is the following Inada condition
limx↓0 V

′(x) = +∞ and limx↑+∞ V ′(x) = 0. Another sufficient condition is

V ′(+∞) <
c

θn
<

c

θ1
< V ′(0).

To give a counter-example, note that if c
θ1
> V ′(0) > c

θ2
, then with the first-best scheme

the seller chooses to serve only the type-θ2 consumer.
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With information asymmetry, the first best scheme violates θ2-type
buyer’s IC if q∗1 > 0:

θ2V (q∗2)− T ∗2 = 0 = θ1V (q∗1)− T ∗1 < θ2V (q∗1)− T ∗1 ;

that is, both types would claim to be type 1! Thus the first-best scheme
is never an incentive-feasible scheme in the presence of information
asymmetry as long as q∗1 > 0. (A scheme is incentive-feasible if it
satisfies (IR1), (IR2), (IC1), and (IC2).) As Theorem AS-1 shows, the
optimal scheme {(q∗∗i , T ∗∗i ); i = 1, 2} in this case, called the second-best
scheme for obvious reasons, requires IR1 and IC2 be binding and that
q∗∗2 ≥ q∗∗1 . It follows that

θ2V
′(q∗∗2 ) = c, θ1V

′(q∗∗1 ) =
c

1− π2
π1

θ2−θ1
θ1

> c,

if there is an interior solution for q∗∗1 , or else q∗∗1 = 0. We conclude
that the θ2-type buyer maintains his consumption efficiency and may
enjoy some consumer surplus, whereas the θ1-type buyer suffers from
underconsumption and has no consumer surplus.

Note that with information asymmetry, the θ2-type buyer’s output level
is still the first-best level (simply because no other types would like to
claim that they are type θ2), and given this fact, the seller would like to
minimize the θ2-type buyer’s surplus (the seller’s surplus from serving
the θ2-type buyer plus the θ2-type buyer’s surplus becomes a constant
sum–the efficiency gain of producing q∗2). The θ2-type buyer’s surplus
is

(θ2 − θ1)V (q∗∗1 ),

which increases with the difference between θ2 and θ1 and with the
quantity rendered to the θ1-type buyer. This creates an incentive for
the seller to reduce q1 to below q∗1. If q∗∗1 = 0, then the θ2-type buyer’s
surplus is also zero, but the latter remains positive whenever q∗∗1 > 0.

The seller’s deviation from the first-best selling scheme is motivated by
the information asymmetry between him and the buyer. Recall that
the seller chooses to fulfill social efficiency in the full information case.
Here, with information asymmetry, the seller in choosing q∗∗1 > 0 cannot
exhaust the θ2-type buyer’s surplus, and this implies that the seller’s
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producer surplus is less than the social benefit. From this perspective,
it is not surprising that the seller wants to distort the selling scheme in
the presence of information asymmetry.

There is another implication from the above analysis. Note that the
type-θ2 buyer has rent exactly because he has private information. Thus
the buyer has an incentive to over-invest in activities that help maintain
his information advantage.

9. Example 2. A monopolistic firm intends to sell one product to three
segments of consumers. For j = 1, 2, 3, the population of segment j is
denoted by πj, and a segment-j consumer obtains a surplus θjv(q)− t
if she pays t to the firm in order to consume q units of the product.
The firm’s unit production cost is c. Suppose that v(q) =

√
1 + q, and

for all j = 1, 2, 3, θj = j.
(i) Suppose that π2 = 0. Suppose that c = 2

3
. Find the optimal contract

for the firm.6

(ii) Now, ignore part (i). Suppose instead that c = 1
4
, π1 = 3

4
, π2 =

π3 = 1
8
. Prove or disprove that qSB1 = 7

9
, qSB2 = 3, and qSB3 = 35.

10. Remarks. The screening games that we have considered so far are a
special class of contracting games. We shall cover contracting games in
the sequel of this course, in the next semester. In a contracting game,
some players have the authority of designing a contract or a mecha-
nism that specifies game forms (a game form is a normal form game
leaving the players unspecified) for other players. The following facts
are important in modelling and solving a contracting game:
(i) A contract can only enforce events which are observable to all con-
tracting parties and verifiable in the court of law (or other equivalent
contract enforcers).
(ii) That LDIC must be binding at optimum is not always true if we al-
low risk averse principals (note that we have assumed in theorem AS-1
that the seller is risk neutral, and we have done the same in exam-
ples 1 and 2.) An example is the model in Hart (1983, Optimal Labor

6Compute θ1v
′(0), and compare it to c. Conclude that the first-best consumption

q∗1 for segment-1 consumers is zero. Now, use the fact that qSB1 ≤ q∗1 to determine the
optimal qSB1 . Then, by the principle of efficiency at the top, derive the optimal qSB3 from
θ3v
′(qSB3 ) = c. Show that qSB3 = 65

16 .
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Contracts under Asymmetric Information: An Introduction, Review of
Economic Studies). There, both the workers and the firm (owner) are
risk averse. If the firm’ profitability were common knowledge, the first
best labor contract would take care of both productive efficiency (in-
stead of consumption efficiency as in theorem AS-1) and optimal risk
sharing. This first-best contract violates the firm’s IC under informa-
tion asymmetry if the firm is more risk averse than the workers. To
get the idea, consider the case where the workers are risk neutral and
the firm is risk averse. In this case, the first-best contract will require
workers bear all the risk and hence the firm ends up with a constant
profit. But this first-best contract becomes infeasible when the firm’s
profitability is the firm’s private information: every type of the firm
would like to to claim to be the type that is assigned with the highest
non-random profit! At the other extreme, i.e. only the workers are risk
averse, the first-best labor contract remains optimal under information
asymmetry. In all cases in between, the first best contract is not second
best and LDIC will not necessarily be binding at optimum.7

11. Now consider the case where Θ = [θ, θ] is an interval. We shall assume
that the density f(θ) > 0 at each point θ ∈ Θ. Let F (θ) be the
corresponding distribution function. The optimal contract problem
facing the monopoly is

(Q) max
q(·),T (·)

∫
Θ

[T (θ)− cq(θ)]f(θ)dθ,

s.t. (IR) θV (q(θ))− T (θ) ≥ 0,∀θ ∈ Θ,

(IC) θV (q(θ))− T (θ) ≥ θV (q(θ′))− T (θ′),∀θ, θ′ ∈ Θ.

Observe that, for θ > θ′, by IC,

θV (q(θ))− T (θ) ≥ θV (q(θ′))− T (θ′) ≥ θ′V (q(θ′))− T (θ′),

7That information asymmetry leads to various inefficiency problems should be the first
lesson to be learned here. We have seen in the above non-linear pricing examples that all
consumers except for the highest type suffer from under-consumption under the seller’s
second best non-linear pricing scheme. Here, Hart shows that when the full-information
Walrasian models in labor economics fail to explain the high and sticky unemployment
observed in the real world, risk aversion on the part of firms plus information asymmetry
can easily justify this phenomenon.
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and thus IR1 (i.e., θV (q(θ)) − T (θ) ≥ 0) and IC together imply IR.
Next, as in the proof for theorem AS-1, IC plus the Spence-Mirrlees
condition implies that q(θ) is weakly increasing (monotonicity), and
hence almost everywhere differentiable. Now, for true type θ and the
agent’s report θ′, define

W (θ, θ′) ≡ θV (q(θ′))− T (θ′).

Let θ̂∗(θ) be one optimal report made by a type-θ agent. By IC, one
solution is that θ̂∗(θ) = θ for all θ ∈ Θ. As a necessary condition, the
local downward and upward IC (LIC, from now on) requires that, for
all θ ∈ (θ, θ),

w(θ) ≡ W (θ, θ̂∗(θ)) = W (θ, θ) ≥ W (θ, θ + dθ).

By envelope theorem,8 we have

(A) w′(θ) ≡ dW (θ, θ̂∗(θ))

dθ
= V (q(θ)).

Just like in the case of n types, here LIC, monotonicity and the Spence-
Mirrlees condition together imply IC.

Thus, a maximization program with the same objective function as in
(Q) but imposing only IR1, monotonicity and LIC, must yield the same
optimal solution. In particular, IR1 means that

(B) w(θ) = 0.

8Consider the maximization program

max
y

g(y, x)

with g being twice continuously differentiable, and suppose that given each x, the optimal
y∗(x) is differentiable and it solves the following first-order condition (and hence is an
interior solution)

∂g

∂y
(y∗(x), x) = 0.

Define G(x) ≡ g(y∗(x), x). Then the envelope theorem says that

dG

dx
=
∂g

∂x
(y∗(x), x).

This theorem can be verified by direct computations.
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By the fundamental theorem of calculus, (A) and (B), or (LIC) and
(IR1), yield

w(θ) =
∫ θ

θ
V (q(x))dx,

implying that

T (θ) = θV (q(θ))−
∫ θ

θ
V (q(x))dx.

Hence instead of solving the above maximization program (Q), we can
solve the following program:

(P′′) max
q(·)

∫
Θ

[θV (q(θ))−
∫ θ

θ
V (q(x))dx− cq(θ)]f(θ)dθ

s.t. q(θ) is increasing in θ.

The objective function in (P′′) can be further rewritten as

max
q(·)

∫
Θ

([θV (q(θ))− cq(θ)]f(θ)− V (q(θ))(1− F (θ)))dθ

using integration by parts.9 Here comes our major result for the cur-
rent continuum case:

Theorem AS-2 If

g(θ) = θ − [
f(θ)

1− F (θ)
]−1

9Note that ∫
Θ

[

∫ θ

θ

V (q(x))dx]f(θ)dθ =

∫
Θ

[

∫ θ

θ

V (q(x))dx]dF (θ)

= F (θ)

∫
Θ

V (q(x))dx−
∫

Θ

F (θ)d[

∫ θ

θ

V (q(x))dx]

=

∫
Θ

V (q(x))dx−
∫

Θ

F (θ)V (q(θ))dθ]

=

∫
Θ

[1− F (θ)]V (q(θ))dθ.
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is strictly increasing in θ, then the optimal solution qSB(·) to (P′′) is
characterized by (i) qSB(θ) > 0 if and only if θ exceeds some θ̂ ∈ [θ, θ];
(ii) complete sorting (i.e., qSB(θ) > qSB(θ′) for all θ > θ′ such that
θ̂ < θ′ < θ ≤ θ); and (iii) quantity discounts (i.e., T (qSB(θ)) is strictly
concave in qSB(θ)).

Proof. The objective function in (P′′) is∫
Θ

[g(θ)V (q(θ))− cq(θ)]f(θ)dθ.

Now, if we perform point-wise optimization to the integrand, and refer
to the point-wise optimal solution as q∗(·), then we obtain

θV ′(q∗(θ)) = c+
1− F (θ)

f(θ)
V ′(q∗(θ)), (1)

whenever q∗(θ) > 0. When

g(θ) = θ − [
f(θ)

1− F (θ)
]−1

is strictly increasing in θ, it is easy to see that q∗(·) satisfies the mono-
tonicity, and is hence almost everywhere differentiable. It follows that

d

dθ
[g(θ)V (q∗(θ))− cq∗(θ)] = g′(θ)V (q∗(θ)) ≥ 0,

and the inequality is strict whenever q∗(θ) > 0. Thus there exists θ̂ ∈ Θ
such that

[g(θ)V (q∗(θ))− cq∗(θ)]f(θ) ≤ 0

if and only if θ ≤ θ̂. Thus we have

qSB(θ) =


0, if θ ≤ θ̂;

q∗(θ), if θ > θ̂.

This proves parts (i) and (ii). Note that, except for type θ, all other
types of consumers suffer from under-consumption.
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Finally, we consider part (iii). Note that we can write T SB(θ) as
T (qSB(θ)); i.e., if qSB(θ) = qSB(θ′) then we must have T SB(θ) =
T SB(θ′) in order to satisfy the IC’s for types θ and θ′. Note that the
type-θ consumer’s first-order condition is

T ′(qSB(θ)) = θV ′(qSB(θ)).

Now we can re-write (1) as

p− c
p

=
1− F (θ)

θf(θ)
,

where p = p(qSB(θ)) ≡ T ′(qSB(θ)) is the marginal price for an addi-
tional unit purchased. Note that the above right-hand side is decreasing
in θ by the monotone hazard rate property, and that the above left-
hand side is strictly increasing in p. Thus we have dp

dθ
< 0. From this,

using the chain rule, we deduce that

dp(qSB(θ))

dqSB(θ)
=

dp/dθ

dqSB/dθ
< 0.

This proves that T (qSB(θ)) is strictly concave in qSB(θ). ‖

12. Remarks. Uniform, normal, and exponential distributions all satisfy
the strictly monotone hazard rate property; i.e. f(θ)

1−F (θ)
is strictly in-

creasing. Note that as long as the hazard rate is weakly increasing, g(·)
is strictly increasing, and by Theorem AS-2, the second best scheme
involves complete sorting.

13. Now we consider a generalized version of the above screening game. A
risk neutral (monopolistic) seller sells a single product to a consumer
(the buyer). The buyer has n possible types, θ1 < θ2 < · · · < θn. The
buyer, given his type θi, seeks to maximize his consumer surplus

u(q, R, θi) = N(q, θi)−R,

where q is the purchased quantity, R the seller’s profit (the producer
surplus), and N the social surplus. More specifically,

N(q, θi) =
∫ q

0
P (x, θi)dx− cq,
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where P (·, θi) is θi-type buyer’s inverse demand function and c the
seller’s constant cost of production; and

R = T − cq

where T is the total payment the buyer makes to the seller for this
transaction. We shall assume that N(·, ·) is a twice continuously dif-
ferentiable function. Note that

Total surplus= consumer’s surplus + producer’s surplus,

and hence, equivalently, we have

ui =
∫ q

0
P (x, θi)dx− T.

Note that the preceding model is a special version of the current one,
under the following restriction:∫ q

0
P (x, θi)dx ≡ θiV (q),

where V ′ > 0 = V (0) > V ′′. We shall assume that ∀i,

N12 =
∂2N

∂q∂θi
> 0,

which implies the Spence-Mirrlees (or sorting, single-crossing) condi-
tion: ∀i,

∂

∂θi
[−

∂ui

∂q

∂ui

∂T

] > 0.

The seller’s problem is, by the revelation principle,

(P) max
(qi,Ri), i=1,2,···,n

n∑
i=1

piRi

subject to {
(IC) ∀i, j N(qi, θi)−Ri ≥ N(qj, θi)−Rj

(IR) ∀i N(qi, θi)−Ri ≥ 0.
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Here note that pi is the prob. for θi.

To conduct the analysis, we first give four lemmas.

Lemma 1. (R, q) �θ (R′, q′), q > q′, θ′ > θ ⇒ (R, q) �θ′ (R′, q′).
Proof.

0 <
∫ θ′

θ

∫ q

q′
N12(t, s)dtds

= [N(q, θ′)−N(q′, θ′)]− [N(q, θ)−N(q′, θ)]

≤ [N(q, θ′)−N(q′, θ′)]− [R−R′].‖

Lemma 2. (R, q) ∼θ (R′, q′), q > q′, θ > θ′′ ⇒ (R′, q′) �θ′′ (R, q).
Proof.

0 <
∫ θ

θ′′

∫ q

q′
N12(t, s)dtds

= [N(q, θ)−N(q′, θ)]− [N(q, θ′′)−N(q′, θ′′)]

= [R−R′]− [N(q, θ′′)−N(q′, θ′′)].‖

Lemma 3. Suppose that with {(Ri, qi); i = 1, 2, · · · , n}, where {qi; i =
1, 2, · · · , n} satisfies the monotonicity, LDIC’s are all binding. Then for
all i = 1, 2, · · · , n− 1, (Ri, qi) �θi (Ri+1, qi+1).
Proof. ∫ qi+1

qi

∫ θi+1

θi
N12(t, s)dsdt ≥ 0

⇒ N(qi+1, θi+1)−N(qi+1, θi)−N(qi, θi+1) +N(qi, θi) ≥ 0

⇒ [N(qi+1, θi+1)−Ri+1]−[N(qi+1, θi)−Ri+1]−[N(qi, θi+1)−Ri]+[N(qi, θi)−Ri] ≥ 0

⇒ N(qi, θi)−Ri ≥ N(qi+1, θi)−Ri+1,

where the last “⇒” follows from the fact that LDICi+1 is binding. ‖
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Lemma 4. Suppose that with {(Ri, qi); i = 1, 2, · · · , n}, where {qi; i =
1, 2, · · · , n} satisfies the monotonicity, LDIC’s are all satisfied. Then
for all i = 1, 2, · · · , n − 1, there exists R′i ≥ Ri such that (R′i, qi) ∼θi
(Ri+1, qi+1).
Proof. This follows from lemma 3 and the fact that u(q, R, θ) =
N(q, θ)−R. ‖

Theoerm AS-3.
Problem (P) is equivalent to problem (P′) below:

(P′) max
(qi,Ri), i=1,2,···,n

n∑
i=1

piRi

subject to
(LDIC) ∀i ≥ 2 N(qi, θi)−Ri ≥ N(qi−1, θi)−Ri−1

(IR1) N(q1, θ1)−R1 ≥ 0.
(monotonicity) ∀θi ≥ θj qi ≥ qj

Proof. We shall prove the following three statements: (i) The con-
straints of (P) imply those of (P′); (ii) At the solution of (P′), ∀i ≥ 2,
LDIC (Local Downward Incentive Compatibility conditions) must be
binding; and (iii) The solution of (P′) satisfies the constraints of (P).
proof of (i): Everything is obvious except for the monotonicity, for
which note that by IC, for θi ≥ θj,

N(qi, θi)−Ri ≥ N(qj, θi)−Rj

and
N(qj, θj)−Rj ≥ N(qi, θj)−Ri.

Rearranging, we have

N(qi, θi)−N(qi, θj) ≥ N(qj, θi)−N(qj, θj)

or, equivalently, ∫ θi

θj
N2(qi, θ)dθ ≥

∫ θi

θj
N2(qj, θ)dθ.
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But this means that ∫ qi

qj
[
∫ θi

θj
N12(q, θ)dθ]dq ≥ 0.

Since the expression in the square bracket is positive (by Spence-Mirrlees
condition), it is necessary that qi ≥ qj.
proof of (ii): Assume not. Then, there is some i ≥ 2 such that

N(qi, θi)−Ri > N(qi−1, θi)−Ri−1.

But, we can raise Rj by some positive ε for all j ≥ i without affecting
LDIC’s. This certainly raises the seller’s payoff, contradicting to opti-
mality.
proof of (iii): Fix θi. We want to show that

(Ri, qi) �θi (Rj, qj), ∀j 6= i.

This certainly is true for j = i − 1. Since for all j = 1, 2, · · · , i − 2,
qj ≤ qj+1 and

(Rj+1, qj+1) ∼θj+1
(Rj, qj),

by monotonicity, lemma 1, and LDICi, we have

(Ri, qi) ∼θi (Ri−1, qi−1) �θi (Ri−2, qi−2) �θi · · · �θi (R1, q1).

On the other hand, by monotonicity, Lemmas 2,3, and 4, we have

(Ri, qi) �θi (Ri+1, qi+1) �θi (R′i+1, qi+1) �θi (Ri+2, qi+2) �θi · · · �θi (Rn, qn).

Thus all IC’s are satisfied at an optimum of (P′). It remains to verify
that all the IR’s are also satisfied. Suppose that q1 = 0. Then R1 = 0.
As for all θi, N(0, θi) = 0, the IR’s follow from IC’s automatically.
Suppose instead that q1 > 0. Define (R′1, q

′
1) = (0, 0). Since (R1, q1) �θ1

(R′1, q
′
1), it follows from the IC’s and Lemma 1 that for all θi, (Ri, qi) �θi

(R1, q1) �θi (R′1, q
′
1), proving that IR’s are all satisfied.‖

A direct consequence of Theorem AS-3 is the following corollary.
Corollary AS-4. At optimum of (P), N1(qi, θi) > 0, ∀i < n, and
N1(qn, θn) = 0. That is, over-consumption (that qi > qFBi for some i)
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never takes place at optimum, and except type n, all other types of the
buyer suffer from under-consumption.10

Proof. Suppose that N1(qi, θi) < 0 for some i. Then let j be the
smallest such i. Demand Law implies that N is strictly concave in q so
that qFBi is such that

N1(qFBi , θi) = 0, ∀i.

By the sorting condition, this implies that qFBi < qFBi+1. Thus we have
(if j ≥ 2; the same argument goes for j = 1 in the absence of type θj−1

below)
qj > qFBj > qFBj−1 ≥ qj−1.

Now reducing qj and raising Rj slightly to keep type θj indifferent im-
plies that LDICj+1 is relaxed but monotonicity and all other LDIC’s
are left unaffected. This raises the seller’s expected profit from type θj
and it further allows the seller to extract rents from types θj+1, · · · , θn
by raising Ri, i ≥ j + 1. This is a contradiction.
Next, suppose N1(qn, θn) > 0. It is obvious that the seller can ben-
efit from replacing (qn, Rn) by (qFBn , R′), where R′ > Rn makes type
θn indifferent about this change. This affects neither LDIC nor mono-
tonicity. This is another contradiction.
Finally, let k be the smallest i such that qi = qFBi . Suppose k < n.
Consider changing (qFBk , Rk) into (qFBk − e, R′) where R′ < Rk makes
type θk indifferent about this change. This move does not affect mono-
tonicity (because qi = qFBi > qFBi−1 ≥ qi−1) by the definition of k if e is
small enough. This move reduces the seller’s profit from type θk by

Rk −R′ = N(qFBk , θk)−N(qFBk − e, θk)

= N1(qFBk , θk)e−N11(ξ, θk)
e2

2
,

= −N11(ξ, θk)
e2

2
,

where ξ ∈ [qFBk − e, qFBk ] and the second equality follows from Taylor’s
expansion theorem with remainders.

10See the note Corollary AS-2 for another proof that does not rely on the differentiability
of N .
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On the other hand, type θk+1’s LDIC is changed into

N(qk+1, θk+1)−Rk+1 ≥ N(qFBk − e, θk+1)−R′

= N(qFBk , θk+1)−N1(qFBk , θk+1)e+
e2

2
N11(ζ, θk+1)−Rk −N11(ξ, θk)

e2

2
,

where ζ ∈ [qFBk − e, qFBk ]. Thus after lowering qFBk by e > 0, the seller
can replace Ri, i ≥ k + 1 by

Ri +N1(qFBk , θk+1)e− e2

2
(N11(ζ, θk+1)−N11(ξ, θk)).

The net change in the seller’s expected profit is therefore

[
n∑

i=k+1

pi][N1(qFBk , θk+1)e−e
2

2
(N11(ζ, θk+1)−N11(ξ, θk))]−pkN11(ξ, θk)

e2

2
,

which is strictly positive as e ↓ 0, because (i) qFBk < qFBk+1; (ii) N11 =
∂2N
(∂q)2

< 0 so that N1(qFBk , θk+1) > N1(qFBk+1, θk+1) = 0; and (iii) N(·, ·)
is a C2 function of which the first- and second-order partial derivatives
are bounded uniformly on the set

{(q, θ) : q ∈ [
1

2
(qFBk−1 + qFBk ), qFBk ], θ ∈ [θk, θk+1]}.

This contradicts to optimality. The proof is complete. ‖

14. Signalling Games. Now we introduce signaling games. A game is
called a signaling game if it is featured by (i) two players (called 1 and
2); (ii) only player 1 has types θ ∈ Θ; (iii) player 1 (also referred to as
the informed player) given her type sends a signal a1 ∈ A1; (iv) player
2 (also referred to as the uninformed player) chooses action a2 ∈ A2

upon seeing a1; and (v) the game ends after player 2 chooses a2.

15. Let Θ be a finite set; i.e., Θ = {θ1, θ2, · · · , θn}. Let Ai be the set of
probability distributions over Ai. Let Σ1 be the set of player 1’s mixed
strategies σ1 : Θ → A1, where given a particular σ1, let σ1(a1|θ) be
the probability that player 1 chooses a1 ∈ A1 given her type θ. Let
Σ2 be the set of player 2’s mixed strategies σ2 : A1 → A2, where given
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a particular σ2, σ2(a2|a1) is the prob. that player 2 chooses a2 upon
seeing the signal a1 sent by player 1. Let p(θ) be player 2’s prior beliefs
about player 1’s type θ. Let P be the set of prob. distributions over
Θ. Let M be the set of mappings µ : A1 → P .
Definition 1. A perfect Bayesian equilibrium (PBE) for the signaling
game specified above is a triple (σ1, σ2, µ) ∈ Σ1 × Σ2 ×M such that

(P1) ∀θ ∈ Θ, ∀α1 ∈ A1,
∑
a1∈A1

∑
a2∈A2

σ1(a1|θ)σ2(a2|a1)u1(a1, a2, θ)

≥
∑
a1∈A1

∑
a2∈A2

α1(a1)σ2(a2|a1)u1(a1, a2, θ);

(P2) ∀a1 ∈ A1, ∀α2 ∈ A2,
∑
θ∈Θ

µ(θ|a1)
∑
a2∈A2

σ2(a2|a1)u2(a1, a2, θ)

≥
∑
θ∈Θ

µ(θ|a1)
∑
a2∈A2

α2(a2)u2(a1, a2, θ);

(B) a1 ∈ A1,
∑
θ′∈Θ

p(θ′)σ1(a1|θ′) > 0,

⇒ µ(θ|a1) =
p(θ)σ1(a1|θ)∑

θ′∈Θ p(θ′)σ1(a1|θ′)
.

Thus a PBE for the signaling game is a BE plus a system of posterior beliefs
such that the posterior beliefs are obtained by applying Bayes’ law to
the prior p(·) and player 1’s equilibrium strategy σ1 whenever possi-
ble. Unlike in the static games with incomplete information where the
definition of BE is adequate, here we cannot define player 2’s optimal
strategies unless we specify explicitly what player 2’s beliefs are when
she chooses her actions. Since these beliefs are endogenously depen-
dent upon a1, we need in the above definition a “system” of posterior
beliefs; namely, one probability distribution over Θ for each a1 ∈ A1,
whether or not a1 is reached on the equilibrium path.

16. As an example, recall the Spence signaling model, where Θ = {H,L},
H > L ≥ 0, A1 = [0,+∞), p(H) = α, A2 = R, u1(a1, a2, θ) = a2−a1cθ
with 0 < cH < cL, and u2(a1, a2, θ) = θ − a2. The interpretation is
that player 1 would become an employee capable of producing output
worth θ (which is player 1’s private information) for the firm, must
first decide to receive a number a1 of years of education before going
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to work for player 2, and a1 is later regarded as a signal about θ by
the Bertrand-competitive employer player 2 during the job interveiw.
Player 2, who then sets the wage a2 for player 1 upon seeing his diploma.
The assumption that player 2 is Bertrand competitive in recruiting
player 1 implies player 2’s equilibrium payoff (expected value of u2)
has to be zero, and hence a2 = µ(H|a1)H + [1− µ(H|a1)]L.

Note that by assumption receiving education is wasteful for player 1,
because it does not change player 1’s productivity H or L. The sorting
condition 0 < cH < cL says that, when required to spend more time on
education, the type-H player 1 is willing to accept a smaller amount of
raise in his pay than the type-L player 1 to compensate his loss from
having to stay longer at school. This condition ensures that this game
has a separating equilibrium.11

17. We usually classify the PBE’s in a signaling game into two categories:
the pure-strategy PBE’s and the mixed-strategy PBE’s. A PBE is a
pure-strategy PBE if both σ1 and σ2 are pure strategies. Otherwise,
the PBE must involve some player using a mixed strategy, and is hence
termed a mixed strategy PBE. Two important pure-strategy PBE’s are
separating PBE’s and pooling PBE’s. (If Θ has exactly two elements,
these are the only possible kinds of pure-strategy PBE’s.) Given a
PBE, let us call a1 ∈ A1 an equilibrium signal if there exists θ ∈ Θ such
that σ1(a1|θ) > 0; that is, a1 may appear on the equilibrium path of
the PBE with a strictly positive probability.12

• In a separating PBE, different types of player 1 use different pure
strategies, so that in equilibrium, either a1 occurs with zero prob.
or seeing a1 player 2 knows θ for sure. In this case, µ(·|a1) is
either degenerate at some θ or we can impose no restrictions on
it. More precisely, if we let ak1 be such that σ1(ak1|θk) = 1 so
that σ1(ak1|θ) = 0 for all θ 6= θk, then Bayes’ Law imposes no

11One can check that no such sorting condition holds in the signaling game beer and
quiche, which will be studied in a later section, and hence there does not exist a separating
equilibrium for that game.

12By this definition, a separating PBE is one where all equilibrium signals fully reveal
the informed player’s types, and a pooling PBE is one where no equilibrium signals ever
fully reveal the informed player’s types.
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restrictions on µ(·|a) for all a ∈ A1 \ {a1
1, a

2
1, · · · , an1}. On the

other hand, for k = 1, 2, · · · , n,

µ(θ|ak1) =
p(θ)σ1(ak1|θ)∑n

m=1 p(θm)σ1(ak1|θm)
=

p(θ)σ1(ak1|θ)
p(θk)σ1(ak1|θk)

=

{
1, θ = θk;
0, θ 6= θk.

• In a pooling PBE, all types of player 1 choose the same a∗1 ∈ A1

in equilibrium (that is, σ1(a∗1|θk) = 1 for all k = 1, 2, · · · , n), so
that by Bayes’ Law

µ(θ|a∗1) =
p(θ)σ1(a∗1|θ)∑n

k=1 p(θk)σ1(a∗1|θk)
=

p(θ)∑n
k=1 p(θk)

= p(θ), ∀θ ∈ Θ.

On the other hand, Bayes’ Law imposes no restrictions on µ(·|a′1)
if a′i ∈ A1 \ {a∗1}.
• More generally, a pure-strategy PBE can be always described as

a partition PBE, where for each equilibrium signal there is one
partition set of Θ that contains those types of player 1 that send
that equilibrium signal, and there is a partition set containing all
the off-the-equilibrium signals. Note that a pooling equilibrium
is simply a partition equilibrium with Θ being the unique parti-
tion set containing the single equilibrium signal, and a separating
equilibrium is a partition equilibrium where to each type of the
informed player there correspondingly exists a singleton partition
set containing the equilibrium signal sent by that type. From here
we see that for a separating PBE to exist it is necessary that the
number of feasible signals (the cardinality of A1) must be greater
than or equal to the number of player 1’s types (the cardinality of
Θ).

• If Θ and A1 both have two elements, then a PBE where one type
uses a pure strategy and the other type uses a mixed-strategy is a
semi-pooling PBE. In general, a semi-pooling PBE is a PBE where
some equilibrium signals fully reveal the informed player’s type,
but other equilibrium signals do not. In other words, in a semi-
pooling PBE, there must exist a1, a

′
1 ∈ A1 and θ′, θ′′, θ′′′ ∈ Θ with

σ1(a1|θ) = 0 < σ1(a1|θ′) for all θ 6= θ′ and σ1(a′1|θ′′), σ1(a′1|θ′′′) > 0
such that

µ(θ′|a1) = 1 > µ(θ′′|a′1), µ(θ′′′|a′1) > 0.
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That is, player 2 knows player 1’s type for sure upon seeing a1,
but the uncertainty remains if she sees a′1, where a1 and a′1 are
both equilibrium signals.

18. To ease notation, replace a1 and a2 by e and w respectively, and de-
note µ(H|e) by f(e). By definition, a pure strategy PBE for Spencian
signaling game is a triple (eH , eL, f(e) = prob.(H|e), w(e)), such that
(i) if eH = eL = e∗ (a pooling equilibrium), then

f(e∗) = α, (prior beliefs are also posterior)

f(e) ∈ [0, 1], ∀e 6= e∗, (Bayes law has no bite)

w(e) = f(e)H + [1− f(e)]L, ∀e,
w(e∗)− cH · e∗ ≥ w(e)− cH · e, ∀e,
w(e∗)− cL · e∗ ≥ w(e)− cL · e, ∀e;

and such that (ii) if eH 6= eL (called a separating equilibrium), then

f(eH) = 1, f(eL) = 0 (uncertainty is completely resolved)

f(e) ∈ [0, 1], ∀e 6= eH , eL, (Bayes law has no bite)

w(e) = f(e)H + [1− f(e)]L, ∀e,
w(eH)− cH · eH ≥ w(e)− cH · e, ∀e,
w(eL)− cL · eL ≥ w(e)− cL · e, ∀e.

19. Now we solve for the pooling equilibria for the Spence signaling game.
Suppose both H and L choose e∗ and f(e) = 0, ∀e 6= e∗. (Note that
we have arbitrarily selected a set of supporting beliefs f(e) for off-
equilibrium signals e, subject to the only requirement that the system
f(e) of posterior beliefs supports e∗ as the best response of both type
H and type L.) Then, wH = wL = w(e∗) = αH + (1 − α)L ≡ w.
We need the following incentive compatibility conditions (hereafter IC
conditions) to hold for respectively type-H and type-L workers:

w − cHe∗ ≥ L− cH · 0,

w − cLe∗ ≥ L− cL · 0.
Thus, we have a continuum (an uncountably infinite number) of pooling
equilibria: Each e∗ ≤ w−L

cL
corresponds to one pooling PBE.
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20. Next consider the separating equilibria. Suppose H and L chooses re-
spectively E and e, E 6= e, and f(e′) = 0, ∀e′ 6= E (again this system
of posterior beliefs best relaxes the informed player’s IC; it is unnec-
essarily strong). In this case, of course, w(E) = H, w(e) = L (why?).
We need the following IC conditions to hold:

H − cHE ≥ L− cH · 0,
L− cLe ≥ H − cL · E.

Immediately, we have e = 0 (why?). Again, we have a continuum of
separating equilibria: H−L

cH
≥ E ≥ H−L

cL
.

21. Now consider the equilibrium where one type randomizes over two sig-
nal levels and the other concentrates on one signal level.13

At first, consider the semi-pooling PBE where H randomizes over E
(prob. p) and e (prob. 1− p) and L plays e with probability one, with
E > e. (One can verify that it would violate L’s IC if we assumed that
L plays E with probability one; this results from the sorting condition
cH < cL.) For simplicity, assume that f(e′) = 0, e′ 6= E, e. To be
consistent with equilibrium, it must be that, for H,

H − cHE =
α(1− p)H + (1− α)L

(1− α) + α(1− p)
− cHe, H − cHE ≥ L,

and for L,

α(1− p)H + (1− α)L

(1− α) + α(1− p)
− cLe ≥ max(L,H − cLE).

13Are these the only possible type of semi-pooling equilibria? In equilibrium type i ∈
{H,L} randomizes over at most two different education levels. For example, suppose that
in equilibrium L randomizes over e1 > e2 > e3. Then L feels indifferent about (w(ej), ej)
for all j = 1, 2, 3. In this case, H must strictly prefer e1 to the other two (why?). But
then both e2 and e3 are separating outcomes, and L should not have randomized over e2!
Conclude that there can be a third type of semi-pooling PBE where both types of the
worker randomize over two education levels. Assume therefore H randomizes over E and
m and L over m and e, with E > m > e. It follows that e = 0. Let H and L assign

respectively prob. a and prob. b to m. Then w(m) = αaH+(1−α)bL
aα+(1−α)b and w(E) = H with

L = w(m) − cLm and H − cHE = w(m) − cHm. An obvious supporting belief is that
f(e′) = 0 for all e′ 6= E,m. Conclude that every E ∈ (H−LcL

, H−LcH
) corresponds to one

such semi-pooling PBE where w(m) = cLH−cHL−cHcLE
cL−cH ∈ (L,H), and in fact, there is

q ∈ (0, 1) such that w(m) = qH + (1− q)L and a, b are such that b
a =

α−αq
1−α .
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Thus, such an equilibrium exists if and only if

E ≤ H − L
cH

, e ≤ 1

cL
[
α(1− p)H + (1− α)L

(1− α) + α(1− p)
],

and
(1− α)(H − L)

cH
≤ E − e ≤ (H − L)

cH
.

Next, consider the semi-pooling PBE where H plays some E with prob.
1 and L randomizes over E (prob. q) and e (prob. 1−q) with E > e ≥ 0.
Again, assume f(e′) = 0, ∀e′ 6= E, e. It follows that e = 0! Such an
equilibrium exists if and only if

α(H − L)

cL
≤ E ≤ H − L

cL
.

22. Another well-known signaling game is the following “game of beer and
quiche,” where A and B meet in a bar, and A may be weak (w) or
strong (s), which is A’s private information. The game proceeds as
follows. A first decides to order either a beer (b) or a quiche (q), and
upon observing A’s order, B decides to or not to fight A. We assume
that in the absence of B, A prefers beer (b) to quiche (q) if he is (s),
otherwise he prefers (q) to (b). The prior beliefs of B are such that
A is (s) with probability 0.9. Now the payoffs: if A orders and eats
something he dislikes, he gets 0, or else he gets 1, and if B does not
fight A, A gets an additional payoff of 2. On the other hand, B gets 1
if he has no chance to fight, gets 2 if he fights A and A is of the weak
type, and gets zero if he fights A and A is of the strong type.

This game has two pooling PBE’s:
(1) Equilibrium (B): Both types of A order a beer and B’s strategy
is to fight A if and only if he sees A order a quiche. What are the
supporting beliefs? Let f(s) =pro.(A is strong| A orders s), for all
s ∈ {b, q}. Then of course f(b) = 0.9. Note that s = q is a zero
probability event. Recall that Bayes Law says

P (E|F )P (F ) = P (E
⋂
F ),
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where E and F are two random events. From the probability theory,
we know that for any two events C and D,

C ⊂ D ⇒ P (C) ≤ P (D).

Thus we have
P (F ) = 0⇒ P (E

⋂
F ) = 0,

since E
⋂
F ⊂ F . Thus given P (F ) = 0, Bayes Law requires

P (E|F ) · 0 = 0,

and hence P (E|F ) can be anything contained in [0, 1]. Let E be the
event that A is of the strong type, and F the event that B has observed
that A ordered a quiche. We conclude that any f(q) ∈ [0, 1] will be
consistent with Bayes Law in this case. We must find at least one
f(q) ∈ [0, 1] so that the above strategy profile does constitute the two
players’ best responses against each other. Note that for B to fight A
after seeing A order a quiche, it is necessary that

1 ≤ f(q) · 0 + [1− f(q)] · 2⇒ f(q) ≤ 1

2
.

Now we show that given the beliefs f(b) = 0.9 and f(q) being anything
in [0, 1

2
], the aforementioned A’s and B’s strategies are respectively the

two players best responses. For A, if his type is (s), he gets 1 + 2 = 3 if
he orders a beer, and if he deviates and orders a quiche, then not only
he eats something he hates but he also must fight B, yielding a payoff
of 0 + 0 = 0. Thus A will not deviate if he is of type (s). What if A is
of type (w)? If he orders a beer, then he must eat something he hates,
but the good news is that he can avoid fighting B, so that his payoff
is 0 + 2 = 2; and if he deviates and orders a quiche, then he will have
to fight B, so that his payoff is 1 + 0 = 1. We conclude that the weak
type of A does not want to deviate either. What about B? We have
shown that given f(q) ≤ 1

2
, fighting A if A dares to order the quiche is

really optimal for B. On the other hand, if A orders a beer, then since
B expects both types of A to do so, ordering the beer really does not
tell B anything new, and B’s posterior beliefs are identical to his prior
beliefs (A is of the strong type with prob. 0.9), and so not to fight A
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is optimal for B.
To sum up, we have shown that the following is a PBE (check if it
corresponds to our definition of a PBE!):
(i) The strong type of A orders a beer;
(ii) The weak type of A also orders a beer;
(iii) B’s strategy must describe what he will do in every possible con-
tingency: B will fight A if A ordered a quiche, and B will not fight A
if A ordered a beer;
(iv) The supporting beliefs fully describe what B thinks of A in every
possible contingency: B thinks that A is of the strong type with prob.
0.9 if he sees A order a beer; and B thinks that A is of the strong type
with prob. f(q) if he sees A order a quiche, where f(q) is any real
number contained in [0, 1

2
].

(2) Equilibrium (Q): Both types of A order a quiche and B’s strategy
is to fight A if and only if he sees A order a beer. What are the support-
ing beliefs? Let f(s) =pro.(A is strong| A orders s), for all s ∈ {b, q}.
Then of course f(q) = 0.9. Now for f(b) to induce B to fight A after
seeing A order a beer, it is necessary that

1 ≤ f(b) · 0 + [1− f(b)] · 2⇒ f(b) ≤ 1

2
.

Now we show that given the beliefs f(q) = 0.9 and f(b) being anything
in [0, 1

2
], the aforementioned A’s and B’s strategies are respectively the

two players best responses. For A, if his type is (w), he gets 1 + 2 = 3
if he orders a quiche, and if he deviates and orders a beer, then not
only he eats something he hates but he also must fight B, yielding a
payoff of 0 + 0 = 0. Thus A will not deviate if he is of type (w). What
if A is of type (s)? If he orders a beer, then he must eat something he
hates, but the good news is that he can avoid fighting with B, so that
his payoff is 0+2 = 2; and if he deviates and orders a beer, then he will
have to fight B, so that his payoff is 1 + 0 = 1. We conclude that the
strong type of A does not want to deviate either. What about B? We
have shown that given f(b) ≤ 1

2
, fighting A if A dares to order the beer

is really optimal for B. On the other hand, if A orders a quiche, then
since B expects both types of A to do so in equilibrium, ordering the
quiche really does not tell B anything new about A, and B’s posterior
beliefs are identical to his prior beliefs (A is of the strong type with
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prob. 0.9), and so not to fight A is optimal for B.
To sum up, we have shown that the following is a PBE (check if it
corresponds to our definition of a PBE!):
(i) The strong type of A orders a quiche;
(ii) The weak type of A also orders a quiche;
(iii) B’s strategy must describe what he will do in every possible con-
tingency: B will fight A if A ordered a beer, and B will not fight A if
A ordered a quiche;
(iv) The supporting beliefs fully describe what B thinks of A in every
possible contingency: B thinks that A is of the strong type with prob.
0.9 if he sees A order a quiche; and B thinks that A is of the strong
type with prob. f(b) if he sees A order a beer, where f(b) is any real
number contained in [0, 1

2
].

23. In addition to the two pooling equilibria, there are no other PBE’s for
the game of beer and quiche. To see this, note first that in a separating
PBE B must use only pure strategies, and chooses not to fight upon
seeing the signal sent by the strong type of A. However, the weak type
of A would prefer to send that signal as well, upsetting the supposed
separating equilibrium.

Next we explain why there can be no semi-pooling PBE for this game.
First we claim that if a semi-pooling PBE exists, then at least one type
of A must take a pure strategy in equilibrium. To see this, suppose that
both types of A randomize in equilibrium with the strong type and the
weak type of A choosing beer with probability ps and pw respectively,
and we shall demonstrate a contradiction. If both types of A randomize
over beer and quiche this way in equilibrium, then B will use a pure
strategy either upon seeing beer or upon seeing quiche, for otherwise,
B must have f(b) = f(q) = 0.5, or equivalently,

9ps = pw, 1− pw = 9− 9ps,

which gives a contradiction. Thus B must use a pure strategy some-
times. However, if B chooses with probability one not to fight upon
seeing either quiche or beer, then it is impossible that both types of A
feel indifferent about quiche and beer: one type of A can get payoff 3
by sending that signal with probability one. Can it be possible that B

27



chooses with probability one to fight upon seeing either quiche or beer?
If this is the case, then one type of A will assign zero probability to
such a signal: by sending the other signal, the probability that B fights
is no greater than one, but that type of A gets payoff 1 by ordering
something he genuinely likes. Hence again, it cannot happen that both
types of A randomize in equilibrium.

Having established that in a semi-pooling PBE one type of A must
use a pure strategy, now we continue to show that semi-pooling PBE
cannot exist at all.

Let x, y ∈ {s, w} be the types of A that use respectively a pure
strategy and a mixed strategy in the semi-pooling PBE. Let m,n ∈
{beer, quiche} be the signal sent by the type-x A and the signal that
is sent by the type-y A exclusively. If such a semi-pooling PBE exists,
then f(n) equals either zero or one (depending on whether y is strong or
weak), so that upon seeing signal n, B will use a pure strategy. Hence
there are two possible cases.

First, suppose that B chooses to fight upon seeing signal n. Since the
type-y A feels indifferent about signals m and n, and since B fights
with a probability no greater than 1 after seeing signal m, the type-y
A must genuinely like to order n rather than m; that is, n = beer if
y is strong, and n = quiche if y is weak. This implies that if such
a PBE exists, the type-y A’s equilibrium payoff is 1. It follows that
upon seeing signal m, B should fight with a probability less than 1 (but
greater than zero), which in turn implies that f(m) = 0.5. The latter
is possible, only if y is strong, with the probability of choosing signal
m being 1

9
! However, this implies that upon seeing n, B knows that he

is facing the strong-type A, and B’s best response is not to fight, which
contradicts the assumption that B chooses to fight upon seeing n.

Next, suppose that B chooses not to fight upon seeing signal n. This
implies that the type-y A genuinely likes to order m better than n: m =
beer if y is strong, and m = quiche if y is weak. This also implies that if
such a PBE exists, the type-y A’s equilibrium payoff must be equal to
2. For this type of A to feel indifferent about sending m and sending n,
it is necessary that B fights with probability 0.5 upon seeing signal m.
This implies that f(m) = 0.5, showing that y is strong, and it chooses
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m with probability 1
9
. But then n = quiche, and the type-x (where x is

actually weak) would be better off sending n with probability one than
sending the supposed equilibrium signal m! This is a contradiction.

Thus we have shown that no semi-pooling PBE can exist either.

24. Cho-Kreps Refinement. According to I.-K. Cho and David Kreps,
some PBEs may involve implausible supporting beliefs and should be
disregarded.

To demonstrate Cho and Kreps’ idea, consider Equilibrium (Q) in the
previous section. There, B knows that ex-ante A may be strong with
prob. 0.9 and A hates the quiche if he is strong, and yet B still thinks
that A is more likely to be the weak type when he sees A deviate by
ordering the beer. Consider the speech that the strong-type of A would
have made to B if he were allowed to: I am having beer, so I am the
strong type. To see this, note that if I were the weak type, I would
have got 3 by having the quiche, and a weak type could never get a
payoff of 3 by having beer, which is so no matter how you may respond
after the beer is ordered! Moreover, if this speech can convince you that
I am strong, then I expect you to not fight me, so that, as a strong
type, I have the beer that I like and I do not have to fight you. In fact,
I expect to get 3 if this communication works, and that is why I am
having beer.....

These two suppositions
(i) the weak type of A is absolutely better off by not deviating; and
(ii) if supposition (i) is accepted then the strong type of A is expected to
be treated in a better way by B that justifies the strong type’s deviation
in the first place,
comprises the so-called ‘intuitive criterion.’

25. Definition 2. Those PBE’s survive the intuitive criterion are called
intuitive equilibria.

26. We now show that in the game of beer and quiche, only Equilibrium
(B) is intuitive. By definition, a PBE is intuitive, if either (i) we can-
not find a deviation which certain types of the informed player would
never make; or (ii) we can find a deviation which certain types of the
informed player would never make, but by restricting to the supporting
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beliefs that assign zero prob. to these types, we still cannot find a type
of the informed player that strictly prefers to deviate.
Take equilibrium (Q) for example. The equilibrium, by assumption, in-
volves both types of A playing the strategy (q), but as we stated above,
by having beer, the weak type of A can at best get the payoff 2 (which
occurs if B decides not to fight A following an order of beer). Thus the
weak type of A strictly prefer his equilibrium action to strategy (b).
Now all reasonable beliefs should assign zero prob.’s to the weak type
of A following an order of beer from A. That means that there is only
one reasonable belief, the belief that assigns prob. 1 to the strong type
of A after beer is ordered. Given this belief, B is expected to behave
optimally, which is not to fight A. But then the strong type of A can get
the payoff 3 by deviating from (q), while he gets 2 by ordering quiche.
Thus the strong type of A would strictly prefer to deviate from (q),
proving that equilibrium (Q) is not intuitive. This shows that both of
the suppositions defined above hold for this equilibrium, so that this
PBE fails the intuitive criterion, and it is not an intuitive equilibrium.

27. Next let us ask if equilibrium (B) is intuitive. Having observed the
deviation (q), can we conclude that at least one type of A would never
have done this? Apparently, the strong type has obtained a payoff
of 3 on the equilibrium path, and by deviating and ordering (q), he
could get no more than 2. Thus the strong type of A strictly prefers
his equilibrium payoff to what he could get by deviating and ordering
quiche. In this case, any reasonable beliefs after quiche is ordered
should assign prob. 1 to the weak type of A. Now what is the best
response of B given this reasonable belief? Of course B should fight A!
But then, even the weak type of A could not gain by deviating from
(b) to order (q)! To sum up, Cho-Kreps’ first supposition holds but
the second supposition fails for this PBE, and hence this PBE survives
from Cho-Kreps’ intuitive criterion. Thus this PBE is an intuitive
equilibrium.

28. Now we show that there is also one single intuitive equilibrium in
Spence signalling game. First we claim that all but one separating
equilibria derived are unreasonable, because they are supported by
some off-the-equilibrium beliefs that require the uninformed employer
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to believe that the type-L worker has played weakly dominated strate-
gies. More specifically, consider a separating equilibrium (E, 0) where
E ∈ (H−L

cL
, H−L

cH
]. Now consider what happens to the employer’s pos-

terior beliefs if a deviation to E − ε > H−L
cL

occurs. Note that the
type-L worker can guarantee himself a payoff weakly higher than L by
receiving no education: By receiving no education the worst thing can
happen to the type-L worker is that the employer can recognize his
identity for sure and pay him L accordingly. By receiving (E− ε) units
of education, on the other hand, he gets at most

H − cL(E − ε) < H − cL ·
H − L
cL

= L,

and hence receiving E − ε units of education is a weakly dominated
strategy for the type-L worker. Thus the only reasonable beliefs for
the employer upon seeing the signal E − ε must be that the deviator
is the type-H worker and pays the deviator the wage H! But then,
the type-H worker would strictly prefer the signal of deviation E − ε
to the equilibrium signal E, since signals E and E − ε yield the same
wage, but receiving education is costly. Thus we have shown that all
separating equilibria involving E > H−L

cL
are unreasonable.

Next, we show that all the pooling equilibria of the Spence signalling
game are vulnerable to the intuitive criterion. Suppose e∗ ≤ w−L

cL
is a

pooling equilibrium. Suppose that the deviation

e′ =
H − w
cL

+ e∗ + ε

has occurred, where ε > 0. First we verify the first supposition of the
intuitive criterion. By sending e∗, the type-L worker gets

w − cL · e∗ > H − cL · e′,

where the right-hand side is what he can get by sending e′ if the em-
ployer is convinced that the deviator is the type-H worker. We conclude
that only H could have possibly sent e′. But then, given this belief, we
can verify the second supposition of the criterion; that is, the type-H
worker would strictly prefer e′ to e∗ as long as ε > 0 is small enough:
In equilibrium, the type-H worker gets

w − cHe∗,
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and by sending e′ and receiving w(e′) = H, his payoff becomes

w(e′)− cHe′ = H − cH [
H − w
cL

+ e∗]− cHε,

which, for ε > 0 sufficiently small, is strictly greater than

H − cL[
H − w
cL

]− cHe∗ = w − cHe∗.

Thus no pooling equilibria derived in class are robust against the intu-
itive criterion.

29. Finally, we consider semi-pooling equilibria. Fix any such equilibrium,
there must be e which both types of worker send with a strictly positive
probability in equilibrium. Note that given the type of the worker,
her randomization must take place over those (w(e), e) lying on the
same indifference curve. We can show that all semi-pooling PBE’s
of the Spence signalling game are not intuitive. Suppose that e∗ is
the highest education level to which both types assign strictly positive
prob.’s. Then L never randomizes over beyond e∗ and w(e∗) < H.

Consider the deviation e′ = H−w(e∗)+cLe
∗

cL
+ ε. Show that L always gets

a higher payoff in equilibrium than sending e′. Show that if treated
fairly after sending e′, H will send e′ when ε > 0 is small enough, as
w(e∗)− cHe∗ < H − cHe′ in this case.

30. Example 3. In the following we have a sequence of signalling games.
In each game, player 1 has two equally likely types, denoted by t1 and
t2, and given his type, player 1 must send a signal. There are three
possible signals that player 1 can choose, which are m1,m2, and m3.
Upon seeing the signal selected by player 1, player 2 must then form
a posterior belief about player 1’s type, and given her belief, player 2
must take an action. There are three feasible actions for player 2, which
are a1, a2, or a3. The game ends after player 2 chooses her action.

Each signalling game below is depicted by three tables. The k-th ta-
ble gives the two players’ payoffs in the event that player 1 chooses to
send signal mk; k = 1, 2, 3. As you can see, player 1’s payoff not only
depends on the two players’ actions, it also depends on player 1’s type.
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For example, in the first table appearing in Problem 1 below, player 1
gets 2 and player 2 gets 1 if player 1 is of type t1 and he sends signal
m1, and player 2 responds by taking action a1; and in the second table,
player 1 gets 0 and player gets 6 if player 1 is of type t2 and he sends
signal m2, and player 2 responds by taking action a3.14

(a) Find the PBEs:

m1 a1 a2 a3

t1 (2, 1) (2, 0) (0, 2)
t2 (1, 3) (2, 0) (2, 1)

m2 a1 a2 a3

t1 (3, 1) (1, 0) (0, 0)
t2 (2, 1) (0, 0) (0, 6)

m3 a1 a2 a3

t1 (1, 2) (1, 1) (3, 0)
t2 (0, 2) (3, 1) (1, 1)

Solution. There is a unique pooling equilibrium for this game.
Let x, y, z be respectively type-1 informed player’s equilibrium
message, type-2 informed player’s equilibrium message, and the
uninformed player’s equilibrium action upon seeing the message
appearing in the pooling equilibrium.15 Let µi be the uninformed

14Recall that a PBE is defined as:
(A) a strategy for player 1, which specifies one mk for each type ti;
(B) a strategy for player 2, which specifies one aj for each mk; and
(C) a posterior belief for player 2, which specifies one probability distribution on the set
{t1, t2} for each mk, and moreover, (A), (B) and (C) must also satisfy:
(1) the aj specified in (B) after player 2 sees mk must be expected-utility-maximizing for
player 2 given player 2’s posterior belief specified in (C); and
(2) the mk specified in (A) for type ti must be expected-utility-maximizing for player 1 of
type ti, given that player 2’s strategy is specified in (B).
This is a complicated definition. However, a definition is a definition. So, when you report
that a PBE is found, you must make sure that you report (A),(B) and (C), and you must
also verify that (A), (B) and (C) satisfy (1) and (2)!

15Thus z alone does not fully describe the uninformed player’s strategy. The latter must
specify the uninformed player’s action following each mi, whether or not mi may appear
in equilibrium with a positive probability. See requirement (B) in the preceding footnote!
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player’s posterior prob. for type-1 informed player upon seeing
message mi. Then a pure-strategy PBE is {(x, y, z), µi, i =
1, 2, 3}. One can show that the unique PBE here is such that

x = y = m1, z = a1, µ1 =
1

2
, µ2 ∈ [0,

5

6
], µ3 ∈ [0, 1].

(b) Find the PBEs:

m1 a1 a2 a3

t1 (1, 2) (2, 2) (0, 3)
t2 (2, 2) (1, 4) (3, 2)

m2 a1 a2 a3

t1 (1, 2) (1, 1) (2, 1)
t2 (2, 2) (0, 4) (3, 1)

m3 a1 a2 a3

t1 (3, 1) (0, 0) (2, 1)
t2 (2, 2) (0, 0) (2, 1)

Solution. This game has a unique pooling PBE:

x = y = m3, z = a1, µ2 ∈ [0, 1], µ1 ∈ [0,
2

3
], µ3 =

1

2
.

As εn goes to zero, the following sequence of totally mixed strate-
gies for both types of informed player, (εn, εn, 1− 2εn) produces a
sequence of posterior beliefs converging to the uninformed’s pos-
terior beliefs in the pooling PBE.

(c) Find intuitive equilibria:

m1 a1 a2 a3

t1 (0, 3) (2, 2) (2, 1)
t2 (1, 0) (3, 2) (2, 1)

m2 a1 a2 a3

t1 (1, 2) (2, 1) (3, 0)
t2 (0, 1) (3, 1) (2, 6)
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m3 a1 a2 a3

t1 (1, 6) (4, 1) (2, 0)
t2 (0, 0) (4, 1) (0, 6)

Solution. There are two pooling PBE’s: (i) x = y = m1, z =
a2, µ1 = 1

2
, µ2 ∈ [5

7
, 1], µ3 ∈ [0, 1]; (ii) x = y = m2, z = a3, µ1 ∈

[2
3
, 1], µ2 = 1

2
, µ3 ∈ [0, 1]. Only equilibrium (i) is intuitive. To see

that (ii) is not. Note that t2 can deviate and send m1. The first
supposition of Cho-Kreps is satisfied: t1 would do strictly better
by staying on the equilibrium (3) than deviating (≤ 2). Hence, the
deviator is treated as t2. But, given this, the uninformed player
would choose a2 that gives 3 to t2, strictly higher than what the
latter could get by staying on the equilibrium. Hence the second
supposition is also satisfied.

(d) Find intuitive equilibria:

m1 a1 a2 a3

t1 (4, 0) (0, 3) (0, 4)
t2 (3, 4) (3, 3) (1, 0)

m2 a1 a2 a3

t1 (2, 0) (0, 3) (3, 2)
t2 (0, 3) (0, 0) (2, 2)

m3 a1 a2 a3

t1 (2, 3) (1, 0) (1, 2)
t2 (4, 3) (0, 4) (3, 0)

Solution. Once again, this game has two pooling PBE’s: (i)
x = y = m2, z = a3, µ1 ∈ [3

4
, 1], µ2 = 1

2
, µ3 ∈ [0, 1

4
]; (ii) x = y =

m3, z = a1, µ1 ∈ [1
4
, 1], µ2 ∈ [0, 1

3
]
⋃

[2
3
, 1], µ3 = 1

2
. Both satisfy

intuitive criterion. To see this, take (i) for example. Consider
the deviation with m1. But this fails the first supposition. Next
consider the deviation with m3. The first supposition holds as t1
could do strictly better by staying in equilibrium. But, the second
supposition fails because, given that the deviator in this case must
be t2, the uninformed player would choose a2 that makes t2 worse
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off than in equilibrium. The reasoning that (ii) is also intuitive is
similar.

(e) Find the intuitive equilibria:

m1 a1 a2 a3

t1 (4, 1) (2, 4) (1, 5)
t2 (5, 6) (2, 5) (2, 2)

m2 a1 a2 a3

t1 (1, 3) (3, 1) (4, 2)
t2 (1, 3) (1, 4) (3, 3)

m3 a1 a2 a3

t1 (3, 3) (2, 0) (1, 4)
t2 (3, 4) (1, 5) (0, 1)

Solution. Once again, this game has two pooling PBE’s: (i)
x = y = m1, z = a2, µ1 = 1

2
, µ2 ∈ [1

3
, 1], µ3 ∈ [0, 1

4
]
⋃

[3
4
, 1]; (ii)

x = y = m3, z = a1, µ1 ∈ [1
4
, 1], µ2 ∈ [0, 1], µ3 = 1

2
. Both satisfy

intuitive criterion.

31. We shall now make some modifications of the game of beer and quiche,
and look for the PBE’s of the new game. Assume that there are three
types of A, the strong (s), the weak (w), and the crazy (c), where the
crazy A fights just like the strong A (and so B would rather not fight
the crazy A), and he enjoys fighting: the crazy A gets 2 if he can fight
B, and zero if otherwise. Suppose that the prior beliefs of B are such
that the three types of A are equally likely. Recall that all A can do
in this game is ordering food, and so the crazy A cannot ask B for a
fight. (You should refer to the original game of beer and quiche for the
payoffs of respectively the strong A, the weak A, and B.)
(i) First suppose that the crazy A and the strong A have the same
preferences for beer and quiche. Is there a PBE where B adopts a
pure strategy in equilibrium? If your answer is yes, is the equilibrium
unique?
(ii) Suppose instead that the crazy A and the weak A have the same
preferences for beer and quiche. Is there a PBE where B adopts a
pure strategy in equilibrium? If your answer is yes, is the equilibrium
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unique?
Solution. Consider part (i). Let F,N, b, q stand for the strategies
“fight,” “not fight,” “beer,” and “quiche.” Let s, w, and c represent
the three types of A. Note that B has 4 possible pure strategies:(

b→ F
q → F

)
,

(
b→ N
q → N

)
,

(
b→ F
q → N

)
,

(
b→ N
q → N

)
.

We claim that none of these strategies can be consistent with a PBE.

First suppose that in equilibrium B adopts the strategy(
b→ F
q → F

)
.

Rationally expecting B’s strategy, A’s best response is s→ b
w → q
c→ b

 ,
but then seeing b player B would be better off responding by strategy
N, a contradiction. Suppose instead that in equilibrium B adopts the
strategy (

b→ N
q → N

)
.

Rationally expecting B’s strategy, A’s best response is s→ b
w → q
c→ b

 ,
but then seeing q player B would be better off responding by strategy
F, another contradiction. Now suppose that in equilibrium B adopts
the strategy (

b→ F
q → N

)
.

Rationally expecting B’s strategy, A’s best response is s→ q
w → q
c→ b

 ,
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but then seeing b player B would be better off responding by strategy
N, again a contradiction. Finally, suppose that in equilibrium B adopts
the strategy (

b→ N
q → F

)
.

Rationally expecting B’s strategy, A’s best response is s→ b
w → b
c→ q

 ,
but then seeing q player B would be better off responding by strategy
N, also a contradiction. Hence we conclude that there is no PBE where
B adopts a pure strategy in equilibrium. This finishes part (i).

Now consider part (ii). We claim that the three pure strategies(
b→ F
q → F

)
,

(
b→ F
q → N

)
,

(
b→ N
q → N

)
,

cannot be consistent with a PBE. The reasoning is similar to that in
part (i). First suppose that in equilibrium B adopts the strategy(

b→ F
q → F

)
.

Rationally expecting B’s strategy, A’s best response is s→ b
w → q
c→ q

 ,
but then seeing b player B would be better off responding by strategy
N, a contradiction. Now suppose that in equilibrium B adopts the
strategy (

b→ F
q → N

)
.

Rationally expecting B’s strategy, A’s best response is s→ q
w → q
c→ b

 ,
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but then seeing b player B would be better off responding by strategy
N, another a contradiction. Finally, suppose that in equilibrium B
adopts the strategy (

b→ N
q → F

)
.

Rationally expecting B’s strategy, A’s best response is s→ b
w → b
c→ q

 ,
but then seeing q player B would be better off responding by strategy
N, also a contradiction.

Thus we are left with one last option,(
b→ N
q → N

)
.

Rationally expecting B’s strategy, A’s best response is s→ b
w → q
c→ q

 ,
which does justify B’s adopting the strategy(

b→ N
q → N

)
.

Hence there is a unique PBE where the BE part is such that B adopts
the strategy (

b→ N
q → N

)
and A adopts the strategy  s→ b

w → q
c→ q

 .
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To complete our descriptions for this PBE, we need to specify the sup-
porting beliefs for B. Note that there are no off-the-equilibrium signals
in this PBE; that is, both b and q are expected to be seen by B with a
positive probability. Thus the supporting beliefs are determined com-
pletely by Bayes Law applying to A’s equilibrium strategy. The unique
set of supporting beliefs is such that

pro.(s|b) = 1, pro.(w|q) = pro.(c|q) =
1

2
.

32. Cheap Talks. Consider a seller and a buyer interested in the trans-
action of an indivisible good X. The cost to produce good X may be 5
dollars or 1 dollar, with probabilities s and 1− s respectively, which is
the seller’s private information. The buyer’s valuation for good X may
be 10 dollars or 3 dollars, with probabilities b and 1 − b, which is the
buyer’s private information. It is common knowledge that the seller’s
cost and the buyer’s valuation are statistically independent. Both the
seller and the buyer are risk neutral without time preferences, and they
seek to maximize the expected surplus; that is, both parties get zero
payoff if trade does not occur, and the the seller’s payoff and the buyer’s
payoff are respectively p−c and v−p when trade occurs at price p with
the seller’s cost and the buyer’s valuation being respectively, c and v.
We shall assume that s > 1

2
.

Consider the following extensive game.

• At time 0, the seller privately sees her cost, and the buyer privately
sees his valuation.

• At time 1, the seller can say “I will never re-imburse the buyer’s
transportation cost” or “I might re-imburse the buyer’s trans-
portation cost” in front of the public (including the buyer). Note
that the seller will not be held responsible for what she says at
time 1, and making a statement at time 1 does not incur any cost
to the seller.

• At time 2, the seller and the buyer simultaneously decide whether
they should go to a marketplace and trade. Going to the market-
place incurs a transportation cost 0.5 dollars for the buyer but no
transportation cost for the seller.
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• At time 2, if both parties appear at the marketplace, then the
seller’s cost and the buyer’s valuation become their common knowl-
edge, and they must simultaneously submit bids ps and pb. Trade
will not occur if ps > pb, and trade will occur at the price ps+pb

2
if

ps ≤ pb. Here, assume that the seller and the buyer only believe
in pure-strategy Nash equilibria, and if more than 1 pure-strategy
Nash equilibrium exists, then both the buyer and the seller believe
that all pure-strategy Nash equilibria are equally likely to occur.

(i) Show that there exists a perfect Bayesian equilibrium where the
seller feels indifferent about what to say at time 1, and the buyer goes
to the marketplace at time 2 if and only if his valuation is 10 dollars.
In equilibrium the seller never reimburses the buyer’s transportation
cost. Write down completely the supporting beliefs.

(ii) Show that there exists a perfect Bayesian equilibrium where the
seller says “I will never re-imburse the buyer’s transportation cost” if
her cost is 5 dollars and “I might re-imburse the buyer’s transportation
cost” if her cost is 1 dollar, and where at time 2 the buyer always vists
the marketplace if his valuation is 10 dollars, and he visits the market-
place when his valuation is 3 dollars only after the seller says “I might
re-imburse the buyer’s transportation cost.” In equilibrium the seller
never reimburses the buyer’s transportation cost. Don’t forget to write
down completely the supporting beliefs.

(iii) Explain why there exists a separating PBE in part (ii) even though
signaling (making a statement) incurs no cost to either type of the
seller. In particular, is the Spence-Mirrlees sorting condition satisfied?
Solution. Consider part (i). Since the buyer’s equilibrium time-2
strategy does not depend on what the seller says at time 1, the seller
feels indifferent about what to say at time 1 also. Thus nobody takes
the seller’s talk at time 1 seriously. Such an equilibrium is called a
“babbling” equilibrium.

We claim that in this babbling equilibrium the buyer should go to the
marketplace if and only if his valuation is 10 dollars.
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• When the buyer’s valuation is 3 dollars, by going to the market-
place, he gets expected payoff

−0.5 + s× 0 + (1− s)×
∫ 3

1
(3− t) 1

3− 1
dt =

1

2
− s < 0,

where zero is the buyer’s payoff if he chooses not to go to the
marketplace, and (3 − t) is the buyer’s payoff obtained in the
t-equilibrium of the subgame where the seller and the buyer sub-
mit bids simultaneously to determine the transaction price, and
in equilibrium they both submit the same t ∈ [1, 3]. We have
assumed that these t-equilibria are all equally likely to arise.

• On the other hand, when the buyer’s valuation is 10 dollars, by
going to the marketplace, he gets expected payoff

−0.5 + s×
∫ 10

5
(10− t) 1

10− 5
dt+ (1− s)×

∫ 10

1
(10− t) 1

10− 1
dt

=
1

2
[5× s+ 9(1− s)− 1] > 0,

and so this type of buyer will go to the marketplace in equilibrium.

Since the seller cannot be held responsible for what she says at time
1, she never re-imburses the buyer’s transportation cost in equilibrium.
This finishes the proofs for the assertions about the babbling equilib-
rium.

Next, consider part (ii). We verify this equilibrium in a few steps.

(a) In equilibrium, the buyer believes that the seller says “I might
re-imburse the buyer’s transportation cost” at time 1 if and only
if the seller’s cost is 1 dollar. Thus the buyer, regardless of his
valuation for the product, should go to the marketplace after the
seller makes that statement. To see this, we only need to show
that going to the marketplace is optimal for the buyer when his
valuation is 3 dollars, for the gain from going to the marketplace
is even higher when the buyer’s valuation is 10 dollars. Now ob-
serve that, when the buyer’s valuation is 3 dollars, going to the
marketplace generates an expected payoff

−0.5 + 1×
∫ 3

1
(3− t) 1

3− 1
dt =

1

2
> 0,
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where the “1” in front of the integral is the posterior probability
that the buyer assigns to the event that the seller’s cost is equal
to 1 dollar. This posterior probability equals 1, because there is a
separating equilibrium at time 1, where the statement “I might re-
imburse the buyer’s transportation cost” (which is a lie!) signals
that the seller’s cost is 1 dollar instead of 5 dollars.

(b) Next, observe that the buyer should go to the marketplace after
the seller says “I will never re-imburse the buyer’s transportation
cost” if and only if the buyer’s valuation is 10 dollars. This hap-
pens because for the buyer whose valuation is 3 dollars,

−0.5 + 1× 0 + 0×
∫ 3

1
(3− t) 1

3− 1
dt < 0;

and for the buyer whose valuation is 10 dollars,

−0.5 + 1×
∫ 10

5
(10− t) 1

10− 5
dt+ 0×

∫ 10

1
(10− t) 1

10− 1
dt > 0.

(c) Now we examine the seller’s ICs. For the seller whose cost is 1
dollar, saying “I might re-imburse the buyer’s transportation cost”
at time 1 is optimal, for by the preceding steps (a) and (b), that
will induce both types of the buyer to show up at the marketplace,
whereas saying “I will never re-imburse the buyer’s transportation
cost” will scare the buyer whose valuation is 3 dollars away. Thus
the seller will not deviate from making her equilibrium statement
if her cost is 1 dollar.

(d) Now, for the seller whose cost is 5 dollars, saying “I might re-
imburse the buyer’s transportation cost” and saying “I will never
re-imburse the buyer’s transportation cost” are equally good, be-
cause by the preceding steps (a) and (b), the buyer whose valua-
tion is 10 dollars will always go to the marketplace at time 2, and
a seller whose cost is 5 dollars only wants to trade with the buyer
whose valuation is 10 dollars. Thus the seller will not deviate from
making her equilibrium statement if her cost is 5 dollars.

(e) The above steps together prove that the strategies specified for
the seller and the buyer do constitute a separating PBE, with
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the supporting beliefs being such that the buyer believes that the
seller’s cost is 1 dollar if she says “I might re-imburse the buyer’s
transportation cost” at time 1, and the buyer believes that the
seller’s cost is 5 dollars if she says otherwise at time 1.

Finally, consider part (iii). This is an example of a cheap-talk model.
In this model, talk is cheap because it does not incur signalling costs,
and the signal-sender does not have to be responsible for the content
of the talk. Part (i) shows that in such a model, there is always a
“babbling” equilibrium in which nobody takes the cheap talk seriously.
Part (ii) shows that, however, there may exist an equilibrium which
cannot arise if we delete the “talking stage.” In our problem, it is
a separating equilibrium, where the cheap talk is taken seriously by
everyone. Although signalling per se is costless in a cheap-talk game,
there is an endogenous Spence-Mirrlees condition that arises from the
buyer’s equilibrium response to the talk. It is this endogenous sorting
condition that sustains the separating PBE in part (ii).16

33. Information Cascade. A sequence of agents have the same access
to an investment opportunity. At date n ∈ Z+, agent n after observing
the preceding agents’ investment decisions, must decide his own. The
agent can decide either to invest (I) or not to invest (N), with invest-
ment incurring a cost of one dollar. The prior beliefs of all agents are
such that the project may succeed with prob. 1

2
and when it does, it

generates 2 dollars. (It generates nothing if it fails.) Note that being
able to observe the preceding agents’ investment decisions is valuable
because when one agent’s investment succeeds, all other agents’ invest-

16The cheap-talk games were first studied by Crawford and Sobel (1982, Strategic In-
formation Transmission,Econometria). Battaglini (2002, Multiple Referrals and Multidi-
mensional Cheap Talk, Econometrica) shows that with multiple talk-givers (unlike in our
problem, where the seller is the only one giving the talk), it is a very general result that
cheap talk gives rise to a separating equilibrium. For an application of cheap-talk games
to marketing, see Li (2005, Cheap Talk and Bogus Network Externalities in the Emerging
Technology Market, Marketing Science). There, the author shows that revenue sharing
contract instead of linear whole pricing is consistent with a separating PBE where a man-
ufacturer tells its retailer the former’s private information about how much the period-1
demand may benefit the period-2 demand (a positive network effect), and in equilibrium
the manufacturer tells the truth.
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ments will succeed also. In other words, we assume perfect correlations
among these agents’ investment outcomes.

In addition to the preceding agents’ behavior, agent n also receives a
private signal s̃n regarding the likelihood of success, and the outcome
of s̃n is either H or L. The collection of signals {s̃n;n ∈ Z+} are
independently and identically distributed. Let

1

2
≤ p = prob.(s̃n = H|the project will succeed)

= prob.(s̃n = L|the project will fail).

Note that when p = 1
2
, the signal is completely uninformative about

whether the investment will succeed or not. On the other hand, when
p = 1, the signal unambiguously tells the agent whether the investment
will succeed or not. The purpose of this exercise is to show that it is
fairly likely that an agent disregards his own private signal and simply
follows what the preceding agents have done, and when this happens
to some agent i, all the agents following agent i will mimic the preced-
ing agents also. We will show that this happens quite often, but such
a phenomenon may be inefficient: the resulting investment decisions
can be wrong, not just from an ex-post perspective, but also from an
ex-ante perspective, if these agents could pool their private signals to-
gether instead of observing one another’s decisions.

We say that a cascade happens if for some n ∈ Z+, it becomes common
knowledge at date n that all agents m, m ≥ n, will make the same in-
vestment decision. We call the cascade an “up” cascade if the common
decision is to invest; or else, a “down” cascade.
(i) Let Un be the prob. that an up cascade starts at date n, where n is
even. Show that

Un =
1− (p− p2)

n
2

2
.

(ii) Deduce from (i) that the closer p is to 1
2
, the later the cascade is

likely to start.
(iii) Let En be the prob. that no cascades start before date n, where n
is even. Show that En falls exponentially with n.
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(iv) A cascade is called “correct,” if the true state is “success” and it
is an “up” cascade or the true state is “failure” and it is a “down”
cascade. Show that

prob.(Un|success) =
p(p+ 1)[1− (p− p2)

n
2 ]

2(1− p+ p2)
,

which is increasing in p and n.
(v) Show by (iv) that the prob. that an incorrect cascade starts at date
n, where n is even, is

(p− 2)(p− 1)[1− (p− p2)
n
2 ]

2(1− p+ p2)
,

which is remarkably high even if p is far from 1
2
.

Solution Conditional on the state being success, agent 2 will invest

• with probability 1
2

if either his own signal is L and the first agent
invested (revealing fully that the first agent’s signal is H) or his
signal is H and the first agent did not invest;

• with probability one, if his signal is H and the first agent invested;

• with probability zero, if his signal is L and the first agent did not
invest.

Thus, conditional on the true state being success, the prob. that cas-
cades have not occurred before the third agent enters is 2 · p(1−p)

2
=

p(1−p), and the prob. that an up cascade has occurred before the third

agent enters is p2 + p(1−p)
2

= p(p+1)
2

, and the prob. that a down cascade

has occurred before the third agent enters is (1−p)2+ p(1−p)
2

= (2−p)(1−p)
2

.

Next, observe that the probabilities for respectively up and down cas-
cades to occur before agent 3 enters conditional on the true state being
failure are exactly the reverse of the probabilities obtained conditional
on the true state being success. Thus the ex-ante probabilities for the
events of an up and a down cascades before agent 3 enters are both

1

2
[
p(p+ 1)

2
+

(2− p)(1− p)
2

] =
p2 − p+ 1

2
,
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and the prob. of no cascade before agent 3 enters is p(1− p). Observe
that if cascades have not occurred before the (2n+ 1)-th agent enters,
then the decision problem facing agent (2n + 1) is identical to that of
agent 1. It follows that the ex-ante prob. of no cascades occur before
agent (2n+ 1) enters is pn(1− p)n. By symmetry, the probability that

an up cascade occurs before agent (2n + 1) enters is then 1−pn(1−p)n
2

,
and this is also the probability that a down cascade occurs before agent
(2n+ 1) enters.

Observe that the prob. [p(1 − p)]n falls exponentially in n. Note also
that given n, [p(1 − p)]n attains its maximum at p = 1

2
(where the

signal is completely uninformative). We conclude that for all n, the
closer p is to 1

2
, the probability for the event that no cascades have

occurred before date n becomes higher. Equivalently, the more precise
the signal is (the closer p is to one), the earlier a cascade may occur.
The idea is that in this case the earlier agents’ investment behavior has
a higher information value for the statistical inference problem faced by
a subsequent agent. This finishes parts (i)-(iii). The rest two assertions
are left to the reader.

34. Reputation Games. Now we introduce reputation games. In the
game chain-store paradox, there are two players E and I, the entrant
and the incumbent. E can choose to be “In” or “Out.” If E stays out,
the game is over and E and I get respectively 0 and 3

4
. If E enters, I can

either “prey” (or predate) or “acquiesce” (or accomodate). If I preys,
both E and I get -1, or else, I gets 0 and E gets 1.

(i) Find the unique SPNE.

(ii) Now we introduce incomplete information by assuming that E
thinks that with probability x, I may actually get 1

2
when he preys

rather than −1. This type of I (who enjoys preying) is called “crazy.”
E’s problem is that he cannot tell exactly if I is crazy or not. Find the
BE for this game.

(iii) Now, we introduce dynamics. Suppose the game in (ii) is repeated
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one more time. In each period the incumbent is facing a new entrant,
but all entrants can observe whether or not the incumbent has preyed
before. The incumbent seeks to maximize the sum of its temporal pay-
offs without discounting. Find the PBE for this game.

(iv) Solve for the PBE for the repeated chain-store paradox, assuming
that the stage game is repeated for 3 times.17 18

Solution. Let xi be the probability that the i-th entrant (denoted by
Ei from now on) assigns to the event that the incumbent is crazy when
Ei is about to decide whether to enter. Note that x1 is the prior belief
held by all entrants, but for i > 1, xi is the posterior belief that is de-
rived in equilibrium using Bayes’ Law whenever possible. Let i∗ be the
smallest i such that the type of the incumbent becomes publicly known

17The idea here is that the sane type of incumbent may want to pool with the crazy type
in order to convince the subsequent entrants that entry will result in them being preyed,
for if this works, then the short-term loss resulting from preying may be compensated by
the increase in the long-term gain resulting from the subsequent entrants choosing to stay
out. In equilibrium, this incentive problem on the part of the sane type of incumbent is
of course correctly expected by the entrants, but just like in a game of signal-jamming,
the sane type of incumbent may be unable to commit not to manipulate the entrants’
beliefs. Consequently, even the sane type of incumbent may prey (at least in the earlier
periods) in equilibrium. Part (iii) shows that this will actually happen, only if there are
sufficiently many entrants waiting to enter—the one-time loss from preying is more likely
to be compensated by the long-term gain if preying convinces many entrants that staying
out is their best option.

18While the sane type of incumbent may benefit from pooling with the crazy type,
note that the crazy type of incumbent does not want to pool with the sane type. Why?
Observe that 3

4 >
1
2 > 0, which implies that the crazy type of incumbent prefers that the

entrants stay out, but if this is not possible, then it prefers preying to accommodating after
entry takes place. Since preying fulfills short-term payoff maximization, and it raises the
entrants’ posterior belief that the incumbent may be crazy (thereby raising the likelihood
that these entrants choose to stay out), the crazy type of incumbent always prefers preying
to accommodating after entry takes place. Note that the sane type of incumbent’s pooling
with the crazy type makes preying a noisy signal for the event that the incumbent is
actually crazy, and hence it hurts the crazy type of incumbent. Put another way, if the
sane type of incumbent were willing to always accommodate after entry takes place, then
the crazy type of incumbents would become better off, because preying will perfectly reveal
its type, and will ensure that all the subsequent entrants choose to stay out.
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in equilibrium at the stage where the incumbent interacts with Ei. We
write i∗ = +∞ if the incumbent’s type remains its private information
at the time that the game ends.

Consider part (i). We have a dynamic game with complete informa-
tion, and hence we shall look for an SPNE. Backward induction implies
that in the unique SPNE the sane-type incumbent had better accom-
modating the entrant after entry takes place (as 0 > −1), and hence
the entrant will enter for sure in equilibrium (because 1 > 0).

Consider part (ii). The game in part (ii) is a static game with in-
complete information because the uninformed entrant must finish its
move before seeing the informed incumbent’s action. Thus we look for
a BE. Backward induction says that upon seeing entry take place, the
sane-type incumbent will accommodate (as 0 > −1), but the crazy-
type incumbent will prey (as 1

2
> 0). Thus the entrant would get 0 by

staying out, and it would get the expected payoff

x1 · (−1) + (1− x1) · 1 = 1− 2x1

by entering the industry. We conclude that in the unique Bayesian
equilibrium, the entrant would choose to enter if and only if x1 <

1
2
.

Consider part (iii). The game in part (iii) is a dynamic game with
incomplete information because E2 can observe the informed incum-
bent’s interaction with E1 before deciding whether to enter or to stay
out. Thus we look for a PBE.

Consider the subgame where E1 has just entered and the incumbent
must decide whether to prey or to accommodate E1. First consider
the sane-type incumbent’s decision. Preying E1 generates −1 to the
sane-type incumbent immediately, and it may at best generate 3

4
to the

sane-type incumbent in the next stage, if E2 would then choose to stay
out. Hence by preying E1 the sane-type incumbent can get no more
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than

−1 +
3

4
.

By accommodating E1 instead, the sane incumbent gets 0 immediately,
and in the next stage the sane-type incumbent can get 3

4
if E2 would

stay out or 0 by accommodating E2 if E2 would enter. Hence by ac-
commodating E1 the sane-type incumbent can get no less than

0 + 0.

We thus conclude that sane-type incumbent would accomodate E1.

Now consider the crazy-type incumbent’s decision. Recall that the
crazy-type incumbent would get 3

4
if an entrant stays out, and 1

2
if the

entrant gets in and is preyed, and zero if the entrant gets in and is not
preyed. Thus expecting the sane-type incumbent to accommodate E1,
the crazy-type incumbent’s best response is to prey E1: given that E1

has entered, preying generates an immediate payoff 1
2
, and it proves to

E2 that the incumbent is crazy, which by part (ii) and by E2’s posterior
belief x2 = 1 upon seeing E1 being preyed, would induce E2 to stay
out, thereby generating 3

4
for the crazy-type incumbent in the second

stage.

Thus we conclude that the subgame where E1 has just entered has a
unique separating equilibrium, where the sane incumbent would ac-
commodate E1 and the crazy incumbent would prey E1.

Now, should E1 enter or not? By staying out, it gets zero, and by
entering, it may be preyed with probability x1. Thus E1 would stay
out if x1 ≥ 1

2
. Thus i∗ = 1 if x1 <

1
2
, and i∗ = +∞ if x1 ≥ 1

2
. This

completes our derivation for the unique (separating) PBE for part (iii).

Finally, consider part (iv). First consider the case where x1 ≥ 1
2
. Con-

sider the subgame where E1 has just entered and the incumbent must
decide whether to prey or to accomodate E1.

50



• Can there be an equilibrium where both types of the incumbent
choose to prey E1? In such an equilibrium, following E1 being
preyed, we must have x2 = x1 ≥ 0.5, and hence E2 and E3 would
both stay out, implying that the sane incumbent and the crazy
incumbent get respectively −1+ 3

4
+ 3

4
and 1

2
+ 3

4
+ 3

4
in equilibrium.

Upon seeing E1 being accommodated, the only intuitive posterior
belief is x2 = 0, and E2 will enter for sure. Thus by accommodat-
ing E1, the sane incumbent and the crazy incumbent would get
respectively 0 + 0 + 0 and 0 + 1

2
+ 3

4
, proving that neither of them

would deviate even under the intuitive belief. Thus such a pooling
equilibrium does exist, and we have shown that it is a Cho-Kreps
intuitive equilibrium.

• Can there be an equilibrium where both types of the incumbent
choose to accommodate E1? In such an equilibrium, following E1

being accommodated, we must have x2 = x1 ≥ 0.5, and hence
E2 and E3 would both stay out, implying that the sane incum-
bent and the crazy incumbent both get 0 + 3

4
+ 3

4
in equilibrium.

Upon seeing E1 being preyed, the only intuitive posterior belief is
x2 = 1, and E2 and E3 would both stay out. Thus by preying E1,
the sane incumbent and the crazy incumbent would get respec-
tively −1 + 3

4
+ 3

4
and 1

2
+ 3

4
+ 3

4
, proving that the crazy incumbent

would strictly like to deviate under this intuitive belief! Thus no
such intuitive equilibrium can exist.

Can there still exist such a non-intuitive pooling PBE? Note that
by deviating and preying E1, the crazy incumbent’s payoff would
be at least 1

2
+ 1

2
+ 3

4
if x2 <

1
2

and 1
2

+ 3
4

+ 3
4

if x2 ≥ 1
2
. Thus such

a non-intuitive pooling PBE cannot exist either.

• Can there be a separating equilibrium where the two types of
incumbent choose to treat E1 differently? In such an equilibrium,
the sane incumbent’s equilibrium payoff is at most 0+0+0, but by
mimicking the crazy incumbent’s behavior towards E1, the sane
incumbent would get at least−1+ 3

4
+ 3

4
, proving that no separating

equilibrium can exist.

• Can there be an equilibrium where the sane incumbent randomizes
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over preying and accommodating E1? Let α and β be respectively
the probabilities that E2 may stay out and that E3 may stay out
upon seeing E1 being preyed, and let α′ and β′ be respectively the
probabilities that E2 may stay out and that E3 may stay out upon
seeing E1 being not preyed. Since the sane incumbent must feel
indifferent about preying or accommodating E1, we must have

−1 +
3

4
(α + β) = 0 +

3

4
(α′ + β′),

⇒ α + β − α′ − β′ = 4

3
,

so that the crazy incumbent must strictly prefer preying to ac-
commodating E1:

{1

2
+

3

4
(α + β) +

1

2
[(1− α) + (1− β)]}

−{0 +
3

4
(α′ + β′) +

1

2
[(1− α′) + (1− β′)]}

=
1

2
+

1

4
[α + β − α′ − β′] =

5

6
> 0.

Thus an equilibrium where the sane incumbent randomizes over
preying and accommodating E1 must be a semi-separating equi-
librium, where the sane incumbent may prey E1 with probability
y and the crazy incumbent must prey E1 with probability one. It
follows that E2’s posterior belief is x2 = 0 upon seeing E1 being
accommodated and x2 > x1 ≥ 1

2
upon seeing E1 being preyed.

Hence E2 will enter if and only if seeing E1 being accommodated.
This implies that by preying E1 the sane incumbent’s payoff is
−1+ 3

4
+ 3

4
and by accommodating E1 the sane incumbent’s payoff

becomes 0 + 0 + 0, proving that the sane incumbent does not feel
indifferent about preying or accommodating E1, which is a con-
tradiction. Thus there does not exist an equilibrium where the
sane incumbent randomizes over preying and accommodating E1.

• By a similar argument, one can show that there is no equilibrium
where only the sane type adopts a pure strategy upon seeing entry
by E1.
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The conclusion here is that when x1 ≥ 1
2

there is a unique intuitive
equilibrium for the subgame where E1 has just entered. It is a pool-
ing equilibrium, where both types of the incumbent choose to prey E1.
In equilibrium, therefore, E1 would stay out for sure, which results in
x2 = x1 ≥ 1

2
, implying that E2 would also stay out for sure. This in

turn implies that x3 = x2 = x1 ≥ 1
2
, and hence E3 would also stay out.

We conclude that when x1 ≥ 1
2
, i∗ = +∞ in equilibrium.

Next consider the case x1 <
1
2
. Consider the subgame where E1 has

just entered and the incumbent must decide whether to prey or to
accommodate E1.

• It is easy to show that there is no pooling equilibrium for this
subgame where both types of the incumbent choose to prey E1.
Indeed, if such an equilibrium exists, then upon seeing E1 being
preyed, the other two entrants’ belief would be x2 = x1 <

1
2
, and

hence E2 would get in, which implies that, by part (iii) above, the
sane-type incumbent would get −1 + 0 + 0 by preying E1. Note
that the sane-type incumbent can guarantee itself a payoff of at
least 0 + 0 + 0 by accommodating each and every entrant.

• Can there be an equilibrium where only the sane incumbent preys
E1 for sure? In such an equilibrium, by the discussion in the
preceding paragraph the crazy incumbent must accommodate E1

with a positive probability. Thus seeing E1 being accommodated,
E2’s posterior belief is such that x2 = 1, and hence both E2 and
E3 would stay out, by part (iii) above. This implies that the sane
incumbent would strictly prefer to deviate and to accommodate
E1, a contradiction.

• Can there be an equilibrium where both types of the incumbent
accommodate E1 for sure? In such an equilibrium, by part (iii)
E2 would enter upon seeing the incumbent accommodate E1 (be-
cause x2 = x1 <

1
2
), and since by part (iii) the crazy incumbent

would prey E2, E3 would then stay out. It follows that in such an
equilibrium the crazy incumbent’s equilibrium payoff must be
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0 +
1

2
+

3

4
,

following E1’s entry.

What would happen if the crazy incumbent deviates and preys
E1? If this induces E2 to stay out with a positive probability q,
then following E2’s staying out we have x3 = x2 ≥ 1

2
, and E3

may then stay out with probability r, implying that the crazy
incumbent’s deviation payoff would be

1

2
+ qr[

3

4
+

3

4
] + q(1− r)[3

4
+

1

2
] + (1− q)[1

2
+

3

4
],

which is higher than the crazy incumbent’s equilibrium payoff, a
contradiction. Thus following the crazy incumbent’s deviation, E2

must get in for sure, implying that the crazy incumbent’s deviation
payoff would be

1

2
+

1

2
+

3

4
,

which is again higher than the crazy incumbent’s equilibrium pay-
off, a contradiction. Thus no such equilibrium exists.

• Can there be an equilibrium where only the sane incumbent ac-
commodates E1 for sure? In such an equilibrium, by the discussion
in the preceding paragraph the crazy incumbent must prey E1 with
a positive probability. Thus seeing E1 being preyed, E2’s posterior
belief is such that x2 = 1, and hence both E2 and E3 would stay
out, by part (iii) above. This implies that the sane incumbent
would strictly prefer to deviate and to prey E1, a contradiction.

• Thus we are left with a single possibility, where the sane incum-
bent randomizes over preying and accommodating E1. Let α and
β be respectively the probabilities that E2 may stay out and that
E3 may stay out upon seeing E1 being preyed, and let α′ and β′

be respectively the probabilities that E2 may stay out and that
E3 may stay out upon seeing E1 being not preyed. Since the sane
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incumbent must feel indifferent about preying or accommodating
E1, we must have

−1 +
3

4
(α + β) = 0 +

3

4
(α′ + β′),

⇒ α + β − α′ − β′ = 4

3
,

so that the crazy incumbent must strictly prefer preying to acco-
modating E1:

{1

2
+

3

4
(α + β) +

1

2
[(1− α) + (1− β)]}

−{0 +
3

4
(α′ + β′) +

1

2
[(1− α′) + (1− β′)]}

=
1

2
+

1

4
[α + β − α′ − β′] =

5

6
> 0.

Thus an equilibrium where the sane incumbent randomizes over
preying and accommodating E1 must be a semi-separating equi-
librium, where the sane incumbent may prey E1 with probability
y and the crazy incumbent must prey E1 with probability one.

It follows that E2’s posterior belief upon seeing that E1 being
accommodated must be such that x2 = 0, and by part (iii), we
must have α′ = β′ = 0; that is, E2 and E3 would both enter
upon seeing the incumbent accommodated E1. We claim that this
implies 1 > α > 0. Indeed, if instead α = 1, then x3 = x2 ≥ 1

2

after E1 is preyed, so that β = 1 also, which is a contradiction to
the fact that

α + β − α′ − β′ = 4

3
.

On the other hand, if α = 0 so that E2 enters for sure after E1 is
preyed, then we would have β = 4

3
, which is an obvious contradic-

tion.
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Thus we must have 1 > α > 0; that is, E2 must randomize over
entering and staying out after E1 is preyed. By part (iii), this
requires that E2 hold the posterior belief x2 = 1

2
upon seeing E1

being preyed.

The probability y that the sane-type of incumbent may prey E1

must be such that

x2 =
x1 · 1

x1 · 1 + (1− x1) · y
⇒ y =

x1

1− x1

∈ (0, 1).

Let E2 enter with probability a upon seeing E1 being preyed.
Then with probability (1−a), E2 may stay out following E1 being
preyed, and in that event, we have x3 = x2 = 1

2
, and we again

assume that E3 may enter with probability a. (Thus we are as-
suming that α = 1− a and β = (1− a)2.) For the sane incumbent
to feel indifferent about preying or accommodating E1, we must
have

−1 + (1− a)a(
3

4
+ 0) + (1− a)2(

3

4
+

3

4
) = 0 + 0 + 0,

⇒ a =
9−
√
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6
∼ 0.2417.

Now, should E1 enter after all? Note that E1 would get 0 by
staying out, and by entering it may get −1 with probability 2x1

or 1 with probability 1− 2x1. Thus E1 would get in if and only if
x1 <

1
4
.

So, what happens to i∗? First, if x1 ∈ [1
4
, 1

2
), then E1 stays out and E2

gets in for sure, and E3 gets in if and only if E2 was not preyed. In this
case, i∗ = 2. Second, if x1 <

1
4
, then E1 gets in with probability 1. If E1

is not preyed, then i∗ = 1 and E2 and E3 get in with probability 1. If
E1 is preyed, then E2 gets in with probability a and in this case i∗ = 2.
It occurs with probability (1−a) that E2 stays out following E1’s being
preyed, and following E2’s staying out, E3 gets in with probability a,
implying that i∗ = 3 in this case. Finally, it can happen that E1 is the
only one who’s ever entered on the equilibrium path (then E1 must be
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preyed), and in this case i∗ = +∞. In sum, when x1 ∈ [0, 1
4
), i∗ = 1, 2, 3

or +∞.

35. Let us modify the game of chain-store paradox by assuming 4 entrants
instead of 3. It can be verified that no entry will ever occur if x1 >

1
2
.

Suppose that x1 ≤ 1
2
, and consider the subgame where E1 has entered.

It can be verified that there is no PBE for this subgame where the sane
incumbent plays a pure strategy when facing E1.19

Thus we look for a PBE for this subgame where the sane incumbent
preys with probability y ∈ (0, 1) when facing E1. This implies that the
sane incumbent’s equilibrium payoff is zero. Now, consider E2’s belief
upon seeing E1 being preyed by the incumbent. E2 must believe that
the probability that the incumbent is crazy is

x1 × 1

x1 × 1 + (1− x1)× y
> x1.

There are several possibilities.

• Upon seeing E1 being preyed, E2 stays out. This requires that

x1 × 1

x1 × 1 + (1− x1)× y
≥ 1

4
.

19Suppose that the sane incumbent acquiesces with probability one. Then the sane
incumbent’s type is revealed immediately, and so the sane incumbent gets zero in equilib-
rium. But by deviating and preying, the sane incumbent gets −1 immediately, and will be
regarded as the crazy type for sure, inducing E2, E3, E4 to stay out, so that the payoff from
deviation is −1+3× 3

4 > 0, a contradiction. Next, suppose that the sane incumbent preys
with probability one. We have then a pooling equilibrium after E1 enters. It follows that
x2 = x1 ≤ 1

2 . Two possibilities exist. First, if x1 >
1
4 , then E2 will stay out, according to

our analysis in the pervious section. Then, x3 = x2 = x1 ≤ 1
2 , and hence E3 will enter. It

follows that the sane incumbent’s payoff by preying with probability one after E1 enters
is −1 + 3

4 + 0 + 0 < 0, and hence the sane incumbent would be better off deviating and
acquiescing E1. Thus we have a contradiction. Second, if x1 ≤ 1

4 , then E2 will get in, and
our analysis for the 3-entrant case in the previous section says that the sane incumbent’s
payoff will be zero following E2’s entry. But then the sane incumbent by preying after E1

gets in gets only −1 + 0 < 0, which is again a contradiction. To sum up, when x1 ≤ 1
2 ,

it is necessary that in equilibrium the sane incumbent randomizes between preying and
acquiescing after E1 enters.
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It follows that

x3 =
x1 × 1

x1 × 1 + (1− x1)× y
.

In this case, x3 = 1
2
. To see this, note that if If x3 <

1
2

so that
E3 and E4 will enter, then by preying the sane incumbent’s payoff
would be negative even if E2 stays out for sure, which is inconsis-
tent with the assumption that the sane incumbent feels indifferent
about preying when facing E1. If, on the other hand, x3 >

1
2

so
that E3 and E4 will stay out, then by preying the sane incumbent’s
payoff is strictly positive, which is again inconsistent with the as-
sumption that the sane incumbent feels indifferent about preying
when facing E1. Hence we conclude that y = x1

1−x1 ∈ (0, 1) in this
case. Let the probability that E3 enters be a, and assume that
in case E3 stays out, E4 also enters with probability a. Then we
need

−1 +
3

4
+ a(1− a)× 3

4
+ (1− a)2(

3

4
+

3

4
) = 0.

We obtain

a =
9−
√

21

6
∈ (0, 1).

Let us verify that

x1 × 1

x1 × 1 + (1− x1)× y
≥ 1

4
.

This inequality holds if and only if

⇐ 0 < y ≤ 3x1

1− x1

.

Since y = x1
1−x1 , there is no contradiction arising here.

• Upon seeing E1 being preyed, E2 gets in. In this case, the sane
incumbent gets zero payoff following E2’s entry by playing a mixed
strategy against E2. Apparently, this cannot be consistent with
the assumption that the sane incumbent feels indifferent about
preying when facing E1.
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• Upon seeing E1 being preyed, E2 randomizes between getting in
and staying out. This implies that

x1 × 1

x1 × 1 + (1− x1)× y
=

1

4
.

Moreover, let λ be the probability that E2 stays out. Note that
following E2’s staying out, x3 = 1

4
, and so E3 will enter for sure.

To be consistent with the assumption that the sane incumbent
feels indifferent about preying when facing E1, however, we need

−1 + λ(
3

4
+ 0 + 0) + (1− λ)× 0 = 0,

which is impossible.

To sum up, in the subgame where E1 gets in, the sane incumbent must
prey with probability x1

1−x1 , and all of E2, E3 and E4 enter if E1 was not
preyed; and E2 stays out upon seeing E1 being preyed, and after that,
E3 enters with probability 9−

√
21

6
, and in the event that E3 stays out,

then E4 enters with probability 9−
√

21
6

also.

Back to the first stage of the game, we see that E1 enters if and only
if x1 <

1
4
, and following that the players act as the preceding summary

describes. In case x1 ≥ 1
4
, then E1 stays out, and so does E2, but

following that, E3 and E4 both enter.

36. (Part 2.)

37. Recall the definition of signaling games: a game is called a signaling
game if it is featured by (i) two players (called 1 and 2); (ii) only player
1 has types θ ∈ Θ; (iii) player 1 (also referred to as the informed player)
given her type sends a signal a1 ∈ A1; (iv) player 2 (also referred to as
the uninformed player) chooses action a2 ∈ A2 upon seeing a1; and (v)
the game ends after player 2 chooses a2.

Let Θ be a finite set; i.e., Θ = {θ1, θ2, · · · , θn}. Let Ai be the set of
probability distributions over Ai. Let Σ1 be the set of player 1’s mixed
strategies σ1 : Θ → A1, where given a particular σ1, let σ1(a1|θ) be
the probability that player 1 chooses a1 ∈ A1 given her type θ. Let
Σ2 be the set of player 2’s mixed strategies σ2 : A1 → A2, where given
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a particular σ2, σ2(a2|a1) is the prob. that player 2 chooses a2 upon
seeing the signal a1 sent by player 1. Let p(θ) be player 2’s prior beliefs
about player 1’s type θ. Let P be the set of prob. distributions over
Θ. Let M be the set of mappings µ : A1 → P .

38. Given the signaling game defined in the preceding section, given µ ∈M
and a1 ∈ A1, let

BR(µ, a1) = arg max
a2

∑
θ∈Θ

µ(θ|a1)u2(a1, a2, θ),

BR(T, a1) =
⋃

µ∈M:µ(T |a1)=1

BR(µ, a1),

MBR(T, a1) =
⋃

µ∈M:µ(T |a1)=1

MBR(µ, a1),

where T is a subset of Θ, µ(T |a1) = 1 means that µ(θ′|a1) = 0 for all
θ′ ∈ Θ \ T , and BR and MBR stand for respectively the set of pure-
strategy best responses and the set of mixed-strategy best responses.

To formally define the Cho-Kreps intuitive criterion, given any pro-
posed PBE, let u∗1(θ) be the equilibrium payoff of the type-θ player 1,
and define for all a1 ∈ A1,

J(a1) = {θ : u∗1(θ) > max
a2∈BR(Θ,a1)

u1(a1, a2, θ)}.

The Cho-Kreps criterion states that player 2, upon seeing a1, should
hold posterior beliefs µ ∈M such that µ(Θ \ J(a1)|a1) = 1, and select
a2 accordingly from BR(Θ\J(a1), a1). Now, if there exist a1 ∈ A1 and
θ′ such that

u∗1(θ′) < min
a2∈BR(Θ\J(a1),a1)

u1(a1, a2, θ
′),

then we say the PBE fails the Cho-Kreps criterion. (We have assumed
that the above maximum and minimum both exist.)

There is an enhanced version of the Cho-Kreps criterion, referred to as
the iterated intuitive criterion, which involves defining for all a1 ∈ A1,
Θ1(a1) = Θ and for all n ∈ Z+,

Jn(a1) = {θ : u∗1(θ) > max
a2∈BR(Θn(a1),a1)

u1(a1, a2, θ)},
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and
Θn+1(a1) = Θn(a1) \ Jn(a1).

The PBE under consideration fails the iterated intuitive criterion if for
some a1 ∈ A1, for some n, there exists θ′ ∈ Θn+1(a1) such that

(∆) u∗1(θ′) < min
a2∈BR(Θn+1(a1),a1)

u1(a1, a2, θ
′).

To see that the iterated intuitive criterion is a stronger criterion than
the intuitive criterion, note that given a1 ∈ A1, {Θn(a1);n ∈ Z+} is a
decreasing sequence of subsets of Θ, so that by definition { BR(Θn+1(a1), a1); n ∈
Z+} is also a decreasing sequence of subsets of A2. This implies that
given a1, for all θ′ ∈ Θ and for all n ∈ Z+,

min
a2∈BR(Θn(a1),a1)

u1(a1, a2, θ
′) ≤ min

a2∈BR(Θn+1(a1),a1)
u1(a1, a2, θ

′).

Hence it is possible that a PBE is intuitive but not iteratedly intuitive.20

21

20Consider the following signaling game. Player 1 has three equally probable types
t1, t2, t3, and 2 feasible signals m1 and m2. Player 2, upon seeing player 1’s signal, can
respond in three ways (r1, r2, r3). If player 1 sends m1, then the game ends with players
1 and 2 getting respectively 0 and 10, irrespective of player 1’s type. The following table
summarizes the two players’ payoffs if player 1 sends m2.

type/response r1 r2 r3

t1 (-1,1) (-2,1) (-3,0)
t2 (1,0) (-1,2) (-2,0)
t3 (-1,0) (-2,0) (1,1)

Show that this game has a pooling equilibrium where all three types of player 1 send
m1 and upon seeing m2, player 2 plays rj with probability xj , where x1 ≤ x2 + 2x3 and
x3 ≤ x1 + 2x2. This equilibrium is intuitive, but fails to be iteratedly intuitive. Indeed,
BR({t1, t2, t3},m2) contains each and every mixed strategy that player 2 can use, but
upon seeing m2, intuitive criterion suggests that m2 was not sent by t1. Then, one can
show that BR({t2, t3},m2) contains each and every mixed strategy that player 2 can use
satisfying x1 = 0, but if we restrict player 2’s best response this way, then t2 cannot
have sent m2. It follows that BR({t3},m2) contains nothing but r3, which then induce
t3 to deviate for sure. Thus the pooling equilibrium is intuitive, but fails to be iteratedly
intuitive.

21A related concept is the equilibrium domination criterion, which involves replacing
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39. Now we introduce the Grossman-Perry equilibrium. Consider the fol-
lowing signaling game. Player 1 has three equally probable types
t1, t2, t3, and 2 feasible signals m1 and m2. Player 2, upon seeing player
1’s signal, can respond in three ways (r1, r2, r3). If player 1 sends m1,
then the game ends with both players getting 2, irrespective of player
1’s type. The following table summarizes the two players’ payoffs if
player 1 sends m2.

type/response r1 r2 r3

t1 (3,3) (0,0) (0,0)
t2 (0,0) (0,3) (3,0)
t3 (0,0) (3,0) (0,3)

(i) Show that this game has a pooling PBE where player 1 always sends
m1, and upon seeing m2, player 2 believes that all three types of player
1 are equally likely to have made this deviation, and hence he random-
izes over the three responses with equal probabilities. Verify that this
PBE passes the Cho-Kreps criterion.
(ii) Show that this game has another PBE where player 1 sends m2 if
and only if his type is t1, and upon seeing m2, player 2 responds by
choosing r1. Show that this PBE also passes the Cho-Kreps criterion.
(iii) To define Grossman-Perry equilibrium, given any PBE, define Ti
as the set of player 1’s types that player 2 considers likely to have sent
mi. (Note that this definition does not distinguish equilibrium signals
from off-the-equilibrium signals.)

Definition 3. A PBE is a Grossman-Perry equilibrium if for all i,
t ∈ Ti implies that sending mi is one best response for the type-t
player 1.

Show that the PBE in part (ii) is a Grossman-Perry equilibrium, but
the PBE in part (i) is not.

(∆) above by: for some a1 ∈ A1, for some n, for all a2 ∈ A2 there exists θ′(a1) such
that u∗1(θ′(a1)) < u1(a1, a2, θ

′(a1)). Apparently, the iterated intuitive criterion is stronger
than the equilibrium domination criterion, in that if a PBE fails the latter then it fails the
former.
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Solution. Consider part (i). It is easy to see that the asserted pooling
PBE does exist. To see that it is a Cho-Kreps equilibrium, note that
J(m2) = ∅: type t1 would prefer m2 to m1 if r1 would be taken after
player 2 sees m2, which is optimal if player 2 holds the belief that
µ(t1|m2) = 1; type t2 would prefer m2 to m1 if r3 would be taken
after player 2 sees m2, which is optimal if player 2 holds the belief that
µ(t3|m2) = 1; and type t3 would prefer m2 to m1 if r2 would be taken
after player 2 sees m2, which is optimal if player 2 holds the belief that
µ(t2|m2) = 1.

Consider part (ii). It is easy to see that the asserted PBE does exist.
To see that the PBE is a Cho-Kreps equilibrium, note that under this
PBE both m1 and m2 are equilibrium signals.

Consider part (iii). It is easy to see that the PBE stated in part (ii)
satisfies the Grossman-Perry criterion. To see that the PBE stated in
part (i) fails the Grossman-Perry criterion, note that for player 2 to
choose r2 with a strictly positive probability after seeing m2 (in this
PBE r2 is played with probability 1

3
following m2), it is necessary that

µ(t2|m2) ≥ max(µ(t1|m2), µ(t3|m2))⇒ µ(t2|m2) > 0,

so that t2 ∈ T2. However, by sending m1 type t2 would get 2, implying
that sending m2 type t2 should get an expected payoff of 2 also, which
in turn requires that player 2 chooses r3 with probability 2

3
> 0, but

for the latter to happen, it must be that

µ(t3|m2) ≥ max(µ(t1|m2), µ(t2|m2)),

so that
0 < µ(t2|m2) = µ(t3|m2)⇒ t3 ∈ T2,

which in turn implies that by sending m2 type t3 can get an expected
payoff of 2. Note that the latter requires that player 2 should choose
r2 with probability 2

3
after seeing m2. This cannot be possible.

40. The following examples will show that the PBE solution concept may be
too weak and render unreasonable solutions. These examples motivate
Kreps and Wilson’s sequential equilibrium concept.
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• Example 4. Consider the following game with imperfect information.22

Nature first chooses a type t ∈ {a, b} for player 1 with equal prob-
ability, and then without seeing her own type, player 1 chooses
between x and y, which is observed by player 2 before the latter
chooses between l and r. The payoff vectors (u1, u2) for player 1
and player 2 are respectively (2, 10), (0, 5), (5, 2), (0, 5), (5, 10), and
(2, 10) in respectively the events (t, s1, s2) = (a, x, ·), (a, y, l), (a, y, r),
(b, y, l), (b, y, r), and (b, x, ·). One PBE for this game consists of
player 1 playing x and player 2 playing l if y is observed, and
player 2’s posterior belief in the latter zero-probability event is
that player 1 is of type a with probability 0.9. Note that the
latter supporting belief is unreasonable, because player 1 cannot
make her trembling to y contingent on her type; recall that she
does not know her own type when choosing between x and y!

• Example 5. Consider the following game where E (the entrant)
decides to stay out or to enter an industry, which is observed
by I (the incumbent). Then E and I simultaneously choose to
prey or to accomodate. The payoff vectors (uE, uI) are respec-
tively (0, 2), (−3,−1), (1,−2), (−2,−1), and (3, 1) when the strat-
egy profiles are respectively (Out,·), (prey, prey), (prey, accomo-
date), (accomodate, prey), and (accomodate, accomodate). This
game has a PBE where E chooses Out and E would accomodate
with probability 1 after the zero-probability event that E chooses
In takes place, and yet firm I thinks that E preys with probability
1. This PBE is not even subgame perfect!

41. The above problems pertaining to the PBE solution concept motivate
Kreps and Wilson’s sequential equilibrium, where Kreps and Wilson
extend subgame perfection (P) to sequential rationality (S) (that ex-
tends the idea of perfection to non-singleton information sets) and refine
the Bayesian updating rule (B) by requiring beliefs be consistent (C).
Formally, an assessment is a pair (σ, µ), where σ is an (equilibrium)
strategy profile and µ a set of beliefs that assigns beliefs to each and
every information set in the game tree. The assessment is sequentially

22Harsanyi points out that an extensive Bayesian game can be modeled as an extensive
game with imperfect information, and so the solution concept of PBE can be applied to
games with imperfect information as well.
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rational, if at any information set h where it is player i(h)’s turn to
move, given the player’s beliefs µ(h) at that information set, no other
strategy σ′i(h) can make the player better off:

ui(h)(σ|h, µ(h)) ≥ ui(h)((σ
′
i(h), σ−i(h))|h, µ(h)).

This definition extends subgame perfection because (i) it does not re-
quire h to be a singleton set; and (ii) just like subgame perfection,
it assumes that all other players will follow σ even if h ought to be
reached with zero probability. Let Σ0 be the set of totally mixed strat-
egy profiles. Note that if σ ∈ Σ0, then σi(ai|h) > 0 for all h and for
all ai ∈ Ai(h)(h) (where Ai(h)(h) is the set of feasible actions for player
i(h) at information set h). In this case, for each node x on the game

tree, µ(x) = Pσ(x)
Pσ(h(x))

, where P σ(·) is the probability distribution over

nodes induced by the strategy profile σ. That is, given that σ ∈ Σ0,
µ is completely determined by Bayes law. Let Ψ0 be the set of assess-
ments where σ ∈ Σ0 and µ is derived from σ via Bayes law. We say
that an assessment is consistent if it is the limit of a sequence of as-
sessments {(σn, µn)} in Ψ0. Now we can define a sequential equilibrium.

Definition 4. An assessment is a sequential equilibrium (SE) if it is
sequentially rational (S) and consistent (C).

Thus like a PBE, a sequential equilibrium consists of a set of strategies
plus a set of beliefs. Indeed, an SE is a PBE, but the converse is not
necessarily true. These two equilibrium concepts coincide with each
other if the game is a signaling game or if the informed player has only
two possible types.

42. Note that we did not require in the definition of an SE that for all
n {(σn, µn)} be an equilibrium in any sense, which distinguishes SE
from the (trembling-hand) perfect equilibrium in extensive games. In
fact, every perfect equilibrium in extensive games is an SE, and hence
the existence of SE is implied by the existence of perfect equilibria.
Although there generally may exist infinitely many SE’s for a finite ex-
tensive game with incomplete information, as Kreps and Wilson show,
the number of distinct equilibrium payoff profiles is generically finite.
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43. Now, let us show that the PBE’s obtained in Examples 4 and 5 are not
SE’s. In the former example, if for all n ∈ Z+, σn1 is a totally mixed
strategy of player 1, then the posterior belief of player 2 upon seeing y
should be that player 1 is of type a with probability µn(a) = 1

2
, which

converges to µ(a) = 1
2

for sure, and with this belief, player 2 is better
off choosing r. However, expecting player 2 to choose r upon seeing y,
player 1 is better off choosing y in the first place, upsetting the PBE.
Thus the PBE is not a sequential equilibrium.

Similary, in the latter example, suppose that for all n ∈ Z+, E chooses
In with probability εn > 0, where εn ↓ 0, and that given each n, en > 0 is
the probability that E will prey given that he has entered the industry,
with en ↓ 0 also. Then firm I’s belief upon seeing E’s entry should be
that

µn(prey) =
enεn

εn
= en ↓ 0 = µ(prey),

which contradicts the supporting belief specified by the PBE; namely,
µ(prey) = 1. That is, the assessment specified by the original PBE fails
to be consistent, and hence that PBE is not a sequential equilibrium.23

24

44. Now we introduce the divine equilibrium. Let

D(θ, T, a1) =
⋃

{µ:µ(T |a1)=1}
{α2 ∈MBR(µ, a1) : u∗1(θ) < u1(a1, α2, θ)}

and

D0(θ, T, a1) =
⋃

{µ:µ(T |a1)=1}
{α2 ∈MBR(µ, a1) : u∗1(θ) = u1(a1, α2, θ)}.

23The equilibrium concept SE also has some drawbacks itself. First, it is not robust
against additions or deletions of irrelevant moves. Second, it may allow for equilibria
involving some players playing weakly dominated strategies.

24Recall from Lecture 1, Part II that the perfect equilibrium defined for strategic games
does not remove all subgame-imperfect NE’s in extensive form. Selten’s remedy (1975) is
to define agent’s normal form and require the original definition of perfect equilibrium to
adapt to this new concept. This way, all subgame-imperfect NE’s are removed. With this
new definition, all perfect equilibria are sequential, and the two coincide generically.
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Definition 5. Bank and Sobel’s divine equilibrium is a sequential
equilibrium that can be supported by the following beliefs: if for θ, θ′,

D(θ,Θ, a1)
⋃
D0(θ,Θ, a1) ⊂ (6=)D(θ′,Θ, a1),

then
p(θ′)

p(θ)
≤ µ(θ′|a1)

µ(θ|a1)
,

where recall that p(·) defines the prior beliefs on Θ.25

45. To demonstrate the concept of divine equilibrium, consider the follow-
ing game of lawsuit settlement.
Example 6. Player 1 (the defendant) can be either guilty or not guilty
with equal probability, which is her private information, and she can
offer to settle at either 3000 or 5000 dollars with player 2 (the plaintiff).
Player 2 can either accept or reject the offer. If player 2 rejects the offer,
then the two go to the court and the truth (the type of the defendant)
will reveal with player 1 paying player 2 nothing if the verdict is “not
guilty” and 5000 if the verdict is “guilty.” In any case, going to the
court will cost player 1 6000 regardless of the outcome of the verdict.
The game has two pooling PBE’s. In one, both types of player 1 offer
to settle at 3000 and player 2 is willing to accept either 3000 or 5000.
In the other, both types of player 1 offer to settle at 5000 and player 2

25The strengthened definition of divine equilibrium can be found in Fubenberg and
Tirole (1991), where a divine equilibrium must have supporting beliefs that satisfy the
following D1 criterion: Let Θ1 = Θ and G1 the subset of Θ such that θ ∈ G1 if and only
if there exists some other θ′ ∈ Θ such that

D(θ,Θ, a1)
⋃
D0(θ,Θ, a1) ⊂ (6=)D(θ′,Θ, a1).

Then, for n ≥ 2, define Θn = Θ \
⋃n−1
j=1 Gj , where Gj is the subset of Θ such that θ ∈ Gj

if and only if there exists some other θ′ ∈ Θj such that

D(θ,Θj , a1)
⋃
D0(θ,Θj , a1) ⊂ (6=)D(θ′,Θj , a1).

Then the supporting beliefs must be such that, following any off-the-equilibrium signal
a1, the posterior probability for any element contained in Θ \

⋃
n≥2Gn−1 is zero. Note

that this definition is indeed stronger than the intuitive criterion, because by the intuitive
criterion, G1 contains only those θ with empty D(θ,Θ, a1) and D0(θ,Θ, a1).
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stands ready to accept 5000 but to reject 3000. Both PBE’s pass the
Cho-Kreps criterion.26

The second PBE is however not divine. Note that off the equilib-
rium player 2 can get 3000 if she accepts the deviation offer 3000, and
5000µ(guilty|3000) if she rejects that deviation offer. Thus her MBR
contains accepting the deviation offer (if µ(guilty|3000) ≤ 3

5
), rejecting

the deviation offer (if µ(guilty|3000) ≥ 3
5
), and a mixed strategy (if

µ(guilty|3000) = 3
5
). It can be shown that27

D(not guilty) = {prob.(accepting) >
1

3
},

D(guilty) = {prob.(accepting) >
3

4
},

D0(guilty) = {prob.(accepting) =
3

4
}.

Thus in a divine equilibrium, following Bank and Sobel’s argument,

26Apparently, in the first equilibrium both types of player 1 strictly prefer the equilib-
rium signal 3000 to the off-the-equilibrium signal 5000, implying that J(5000) = Θ. The
intuitive criterion does not add any restrictions on the set of posterior beliefs in this case.
In the second equilibrium, J(3000) = ∅: if 3000 would be accepted with probability one
then both the guilty and the non-guilty types would prefer offering 3000 to the equilibrium
signal of offering 5000. Note that accepting 3000 can be optimal if player 2’s posterior
beliefs are such that µ(not guilty|3000) = 1.

27Recall that in equilibrium both types of the defendant offer 5000 without going to the
court. If offering 3000 implies an expected payoff less than (or equal to) 5000 for a given
type of defendant, then he would strictly (weakly) prefer the deviation to his equilibrium
signal. That is, to make a guilty type weakly prefer offering 3000, it is necessary and
sufficient that

q · 3000 + (1− q) · (5000 + 6000) ≤ 5000⇒ q ≥ 3

4
,

where q is the plaintiff’s prob. of accepting 3000. Similarly, to make a non-guilty type
weakly prefer offering 3000, it is necessary and sufficient that

q · 3000 + (1− q) · (0 + 6000) ≤ 5000⇒ q ≥ 1

3
.

In other words, knowing that he does not need to pay the plaintiff after going to the court,
the non-guilty type of defendant is more willing to try the low offer 3000 and run the risk
of being turned down and having to go to the court.
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when the off-the-equilibrium signal 3000 appears, we must require

µ(not guilty|3000) ≥ 1

2
,

where 1
2

is the prior probability that the defendant is not guilty. How-
ever, with the Bank-Sobel posterior beliefs, player 2 had better accept
the 3000 when it appears (if going to the court, player 2’s expected
payoff is µ(guilty|3000) · 5000 < 3000), and knowing this player 1 will
not offer 5000 in equilibrium, showing that the PBE is not a divine
equilibrium.
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