
Game Theory with Applications to Finance and

Marketing, I

Solutions to Homework 1

1. (Competing Platforms, Part I.) Consider the following extensive
game with two competing platforms, I and E, and two segments of
platform users, referred to as side 1 and side 2 respectively. Segment i
has population equal to one, and is represented by the interval (2i, 2i+
1). There exists a one-to-one measure-preserving correspondence f :
(2, 3) → (4, 5) such that when user x ∈ (2, 3) meets with user f(x) ∈
(4, 5) on either platform I or platform E, the two users receive payoffs
u1 and u2 respectively.1 We say that a match occurs for x and his right
partner f(x) in the latter event. The two agents receive zero payoffs if
they fail to meet with each other. We assume that u2 > u1 > 0. The
platforms can operate without costs, and the timing of relevant events
is as follows:

• Platform I (the incumbent) must first decide whether to remain
inactive (so that it gets a zero payoff by doing nothing) or to
announce a pair of two-part tariffs (pI1, t

I
1, p

I
2, t

I
2), saying that if a

side-i user wishes to use platform I then he needs to pay an upfront
registration fee (or access fee, or subscription fee) pIi ∈ <, and in
case a match occurs subsequently, then he needs to pay another
transaction fee tIi ≥ 0.2

• Upon seeing platform I’s announcements, platform E (the entrant)
can decide whether to remain inactive (so that it gets a zero pay-
off by doing nothing) or to announce a pair of two-part tariffs
(pE1 , t

E
1 , p

E
2 , t

E
2 ).

• Then users of both sides arrive, and they must decide simultane-
ously whether to register for both platforms (multi-homing), or

1The one-to-one correspondence is measure-preserving if the Lebesgue measure of any
set A ⊂ (2, 3) equals the Lebesgue measure of the image set f(A) ⊂ (4, 5). The require-
ments for f are satisfied when f is piece-wise affine with slope equal to plus or minus
one.

2If tIi < 0, then side-i users would have an incentive to forge a phony match in order
to collect money from the platform.
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just one of the platforms (single-homing) and which one, or to
just leave. If a side-i user has registered for one platform k, then
he is restricted to searching for his right partner from side j on
platform k; but if the side-i user has registered for both platforms,
then he can search for his right partner from side j on both plat-
forms. We assume that whenever x and f(x) have both registered
for platform k and have initiated the search, platform k can locate
them and make the match occur without incurring any costs.

(i) First suppose that platform E is absent, so that platform I is a mo-
nopolist.
(i-a) Suppose that platform I cannot verify whether a match really oc-
curs, and hence it has to set tI1 = tI2 = 0. Show that there are multiple
subgame-perfect Nash equilibria: in one equilibrium platform I makes
the maximum profits u1 + u2 by announcing (pI1, p

I
2) = (u1, u2), but

in another equilibrium platform makes profits u2 by offering pI1 = 0
and pI2 = u2, and the latter equilibrium is supported by the off-the-
equilibrium beliefs that no users would register for platform I if both
pI1 and pI2 are strictly positive, and that all side-i users would register
for platform I if pIi ≤ 0.
(i-b) Suppose instead that platform I can set positive transaction fees.
Show that platform I can essentially obtain the maximum profits u1+u2
in equilibrium.

(ii) Now, suppose that both platforms are present, but users can use
at most one platform. (That is, users must do “single-homing.”)
(ii-a) Suppose that the platforms cannot verify whether a match really
occurs, and hence they must set zero transaction fees. Show that all
users choose to use platform I, with platform I’s equilibrium pricing
decisions being pI1 = −max(u1, u2 − u1) and pI2 = u2. Show that in
equilibrium, platform I’s profits are min(u1, u2 − u1).
(ii-b) Now, suppose instead that platforms can set positive transaction
fees. Show that there exists an equilibrium where all users choose to
use platform I, with platform I’s equilibrium pricing decisions being
pI1 = −u2 − u1, tI1 = u1, p

I
2 = 0, and tI2 = u2. Show that in this equilib-

rium, platform I has zero profits.
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(iii) Now, suppose that both platforms are present, and users can use
both platforms. (That is, users are allowed to do “multi-homing.”)
Suppose that the platforms cannot verify whether a match really oc-
curs, and hence they must set zero transaction fees. Show that there
exists an equilibrium where all users choose to use platform I, with
platform I’s equilibrium pricing decisions being pI1 = pI2 = 0. Show
that in this equilibrium, platform I has zero profits.

Solution. Consider (i-a). We claim that it is an equilibrium where
platform I announces pI1 = u1 and pI2 = u2 and all users then choose
to register for platform I. Indeed, expecting all side-i users to accept
pIi = ui and register for platform I, a side-j user is confident that he will
have a perfect match and obtain a payoff of uj−pIj = 0 after registering
for platform I himself, and hence that all users accept pI1 = u1 and pI2 =
u2 and register for platform I constitutes a subgame equilibrium after
platform I announces pI1 = u1 and pI2 = u2. Note that platform I attains
its maximum possible profits when announcing pI1 = u1 and pI2 = u2,
and hence it has no incentives to deviate from these equilibrium pricing
decisions.

Next, we claim that it is also an equilibrium where platform I offers
pI1 = 0 and pI2 = u2, under the beliefs that no users would register for
platform I if both pI1 and pI2 are strictly positive, and that all side-i
users would register for platform I if pIi ≤ 0.

To see that the claim is true, observe first that under the stated beliefs,
it is indeed a subgame equilibrium that no users would register for
platform I after platform I announces pI1 > 0 and pI2 > 0: expecting no
side-i users would accept pIi > 0 and register for platform I, registering
for platform I would result in zero chance of having a match and hence
a payoff −pIj < 0 to each and every side-j user. Observe also that
registering for platform I is a weakly dominant strategy for side-i users
given that pIi ≤ 0. Now, under the above beliefs, platform I can get
side-i users on board by announcing pIi = 0, which, because rationality
is users’ common knowledge, convinces side-j users that they would
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obtain payoff uj−pIj if they accept pIj and register for platform I. Thus
platform I can obtain payoffs u1 by offering (pI1, p

I
2) = (u1, 0) and payoffs

u2 by offering (pI1, p
I
2) = (0, u2). Since u2 > u1, platform I’s equilibrium

best response is to offer (pI1, p
I
2) = (0, u2).

Our TA has made the following observation for us: it is valuable for
platform I to be able to charge a negative registration fee. Indeed, if
we restrict pI1 and pI2 to be non-negative, then there always exists an
equilibrium where users never register for platform I and platform I
gets zero equilibrium payoffs by announcing pI1 = pI2 = 0. The latter
zero-payoff equilibrium, referred to as a market breakdown equilibrium,
is Pareto inefficient, and its driving force is the indirect network exter-
nality pertaining to a two-sided market. TA shows that this inefficient
equilibrium would vanish when platform I can announce a negative reg-
istration fee: by setting pI1 = −ε and pI2 = u2 − ε, platform I can get
all side-1 users on board, which convinces side-2 users that they will
obtain the payoff u2 − pI2 = ε > 0 if they accept pI2 and register for
platform. Thus platform I can essentially attain a payoff of u2 > 0
when allowed to offer a negative registration fee, proving that platform
I would never announce pI1 = pI2 = 0 in equilibrium.

Consider (i-b). Now platform I can resolve the issue of multiple equi-
libria in (i-a) by announcing pIi = −ε for one segment of users, say, side
i, and in response, all side-i users will be willing to register for platform
I even if tIi = ui. Thus by offering (pIi , t

I
i ) = (−ε, ui), platform I can get

all side-i users on board, which convinces side-j users that they would
each obtain the payoff uj − tIj − pIj if they are willing to accept (pIj , t

I
j )

and register for platform I. Thus platform I can choose (pIj , t
I
j ) such

that pIj + tIj = uj − ε to go along with (pIi , t
I
i ) = (−ε, ui) and obtain a

payoff u1 + u2− 2ε, and as ε > 0 can be chosen to be arbitrarily small,
platform I can obtain essentially the payoff of u1 + u2.

Consider (ii-a). We shall refer to an equilibrium where all users register
for one platform and no users register for the other platform as a tipping
equilibrium. Here we shall focus on the tipping equilibrium where all
users choose to register for platform I. We use backward induction,
starting with the subgame where platform E is about to make pricing
decisions given (pI1, p

I
2). In this tipping equilibrium, E can induce side-i
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users to switch and join platform E instead if and only if

0 · ui − pEi > 1 · ui − pIi ⇔ pEi < pIi − ui,

where we have emphasized that everyone (including platform E itself)
believes that side-i users’ probability of having a match is one if they
stick to platform I, and their probability of having a match becomes
zero if they switch to platform E. Now, given that E has announced
pEi < pIi − ui to get side-i users on board, a side-j user’s payoff from
staying with platform I would become 0·uj−pIj ,3 so that platform E can
induce side-j users to also switch and join platform E by announcing
pEj that satisfies

1 · uj − pEj > max(0, 0 · uj − pIj ) = −min(0, pIj )⇔ pEj < uj + min(0, pIj ).

Thus, given (pI1, p
I
2), platform E can attain the payoff

max
(i,j)∈{(1,2),(2,1)}

pIi − ui + uj + min(0, pIj ).

We shall assume that platform E would remain inactive (i.e., it would
announce no price offers to users) if, given (pI1, p

I
2), the above maximum

payoff is less than or equal to zero.

Now, return to the stage where platform I is about to set (pI1, p
I
2). In

the supposed tipping equilibrium, platform I seeks to

max pI1 + pI2

subject to
pI1 − u1 + u2 + min(0, pI2) ≤ 0;

pI2 − u2 + u1 + min(0, pI1) ≤ 0;

pI1 ≤ u1; p
I
2 ≤ u2.

First we claim that platform I would announce pI2 ≥ 0. Indeed, if
instead pI2 < 0, then the above first constraint requires that

pI1 + pI2 ≤ u1 − u2 < 0,

3These users are said to be stranded in the language of Farrell and Saloner (1986); see
Farrell, J. and G. Saloner, 1986, Installed Base and Compatibility: Innovation, Product
Preannouncements, and Predation, American Economic Review, 76, 5, 940-955.
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but platform I can at least remain inactive! Now, if pI1 ≥ 0 also, then
by summing up the first two constraints we obtain pI1 + pI2 ≤ 0, but
we shall show that platform I can obtain a strictly positive payoff by
announcing some negative pI1. Thus assume that pI1 < 0 ≤ pI2, and
it follows that the above third constraint can be ignored, and we can
re-state the remaining constraints as

pI1 ≤ −(u2 − u1);

pI2 ≤ u2 − u1 − pI1;
pI2 ≤ u2.

Since the objective function is strictly increasing in pI2 given pI1, the
optimal pI2 should make either the second or the last constraint binding;
i.e., we have at optimum either

pI2 = u2 and pI1 ≤ −u1 ⇒ pI1 = min(−u1, u1 − u2)

⇒ pI1 + pI2 = u2 + min(−u1, u1 − u2) = min(u1, u2 − u1).
or

u2 ≥ pI2 = u2 − u1 − pI1 ≥ 2(u2 − u1)
⇒ pI1 + pI2 = u2 − u1 when u1 ≥ u2 − u1.

Summing up the above discussions, we conclude that if u2 − u1 > u1,
then 2(u2−u1) > u2, so that at optimum pI1 = −(u2−u1) and pI2 = u2;
and if instead u1 ≥ u2 − u1, then u2 ≥ 2(u2 − u1), so that at optimum
pI1 = −u1 and pI2 = u2. Thus as we have asserted earlier, pI1 < 0 at
optimum, and platform I’s equilibrium payoff is min(u1, u2 − u1) > 0.

Now, consider (ii-b). Again, we start with the subgame where platform
E must make price decisions given (pI1, t

I
1, p

I
2, t

I
2). To induce side-i users

to deviate and join platform E instead, platform E must offer (pEi , t
E
i )

such that
−pEi > ui − pIi − tIi ,

but the key difference here is that platform E can set tEi = ui. This
makes platform E’s effort of stealing side-i users away from platform I
less costly than in scenario (ii-a). Having offered

pEi = −ui + pIi + tIi − ε, tEi = ui,
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platform E can also steal side-j users away from platform I by offering
(pEj , t

E
j ) that satisfies

uj − pEj − tEj > max(−pIj , 0)⇔ pEj + tEj < uj + min(pIj , 0).

Thus, given (pI1, t
I
1, p

I
2, t

I
2), platform E can obtain essentially the follow-

ing payoff by remaining active:

max
(i,j)∈{(1,2),(2,1)}

pIi + tIi + uj + min(0, pIj ).

Now, return to platform I’s pricing decisions. Platform I seeks to

max pI1 + tI1 + pI2 + tI2

subject to
pI1 + tI1 + u2 + min(0, pI2) ≤ 0;

pI2 + tI2 + u1 + min(0, pI1) ≤ 0;

pI1 + tI1 ≤ u1; 0 ≤ t1 ≤ u1;

pI2 + tI2 ≤ u2; 0 ≤ t2 ≤ u2.

For (pI1, t
I
1, p

I
2, t

I
2) satisfying pI1 ≥ 0 and pI2 ≥ 0, we would have

pI1 + tI1 ≤ −u2, pI2 + tI2 ≤ −u1,

implying that platform I’s payoff is strictly negative. Thus suppose
that pIi < 0, which implies that

pIj + tIj + pIi + tIi ≤ pIj + tIj + min(pIi , 0) + ui ≤ 0.

Thus platform I cannot attain a strictly positive payoff. Note that one
way for platform I to attain zero profits is to set tIi = ui, p

I
2 = 0 and

pI1 = −u1 − u2.

Consider part (iii). Again, we start with the subgame where platform
E must make price decisions given (pI1, p

I
2). Note that users are allowed

to register at both platforms, and hence any negative pEi can induce
side-i users to adopt platform E as an additional platform. However, to
ensure that users would like to meet at platform E after registering at
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both platforms, platform E must ensure that side-j users strictly prefer
platform E to platform I after knowing that side-i users have chosen to
register at both platforms; that is, platform E must offer (pEi , p

E
j ) such

that pEi < 0 (so that side-i users will adopt platform E as their second
choice) and, given this fact, side-j users would rather have a match on
platform E than on platform I; that is,

1 · uj − pEj > 1 · uj − pIj ⇔ pEj < pIj ,

where note that, given side-i users’ multi-homing decisions, everyone
(including platform E) realizes that side-j users’ chance of having a
match is one no matter which platform side-j users choose to use to
meet with side-i users. Thus platform E’s optimal payoff given (pI1, p

I
2)

is
sup
ε∈<++

(0,−ε+ pI1 − ε,−ε+ pI2 − ε) = max(0, pI1, p
I
2).

Now, return to platform I’s pricing decisions. Platform I seeks to

max pI1 + pI2

subject to
max(0, pI1, p

I
2) ≤ 0⇒ pI1, p

I
2 ≤ 0,

implying that platform I must choose pI1 = pI2 = 0!

Remark 1. We have focused on the so-called tipping equilibrium in
the above analysis, where all users choose to join one platform. This
type of equilibrium can prevail even if we assume that the two platforms
act simultaneously, but with simultaneous moves, there may be other
equilibria with symmetric equilibrium allocations. In general, when the
dominant platform gets a zero payoff in a tipping equilibrium, the two
platforms would also get zero payoffs in a symmetric equilibrium. Here
we emphasize an unusual symmetric equilibrium with positive payoffs
for the two platforms.

Suppose now that in part (iii) the two platforms must announce prices
simultaneously before users arrive. Then it is an equilibrium where for
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platform k ∈ {I, E}, pk1 = 0, pk2 = u2
2

.4 5 In this equilibrium, side-1
users do single-homing and they split equally between the two plat-
forms, but side-2 users do multi-homing.6 A side-1 user’s equilibrium
payoff from joining platform k is u1 − pk1 = u1 > 0, and a side-2 user’s
equilibrium payoff from joining both platforms is u2 − pI2 − pE2 = 0. A
platform k’s equilibrium payoff is 1

2
· pk1 + 1 · pk2 = u2

2
.

Remark 2. The platforms studied above can be cybermediaries pro-

4To check that no platforms would want to deviate unilaterally from the equilibrium
pricing decisions, first note that lowering the registration fee for side-2 users is worthless:
lowering the registration fee may in general encourage registration but side-2 users have
already chosen multi-homing. Second, lowering the registration fee for side-1 users would
make them choose multi-homing, but it has no influence on their (and side-2 users’) choices
regarding the platform on which they would like the match to take place.

5This equilibrium would not break down even if platforms must move sequentially.
We first argue that, given that platform I announces pI1 = 0 and pI2 = u2

2 , platform E
has no incentive to deviate. If instead platform E announces subsequently pE1 = −ε and
pE2 = u2

2 − ε, then side-1 users will do multi-homing, and side-2 users will do single-
homing and drop platform I, and thus all matches will occur on platform E. However,
since tEi = 0, platform E actually becomes worse off: platform E’s deviation payoff be-
comes 1 · pE1 + 1 · pE2 < u2

2 ! Next, we argue that platform I has no incentive to deviate
either if certain off-the-equilibrium beliefs are held by users and the two platforms. Specif-
ically, if platform I deviates and aims at obtaining a payoff higher than u2

2 , then following
the deviation platform I must announce pIi > 0 for some i. Thus there are two possible
deviation announcements for platform I.

• If following the deviation, platform I announces pI1, p
I
2 > 0, then we assume that

side-i users will choose single-homing and join the platform k offering the lower pki .
In this case platform E can offer pEi = pIi − ε and make platform I’s deviation payoff
equal to zero. This removes platform I’s incentive to deviate and offer those positive
registration fees in the first place.

• Now, if following the deviation platform I offers pIi ≤ 0 and pIj > 0, then we assume

that whenever pEi ≤ 0 all users believe that side-i users will choose multi-homing
but side-j users will choose single-homing and join the platform k offering the lower
pkj . In this case platform E can offer pEi = 0 and pEj = pIj − ε, and this removes

platform I’s incentive to deviate and announce pIi ≤ 0 and pIj > 0 in the first place.

6Note that there is no need for side-1 users to do multi-homing, once they are sure that
side-2 users are doing multi-homing. To have users from both sides doing multi-homing,
for each side i, some platform k must be offering pki ≤ 0.
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viding online dating services (like eharmony.com or match.com), or
online search engines, or they can be e-commerce firms (e.g. Ama-
zon.com) performing informational intermediation between, say, read-
ers and books. Typically the value of an intermediary for a user on
one side relates positively to the number of users on the other side,
a phenomenon generally referred to as an indirect network externality.
Platforms exhibiting this property is referred to as a two-sided market.
This exercise is adapted from Caillaud and Jullien (2001).7

2. (Competing Platforms, Part II.) Here we shall modify Problem 1
as follows:

• For some ρ ∈ (0, 1), u2 = 1 + ρ and u1 = 1− ρ.

• The platforms must set zero transaction fees and non-negative
registration fees.

• The timing of relevant events is modified as follows:

– The two platforms simultaneously announce pI1 and pE1 .

– Then side-1 users arrive and they simultaneously choose which
platform(s) to use.

– Then it becomes public information that there are x side-1
users having registered for platform I, y side-1 users having
registered for platform E, and z side-1 users having registered
for both platforms, where 0 ≤ z ≤ x, y ≤ 1.

– Then the two platforms simultaneously announce pI2 and pE2 .

– Then side-2 users arrive and they simultaneously choose which
platform(s) to use.

(i) Show that if all users must adopt single-homing then there are mul-
tiple equilibria, where in one equilibrium all side-1 users choose to use
platform k ∈ {I, E} with platform k pricing at pk1 = (1 − ρ) and then
pk2 = (1 + ρ), and in another equilibrium the two platforms announce
pI1 = pE1 = 0 with side-1 users randomly choosing a platform.

7Caillaud, B., and B. Jullien, 2001, Competing Cybermediaries, European Economic
Review (Papers and Proceedings), 45, 797-808.
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(ii) Suppose instead that side-1 users must adopt single-homing but
side-2 users are allowed to multi-home. Show that given x, y, z, the
two platforms will charge side-2 users respectively pI2 = (1 + ρ)(x− z)
and pE2 = (1 + ρ)(y− z), so that, by backward induction, the two plat-
forms announce pI1 = pE1 = 0 when serving side-1 users.

Solution. Consider part (i), which assumes that z = 0. Consider first
the subgame where the two platforms must make price offers to side-
2 users, given x, y. Note that a platform k will never offer pk2 < 0 at
this stage even if negative registration fees are allowed: if it did, it loses
money from getting side-2 users on board, without helping attract side-
1 users to come join the party (simply because side-1 users’ registration
decisions have already been made and the platform cannot charge a
positive transaction fee). When x > y, platform I and platform E will
offer the prices pE2 = 0 and pI2 = (1 + ρ)(x− y) and all side-2 users will
join platform I; and when x < y, platform I and platform E will offer
the prices pI2 = 0 and pE2 = (1 + ρ)(x− y) and all side-2 users will join
platform E.8 In case x = y, both platforms offer zero registration fees,
and side-2 users randomly pick a platform to join.

Now, return to the stage where the two platforms are about to make
offers to side-1 users. According to the above analysis, essentially, a
side-1 user will have a match only if he joins the platform that the
majority of his side-1 fellow users choose to join. Thus if side-1 users
believe that they will all join platform k, then this is a self-fulfilling
equilibrium as long as pk1 ≤ u1. This leads to a tipping equilibrium
where some platform k offers pk1 = (1 − ρ) and the (non-negative)
registration fee chosen by its rival is irrelevant. On the other hand,
if side-1 users believe that they will all choose the platform k offering
the lower pk1, and they will randomly choose a platform to join when
pI1 = pE1 , then it is an equilibrium where the two platforms offer pI1 =

8In these two cases, the two platforms are like two Bertrand-competitive firms offering
heterogeneous goods at zero costs, where buyers’ common valuation for firm k’s good is
vk, with 0 < v1 < v2, say. In equilibrium, firm 1 will price at zero, and firm 2 will price
at v2 − v1. The idea is that firm 1 can at best offer buyers a surplus of v1 at zero price,
which firm 2 can match by pricing at (or slightly below) v2 − v1. Thus firm 1 makes no
profits, and firm 2’s payoff is v2 − v1.
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pE1 = 0 and side-1 users randomly join the two platforms. Apparently,
the former two tipping equilibria are efficient (despite having higher
prices and platform profits than the symmetric equilibrium), as every
user has a match in equilibrium. The latter symmetric equilibrium is
not, where for each user a match may occur only with a probability
less than one.

Consider part (ii). Define xI = x and xE = y. The case where xy =
0 < x2 + y2 is easy; the platform k having xk > 0 will announce
pk2 = xk(1 + ρ) and get all side-2 users on board. Now, suppose that
x, y > 0, and note that by assumption side-1 users must single-home,
so that we have z = 0 once again. Given that x, y > 0 = z, can it be an
equilibrium where side-2 users single-home? The answer is negative: if
side-2 users do not register for platform k, then platform k can always
announce 0 < pk2 < xk(1 + ρ) to get side-2 users on board and raise its
own payoff. Now, observe that side-2 users’ valuation for platform k,
given that they will also join the other platform, is (xk− z)(1 +ρ), and
hence platform k will price at pk2 = (xk − z)(1 + ρ) if expecting side-2
users to also join the other platform. We conclude that the equilibrium
prices are pI2 = x(1 + ρ) and pE2 = y(1 + ρ) and side-2 users will all
multi-home whenever x, y > 0.

Now, return to the stage where the two platforms are about to make
offers to side-1 users. Rationally expecting side-2 users to multi-home
whenever x, y > 0, side-1 users are confident that a match will occur
with probability one no matter which platform they register for. Thus
a side-1 user will join the platform k offering the lower pk1, regardless
of what his side-1 fellow users will do. That is, xI = 0 if pI1 > pE1 and
xE = 0 if pI1 < pE1 . For k, h ∈ {I, E}, k 6= h, platform k’s payoff from
serving users from both sides is therefore xk(p

k
1 + 1 + ρ) if pk1 < ph1 and

zero if pk1 > ph1 . This leads to the equilibrium outcome of pI1 = pE1 = 0,
and facing these registration fees, side-1 users simply joint a platform at
random. To sum up, in equilibrium the multi-homing side is facing high
registration fees and left with no surplus, while the single-homing side
is offered with free access. A platform’s expected equilibrium payoff is
1
2
(1 + ρ).9

9This exercise is adapted from King, S., 2013, Two-sided Markets, Australia Economic
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Remark. When one side of users single-home, competition for those
users will result in a winning platform, which exclusively gains the
positive externality associated with those single-homing users. This
fight for the positive externality intensifies competition, and can result
in zero prices. When one side of users multi-home, multiple platforms
can gain the positive externality associated with those multi-homing
users at the same time, and this tends to mute the competition for those
multi-homing users. These observations were first made in Armstrong
(2006),10 where the author wrote (pp. 669-670):

· · · platforms have monopoly power over providing access to their single-
homing customers for the multi-homing side. This monopoly power
naturally leads to high prices being charged to the multi-homing side.
· · · By contrast, platforms do have to compete for the single-homing
users, and high profits generated from the multi-homing side are to a
large extent passed on to the single-homing side in the form of low (or
even zero) prices.

3. (Competitive Manufacturers May Make More Profits with
Non-integrated Distribution Channels.) Recall the Cournot game
in Example 1 of Lecture 1, Part I. Assume that c = F = 0 and the
inverse demand in the relevant range is

P (Q) = 1−Q, 0 ≤ Q = q1 + q2 ≤ 1.

(i) Find the equilibrium profits for the two firms.
(ii) Now suppose that the two manufacturing firms cannot sell their
products to consumers directly. Instead, firm i (also referred to as
manufacturer i) must first sell its product to retailer Ri. Then retailers
R1 and R2 then compete in the Cournot game. The extensive game is
now as follows.

• The two firms first announce F1 and F2 simultaneously, where Fi
is the franchise fee that firm i will charge retailer i, which is a
fixed cost of retailer i. R1 and R2 simultaneously decide to or not

Review, 46, 2, 247-258.
10Armstrong, M., 2006, Competition in Two-sided Markets, Rand Journal of Economics,

37, 3, 668-691.
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to turn down the offers made by the firms. Assume that firm i
and retailer Ri both get zero payoffs if Fi gets turned down by
retailer Ri.

• Then, after knowing whether F1 and F2 get accepted by respec-
tively R1 and R2, the two firms announce w1 and w2 simultane-
ously, where wi is the unit whole price that firm i will charge
retailer i.

• Next, in case the firms’ offers are both accepted, then given (F1, F2, w1, w2),
the two retailers simultaneously choose q1 and q2.

Show that in the unique subgame-perfect Nash equilibrium (SPNE)
each manufacturing firm gets a profit of 10

81
. (Hint: Backward induc-

tion asks you to always start from the last-stage problem, which is the
Nash equilibrium of the subgame where R1 and R2 play the Cournot
game given some (F1, F2, w1, w2). You can show that the equilibrium
(q∗1, q

∗
2) depend on (w1, w2) but not on (F1, F2), because the latter are

fixed costs. Then, you should move backwards to consider the two
manufacturers’ competition in choosing w1 and w2, given some (F1, F2).
Here assume that the two manufacturers know that different choices of
w1 and w2 will subsequently affect R1’s and R2’s choices of q1 and q2.
Finally, you can move to the first-stage of the game, where the two

14



firms simultaneously choose F1 and F2.)
11 12 13 14

Solution. Let us solve the SPNE using backward induction. First
consider the subgame where (F1, F2, w1, w2) are given, and the two
retailers are about to choose q1 and q2. Retailer i, given qj, seeks to

max
qi

ΠR
i (qi, qj;wi, Fi) ≡ qi(1− qi − qj − wi)− Fi.

The first-order condition gives retailer i’s reaction function

ri(qj;wi) =
1− qj − wi

2
, ∀i, j ∈ {1, 2}, i 6= j.

Thus there is a unique NE in this subgame, which is15

11This exercise intends to show why employing independent retailers may be a good idea
even if using a firm’s own outlets can be cheaper. Essentially, employing an independent
retailer amounts to delegating the retailer the choice of output, knowing that the retailer,
unlike the manufacturer, will be choosing output given a positive unit cost wi! A higher
unit cost credibly convinces the rival retailer that less output will be produced, and with
both manufacturers producing less outputs, their profits become higher.

12That the two firms are able to first offer F1 and F2 and subsequently choose w1 and
w2 is important in this game. If instead the two manufacturers must offer (F1, w1) and
(F2, w2) to R1 and R2 at the first stage of the game, then given wj , firm i would choose
wi = 0!

13We have assumed that the two firms have homogeneous products and the demand is
linear. When the two firms’ products are differentiated or when the demand functions
are not linear, raising the equilibrium product prices by using an independent retailer
may reduce a manufacturer’s sales volume by too much and hence may or may not be a
good idea; see Patrick Rey and Joseph Stiglitz, 1995, The Role of Exclusive Territories
in Producers’ Competition, Rand Journal of Economics, 26, 431-451. See also T. W.
McGuire and R. Staelin, 1983, An Industry Equilibrium Analysis of Downstream Vertical
Integration, Marketing Science, 2, 161-191.

14Note that if a manufacturer i sells through more than one retailer in a small district,
then intra-brand competition between these retailers will lead to the Bertrand outcome
where all retailers hired by manufacturer i offer wi as the retail price—the distribution
channel of manufacturer i is essentially vertically integrated! This highlights the im-
portance of assuming that each manufacturer hires exactly ONE independent retailer (a
practice referred to as exclusive territory) in this exercise.

15Why does q∗i increase with wj? Again, this results from the fact that q1 and q2 are
strategic substitutes. A higher wj means that retailer j is faced with a higher unit cost,
and hence qj ought to be lower, which then implies that retailer i should optimally respond
by choosing a higher qi.
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(q∗1(w1, w2), q
∗
2(w1, w2)) = (

1− 2w1 + w2

3
,
1 + w1 − 2w2

3
).

Correspondingly, the two retailers’ profits are

ΠR
1 (q∗1(w1, w2), q

∗
2(w1, w2);w1, F1) =

(1− 2w1 + w2)
2

9
− F1

and

ΠR
2 (q∗2(w1, w2), q

∗
1(w1, w2);w2, F2) =

(1− 2w2 + w1)
2

9
− F2.

Now, consider the stage where (F1, F2) are given and the two manufac-
turers are about to choose w1 and w2. Manufacturer i, given wj, seeks
to

max
wi

Fi + wiq
∗
i (wi, wj), ∀i, j ∈ {1, 2}, i 6= j.

The first-order condition gives

wi =
1 + wj

4
, ∀i, j ∈ {1, 2}, i 6= j.

Note that w1 and w2 are indeed strategic complements!16 Thus there
is a unique NE in this subgame where the two manufacturers both set
the unit wholesale price at 1

3
:

w∗1 = w∗2 =
1

3
.

In this equilibrium, for i = 1, 2, manufacturer i’s profit is

Fi +
6

81
.

16When manufacturer i expects manufacturer j to choose a higher wj , it realizes that,
keeping its choice wi unchanged, subsequently the two retailers will choose higher q∗i and
lower q∗j , which marginally encourages manufacturer i to raise wi in the first place: the
drawback of raising wi is that it leads to a lower q∗i , and hence it is less costly to do this
when q∗i rises because of a higher wj ! This explains strategic complementarity between wi
and wj .
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The correspondingly profits of the two retailers are

ΠR
1 (q∗1(

1

3
,
1

3
), q∗2(

1

3
,
1

3
);

1

3
, F1) =

4

81
− F1

and

ΠR
2 (q∗2(

1

3
,
1

3
), q∗1(

1

3
,
1

3
);

1

3
, F2) =

4

81
− F2.

Now, consider the stage where the two manufacturers are about to
choose F1 and F2. Manufacturer i’s problem is

max
Fi

Fi +
6

81

subject to

ΠR
i (q∗i (

1

3
,
1

3
), q∗j (

1

3
,
1

3
);

1

3
, Fi) =

4

81
− Fi ≥ 0.

There is a unique SPNE in this game where F1 = F2 = 4
81

, and hence
the two manufacturers’ equilibrium profits are both 10

81
.

Remark. We must emphasize here the role of the timing of the game.
That the two firms are able to first offer F1 and F2 to respectively R1
and R2 and then to subsequently choose w1 and w2 is important to the
above result. If instead the two manufacturers must offer (F1, w1) and
(F2, w2) to R1 and R2 at the first stage of the game, then given wj,
firm i would like to choose wi = 0, because a zero unit wholesale price
can serve as a commitment that convinces Rj that Ri would produce
more given any quantity qj (or, simply, Ri’s reaction function will be
shifted upwards).17

17In this case, given (Fj , wj), manufacturer i seeks to

max
(Fi,wi)

Fi + wiq
∗
i (wi, wj),

subject to
q∗i (1− q∗i − q∗j − wi)− Fi ≥ 0.

Optimality requires that the latter constraint be binding, and hence

Fi = q∗i (1− q∗i − q∗j − wi),
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This commitment is valuable, because output choices are strategic sub-
stitutes, which implies that Rj will reduce output qj if Rj believes that
it is faced with a more aggressive reaction function. Consequently,
choosing wi = 0 can raise Ri’s profit, which in turn implies that, man-
ufacturer i in offering wi = 0, can choose a higher Fi to extract Ri’s
profit.

In the current setting, however, given that F1 and F2 were offered and
accepted in the preceding stage, the two firms in choosing w1 and w2

would never choose a zero unit wholesale price, because a zero whole-
sale price would result in no additional income for the manufacturer.
Indeed, at this stage, as we have shown, regardless of F1 and F2, the
two firms choose w1 = w2 > 0. Retailer Ri can infer this fact (as we
do) when it must decide whether to accept Fi. This explains why in
equilibrium the two manufacturers are able to set F1 = F2 = 4

81
.

Note that when a single manufacturer chooses a positive unit wholesale
price, it induces its downstream retailer to reduce output (because the
unit wholesale price is the retailer’s unit cost, and a higher unit cost
leads to a lower output choice), which, by the fact that output choices
are strategic substitutes, in turn encourages the other retailer to expand
output, which hurts the manufacturer’s downstream retailer. However,
with both manufacturers offering positive unit wholesale prices, the net

or equivalently, manufacturer i seeks to

max
wi≥0

q∗i (1− q∗i − q∗j ) ≡ H(wi;wj) =
1

9
(1− 2wi + wj)(1 + wi + wj),

where the new objective function is simply the profit function facing an otherwise-identical
vertically integrated channel (that is, the firm that is both manufacturer i and Ri). Since
q∗i and q∗j are respectively decreasing and increasing in wi, it is easy to verify that this
new objective function is decreasing in wi given wj , and hence we obtain a corner solution
wi = 0. Indeed, direct differentiation yields

∂H

∂wi
=

1

9
(−4wi − wj − 1) < 0,⇒ w∗

i = 0.

The same argument applies to manufacturer j as well, and hence when the two manu-
facturers must offer (F1, w1) and (F2, w2) to R1 and R2 at the first stage of the game,
the latter two retailers behave just like firms 1 and 2 in Example 1 in Lecture 1, Part
I (with zero production costs). As can be easily checked, in the current situation, with
w1 = w2 = 0, the two retailers will choose q∗1 = q∗2 = 1

3 .
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effect of positive wholesale prices is to induce both retailers to select an
output level that is lower than the output level that the two manufac-
turers would choose in the absence of independent retailers (or, in the
case of vertically integrated distribution channels). This lower output
level then leads to a higher equilibrium retail price, which raises the
sum of the manufacturer’s and the retailer’s profits in each distribution
channel. The sum of profits of the manufacturer and the retailer co-
incides with the manufacturer’s equilibrium profit in the current case,
because by assumption the manufacturer can offer a two-part tariff to
its downstream dealer, leaving the latter with a zero profit.

4. (Entry Deterrence by a Monopolistic Incumbent.) Consider
the following extensive game in which firms A and B may compete in
quantity at date 1 and date 2. Both firms seek to maximize the sum
of expected date-1 and date-2 profits. The inverse demand at date
t ∈ {1, 2}, in the relevant region, is Pt = 1−Qt, where Pt is the date-t
product price and Qt = qAt + qBt is the sum of the two firms’ supply
quantities at date t. Assume that there are no production costs for the
two firms.

• At date 1, originally firm A is the only firm in the industry. Firm
A must first choose qA1. Upon seeing firm A’s choice qA1, firm B
must decide whether to spend a cost K > 0 to enter the industry.
If K is spent, then B must choose qB1. Then the two firms’ date-1
profits πA1 and πB1 are realized, where πB1 = 0 if firm B decides
not to enter the industry.

• At date 2, if firm B did not enter at date 1, then firm A, the
monopolistic firm in the industry, must choose qA2. If, on the
other hand, firm B has entered at date 1, then the two firms choose
quantities qA2 and qB2 simultaneously. Then, the two firms’ date-2
profits πA2 and πB2 are realized, where πB2 = 0 if firm B did not
enter the industry at date 1.

Now we solve for the subgame perfect Nash equilibrium for this game.
(i) Suppose that K = 1

5
. Find the equilibrium qA1 and qA2.

(ii) Suppose that K = 1
9

+ 1
25

. Find the equilibrium qA1 and qA2.
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(iii) Suppose that K = 1
25

. Find the equilibrium qA1 and qA2.
18

Solution. Let us solve the game by backward induction. Consider
the subgame at date 2.

• If both firms exist, it is easy to show (or recall from Lecture 1,
part I) that qA2 = qB2 = 1

3
= P2, and the corresponding date-2

profit is 1
9

for each firm.

• If only firm A exists at date 2, then it will get the monopoly profit
1
4

by producing qA2 = 1
2

= P2.

Now, move backwards to consider the date-1 subgame where qA1 has
been chosen, and firm B has spent K. In this case, firm B’s optimal
supply quantity is 1−qA1

2
; recall Lecture 1, part I. This implies that firm

B’s profit over the two dates is

−K +
(1− qA1)2

4
+

1

9
.

Next, consider the date-1 subgame where qA1 has been chosen, and firm
B is about to decide whether to spend K. From the preceding analysis,
we know that firm B’s optimal decision is as follows: spending K if and
only if

K <
(1− qA1)2

4
+

1

9
.

Note that we have assumed that firm B will stay out if entering does
not generate a positive profit for it.

Now, we can finally consider firm A’s choice of qA1.

18This exercise explains why a monopolistic firm may not always produce the monopoly
output stated in an economics textbook. If firm A insists on producing the monopoly
output 1

2 at date 1, it may induce entry, which would destroy its monopolistic status
at date 2. In part (ii), for example, the monopolistic firm may optimally produce more
than 1

2 in order to deter entry. In this sense, even a monopolistic firm has potential
competitors, and the presence of potential competitors is enough to force the monopolistic
firm to produce more, so that its output choice may get closer to the socially efficient
output level. For a formal analysis, see Dixit, A., 1980, The role of investment in entry
deterrence, Economic Journal, 90, 95-106.

20



• If qA1 is such that

K ≥ (1− qA1)2

4
+

1

9
,

then firm B will not enter at date 1, and hence firm A’s profit over
the two dates is

qA1(1− qA1) +
1

4
.

• If qA1 is such that

K <
(1− qA1)2

4
+

1

9
,

then firm B will enter at date 1, and hence firm A’s profit over
the two dates becomes

qA1 ×
1− qA1

2
+

1

9
.

Note that in either of the two cases considered above, in the absence
of the constraint involving K, firm A’s unconstrained optimal date-1
supply quantity must maximize qA1(1−qA1); that is, the unconstrained
optimal supply quantity is 1

2
, which is the optimal supply quantity for

a monopolistic firm.

Thus we can summarize firm A’s optimal date-1 output policy as fol-
lows.

(a) If

K ≥
(1− 1

2
)2

4
+

1

9
=

1

16
+

1

9
,

then firm B would not enter when firm A chooses its unconstrained
optimal supply quantity qA1 = 1

2
. Thus it is indeed optimal for

firm A to choose qA1 = 1
2
, and it follows that qA2 = 1

2
also. In this

case we say that firm A’s date-1 output policy blocks the entry of
firm B.

(b) If

K <
(1− 1)2

4
+

1

9
=

1

9
,
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then firm B will still enter even if firm A chooses qA1 = 1 (which
minmaxes firm B at date 1), and in this case firm A’s optimal date-
1 output strategy is qA1 = 1

2
, which leads to qB1 = 1−qA1

2
= 1

4
, so

that firm A’s profit over the two dates is qA1×P1 + 1
9

= 1
8

+ 1
9
. In

this case we say that firm A’s date-1 output policy accomodates
the entry of firm B.

(c) If
1

16
+

1

9
> K ≥ 1

9
,

then firm B will enter if and only if K < (1−qA1)
2

4
+ 1

9
, where note

that the right-hand side is strictly decreasing in qA1 for qA1 ∈ [0, 1].
Thus firm A’s date-1 output qA1 determines whether firm B will
enter, and the higher qA1 is, the less likely that the constraint

K < (1−qA1)
2

4
+ 1

9
may hold. We say in this case that firm A’s

date-1 output policy deters the entry of firm B, if firm B does not
enter in equilibrium. Firm A’s optimal date-1 output that results
in firm B entering the industry has been solved above, which is
qA1 = 1

2
, and firm A’s payoff from accomodating the entry is

correspondingly 1
8

+ 1
9
. On the other hand, firm A’s optimal date-

1 output that induces firm B to not enter can be obtained by
solving the following maximization program:

(P) max
qA1∈[0,1]

qA1(1− qA1) +
1

4

subject to

K ≥ (1− qA1)2

4
+

1

9
,

and at optimum the above constraint must be binding: if not, then
the optimal qA1 would equal 1

2
, which, by the fact that K < 1

16
+ 1

9
,

would induce rather than deter B’s entry. Thus firm A’s optimal
date-1 output is

q∗A1 = 1−
√

4(K − 1

9
) ∈ (

1

2
, 1].

We claim that, indeed, choosing this entry-deterring output is
better than choosing qA1 = 1

2
to accomodate entry. To see this,
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recall that by accomodating firm A’s payoff is 1
8

+ 1
9
, which is less

than 1
4
, the payoff that firm A would obtain by choosing qA1 = 1

to deter B’s entry. Note that the date-1 output choice qA1 = 1 is
feasible but is generally suboptimal; it is optimal (i.e., q∗A1 = 1)
only when K = 1

9
. Thus we conclude that choosing q∗A1 to deter

entry at date 1 is indeed the optimal strategy for firm A given
that 1

16
+ 1

9
> K ≥ 1

9
.

To sum up, our solutions for parts (i)-(iii) are as follows.

• (i) For K = 1
5

= 25
125

> 25
144

= 1
16

+ 1
9
, entry is blocked, and we have

qA1 = qA2 = 1
2
.

• (ii) For K = 1
9

+ 1
25

, which lies between 1
9

and 1
16

+ 1
9
, entry is

deterred, and qA1 = 3
5

and qA2 = 1
2
.

• (iii) For K = 1
25
< 1

9
, entry can only be accomodated, and hence

qA1 = 1
2

and qA2 = 1
3
.

This exercise explains why a monopolistic firm may not always produce
the monopoly output stated in an economics textbook. Observationally
firm A is a monopolistic firm at date 2, but this could be a consequence
of its non-monopolistic output choice q∗A1: if it insists on producing
the monopoly output 1

2
, it may induce entry at date 1, which would

destroy its monopolistic status at date 2. In part (ii), for example, the
monopolistic firm must produce at 3

5
> 1

2
in order to deter entry. In

this sense, even a monopolistic firm has potential competitors, and the
presence of potential competitors is enough to force the monopolistic
firm to produce more, so that its output choice may get closer to the
socially efficient output level. See the formal analysis in Dixit, A.,
1980, The role of investment in entry deterrence, Economic Journal,
90, 95-106.

5. (Signal Jamming and Cournot Competition) Consider firms 1
and 2 that engage in Cournot competition at t = 1 and t = 2, fac-
ing random demand functions at both periods. The inverse demand
function at t = 1 is

p̃1 = ã− q1 − q2,
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where ã is a positive random variable with E[ã] = 1 and qj is firm j’s
output level at t = 1. The inverse demand function at t = 2 is

p̃2 = b̃−Q1 −Q2,

where b̃ is a positive random variable and Qj is firm j’s output level
at t = 2. Each firm seeks to maximize the sum of expected profits
over the two periods. That is, both firms are risk-neutral without time
preferences.

The game proceeds as follows.

• At the beginning of t = 1, both firms must simultaneously make
output choices q1 and q2 without seeing the realization of ã.

• At the beginning of t = 2, after knowing qj and the realization p1
of p̃1, firm j must choose Qj. The two firms make output choices
at the same time, without seeing the realization of either ã or b̃.
At this time, firm j does not see qi that was chosen by its rival,
firm i.

(i) First assume that b̃ and ã are independently and identically dis-
tributed. Solve the equilibrium output choices (q∗1, q

∗
2, Q

∗
1, Q

∗
2) in the

unique SPNE.

(ii) Ignore part (i). Now assume instead that b̃ = λã, where λ < 2 is a
constant known to both firms. Solve the unique symmetric SPNE.19

19Comparing part (i) to part (ii), we see that both firms make lower expected profits at
date 1 in part (ii). This happens because in part (ii) firms cannot resist the temptation
of expanding outputs as means of manipulating their rivals’ beliefs about the realization
of ã. By secretly expanding its output qi, firm i wants to make its rival j believe in a
lower realization of ã, which implies a lower demand (whose intercept is λã) at date 2,
and if firm i succeeds in making its rival believe in a lower date-2 demand, then it can
benefit from choosing a higher date-2 output Qi given that its rival will on average choose
a lower output Qj . In equilibrium this incentive is correctly recognized by its rival j, but
the incentive to manipulate a rival’s beliefs still changes the two firms’ date-1 profits.
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(iii) Do the two firms get higher date-1 expected profits in part (ii) or
in part (i)? Why?

(iv) Suppose that λ = 1. Do the two firms get higher date-2 expected

25



profits in part (ii) or in part (i)? Why?20

20Hint: Verify that (q∗1 , q
∗
2 , Q

∗
1, Q

∗
2) = ( 1

3 ,
1
3 ,

1
3 ,

1
3 ) in part (i). For part (ii), let

(q∗, Q∗(p1, q)) denote the unique symmetric SPNE, where both firms choose q∗ at t = 1,
and both choose Q∗(p1, q) after choosing q at t = 1 and subsequently learning that the
realization of p̃1 is p1. Then in equilibrium, p̃1 = ã−2q∗, or ã = p̃1+2q∗. At the beginning
of t = 2, given the realization p1 of p̃1 and its own output choice qi at t = 1, and given that
firm j does not deviate from its equilibrium strategy, firm i knows that ã = p1 + qi + q∗.
Moreover, firm i knows that that firm j would believe that ã = p1 + 2q∗ and seek to
maximize

max
Q

[λ(p1 + 2q∗)−Q∗(p1, q
∗)−Q]Q,

where note that firm j does not know firm i has chosen qi rather than q∗. That is, firm i
believes that firm j would choose the Q that satisfies

Q =
λ(p1 + 2q∗)−Q∗(p1, q

∗)

2
,

which has to be Q∗(p1, q
∗) also. Hence firm i believes that firm j would choose

Q∗(p1, q
∗) =

λ(p1 + 2q∗)

3
.

Firm i, knowing that it has chosen qi rather than q∗ at t = 1, seeks to maximize the
following date-2 profit:

max
Q

[λ(p1 + qi + q∗)−Q∗(p1, q
∗)−Q]Q,

so that given (p1, qi), firm i’s optimal date-2 output level is

Qi =
λ(p1 + qi + q∗)− λ(p1+2q∗)

3

2
,

which yields for firm i the following date-2 profit

1

4
[
2λp1

3
+
λq∗

3
+ λqi]

2.

At t = 1, expecting firm j to choose q∗, firm i seeks to

max
qi

[1− qi − q∗]qi +
1

4
E[(

2λp̃1
3

+
λq∗

3
+ λqi)

2],

which is concave in qi because λ < 2. Show that the optimal qi must satisfy the first-order
condition for this maximization problem; that is,

1− q∗ − 2qi +
λ

6
(
2λE[p̃1]

3
+
λq∗

3
+ λqi) = 0,

or using E[p̃1] = 1− qi − q∗, and qi = q∗ in equilibrium, show that

q∗ =
1

3
+
λ2

27
.

Show that then Q∗(p1, q
∗) = λã

3 .
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Solution. Consider part (i). Since b̃ and ã are independent, the two
firms do not care about their date-2 decisions Q1 and Q2 when they
engage in the date-1 Cournot competition. Being risk-neutral, given
qj, firm i seeks to

max
qi

qi(E[ã]− qi − qj) = qi(1− qi − qj),

so that this game has the same equilibrium as the Cournot game pre-
sented in Example 1 of Lecture 1, Part I. That is, in equilibrium ,

q∗1 = q∗2 =
1

3
.

Similarly, at date 2, given Qj, firm i seeks to

max
Qi

Qi(E[b̃]−Qi −Qj) = Qi(1−Qi −Qj),

so that this game also has the same equilibrium as the Cournot game
presented in section 11 of Lecture 1, Part I. That is, in equilibrium ,

Q∗1 = Q∗2 =
1

3
.

This finishes part (i).

Now, for part (ii), let (q∗, Q∗(p1, q)) denote the unique symmetric SPNE,
where both firms choose q∗ at t = 1, and both choose Q∗(p1, q) after
choosing q at t = 1 and subsequently learning that the realization of p̃1
is p1. Then in equilibrium, p̃1 = ã− 2q∗, or ã = p̃1 + 2q∗. At the begin-
ning of t = 2, given the realization p1 of p̃1 and its own output choice
qi at t = 1, and given that firm j does not deviate from its equilibrium
strategy, firm i knows that ã = p1 + qi + q∗. Moreover, firm i knows
that that firm j would believe that ã = p1 + 2q∗ and seek to maximize

max
Q

[λ(p1 + 2q∗)−Q∗(p1, q∗)−Q]Q,
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where note that firm j does not know firm i has chosen qi rather than
q∗. That is, firm i believes that firm j would choose the Q that satisfies

Q =
λ(p1 + 2q∗)−Q∗(p1, q∗)

2
,

which has to be Q∗(p1, q
∗) also. Hence firm i believes that firm j would

choose

Q∗(p1, q
∗) =

λ(p1 + 2q∗)

3
.

Firm i, knowing that it has chosen qi rather than q∗ at t = 1, seeks to
maximize the following date-2 profit:

max
Q

[λ(p1 + qi + q∗)−Q∗(p1, q∗)−Q]Q,

so that given (p1, qi), firm i’s optimal date-2 output level is

Qi =
λ(p1 + qi + q∗)− λ(p1+2q∗)

3

2
,

which yields for firm i the following date-2 profit

1

4
[
2λp1

3
+
λq∗

3
+ λqi]

2.

At t = 1, expecting firm j to choose q∗, firm i seeks to

max
qi

[1− qi − q∗]qi +
1

4
E[(

2λp̃1
3

+
λq∗

3
+ λqi)

2],

which is concave in qi because λ < 2. It follows that the optimal qi
must satisfy the first-order condition for this maximization problem;
that is,

1− q∗ − 2qi +
λ

6
(
2λE[p̃1]

3
+
λq∗

3
+ λqi) = 0,

or using E[p̃1] = 1− qi − q∗, and qi = q∗ in equilibrium, we have

q∗ =
1

3
+
λ2

27
.

It follows that Q∗(p1, q
∗) = λã

3
.
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Now, consider part (iii). Comparing part (i) to part (ii), we see that
both firms make lower expected profits at date 1 in part (ii). This
happens because in part (ii) firms cannot resist the temptation of ex-
panding outputs as means of manipulating their rivals’ beliefs about
the realization of ã. By secretly expanding its output qi, firm i wants
to make its rival j believe in a lower realization of ã, which implies
a lower demand (whose intercept is λã) at date 2, and if firm i suc-
ceeds in making its rival believe in a lower date-2 demand, then it can
benefit from choosing a higher date-2 output Qi given that its rival
will on average choose a lower output Qj. In equilibrium this incentive
is correctly recognized by its rival j, but the incentive to engage in
signal-jamming still changes the two firms’ date-1 profits. Both firms
are worse off in part (ii), because of a lower product price resulting
from output expansion (q∗ > 1

3
).

Finally, consider part (iv). Note that in part (ii)

E[Q∗(p1, q
∗)] =

λE[ã]

3
=
E[ã]

3
=

1

3
,

where recall that 1
3

is the two firms’ date-2 output choice in part (i).
Signal-jamming does not fool any player in equilibrium (that is, both
firms can infer correctly the realized ã from the realized date-1 price),
but in part (ii), since ã = b̃, the two firms’ common date-2 output
choice depends on the realization of ã. This is in sharp contrast with
part (i), where ã and b̃ are independent, so that the firms’ date-2 output
choices can never depend on the realized ã. Now, since in part (ii)
each firm’s date-2 expected profit is a convex function of its date-2
output Q∗(p1, q

∗), and since Q∗(p1, q
∗) is a mean-preserving spread of

the firms’ date-2 output choice (which is 1
3
) in part (i), the two firms

actually obtain higher expected date-2 profits in part (ii) than in part
(i). Indeed, each firm gets the following expected date-2 profit in part
(i),

1

3
(E[b̃]− 1

3
− 1

3
) =

1

9
,

but in part (ii) its expected date-2 profit becomes

E[
ã

3
(ã− ã

3
− ã

3
)] =

E[ã2]

9
>

(E[ã])2

9
=

1

9
,
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where the inequality follows from Jensen’s inequality and the fact that
the function h(z) = z2 is strictly convex. Thus the two firms make
higher expected date-2 profits in part (ii) than in part (i).
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