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1. (Bayesian Equilibrium) Two workers can each choose to or not to
make an effort for their joint project. The project generates one unit of
utility to each worker if at least one worker chooses to make the effort.
Making effort incurs a disutility ci to worker i, where ci is worker i’s pri-
vate information, and worker j believes that ci is uniformly distributed
over [0, 2]. Ex-ante it is common knowledge that c1 and c2 are inde-
pendent random variables. Find a symmetric pure-strategy Bayesian
equilibrium.1

Solution. Suppose that such a pure-strategy BE exists, and that
given worker j’s equilibrium strategy, a type ci chooses to make the
effort in equilibrium and obtain the equilibrium payoff

1− ci ≥ πi,d,

where πi,d stands for the deviation payoff that the type ci would obtain
if he chose to make no effort; note that πi,d is independent of worker i’s
type ci. We claim that a type c′i must also choose to make the effort in
equilibrium, if c′i < ci. To see this, simply note that

1− c′i > 1− ci ≥ πi,d.

On the other hand, if a type c′′i chooses to make no effort in equilibrium;
i.e., if

1− c′′i < πi,d,

then a type c′′′i must also choose to make no effort if c′′′i > c′′i . It follows
that given worker j’s equilibrium strategy, there must exist some c∗i such

1Hint: There should be a cut-off level of ci, say c∗i , such that a type-ci chooses to make
an effort if and only if ci ≤ c∗i .
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that a type ci makes the effort if and only if ci ≤ c∗i . The argument
applies to worker j as well.

The above argument suggests that the type c∗i must feel indifferent
about making and not making the effort, given worker j’s strategy.
That is, we must have

1− c∗i =
∫ c∗j

0
1 · 1

2
dcj +

∫ 2

c∗j

0 · 1

2
dcj

⇒ 1− c∗i =
c∗j
2
.

It follows that

1− c∗1 =
c∗2
2

=
1− c∗1

2

2
⇒ c∗1 =

2

3
= c∗2.

Thus this game has a symmetric pure-strategy BE in which, for i = 1, 2,
worker i makes an effort if and only if ci ≤ 2

3
.

Note that to fulfill productive efficiency we should have exactly one
worker making the effort in equilibrium. Thus the equilibrium ineffi-
ciency takes place in two manners. First, with probability

∫ 2
3

0

1

2
dc1 ×

∫ 2
3

0

1

2
dc2 =

1

9

both workers make the effort; one worker’s effort is totally redundant
in this event. Second, with probability

∫ 2

2
3

1

2
dc1 ×

∫ 2

2
3

1

2
dc2 =

4

9

none of the workers make the effort, when each worker i has ci < 1+1 =
2.
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2. In the following two signaling games, player 1 is equally likely to be of
type t1 and type t2, and can send signal m1 or m2 or m3, and player 2
can respond by taking action a1 or a2 or a3. The three tables indicate
their payoffs following each of the 3 signals sent by player 1.

• There is a separating PBE for the following game, where m3 is
not an equilibrium signal. Find this PBE. Is this PBE an intu-
itive equilibrium?

m1 a1 a2 a3
t1 (1, 0) (4, 3) (2, 4)
t2 (10, 5) (4, 4) (4, 1)

m2 a1 a2 a3
t1 (2, 2) (6, 0) (8, 1)
t2 (2, 2) (2, 3) (6, 2)

m3 a1 a2 a3
t1 (6, 1) (4,−2) (1, 2)
t2 (6, 2) (2, 3) (0,−1)

• There is a pooling PBE for the game below, where player 1’s equi-
librium signal is not m1. Find this PBE. Is this PBE an intuitive
equilibrium?

m1 a1 a2 a3
t1 (8, 0) (4, 3) (2, 4)
t2 (10, 5) (4, 4) (4, 1)

m2 a1 a2 a3
t1 (2, 2) (6, 0) (8, 1)
t2 (2, 2) (2, 3) (6, 2)

m3 a1 a2 a3
t1 (6, 1) (4,−2) (2, 2)
t2 (6, 2) (2, 3) (0,−1)

Solution. According to the hint, in the separating PBE either the
type-tj player 1 sends mj, j = 1, 2, or the type-tj player 1 sends m3−j,
j = 1, 2.

Suppose that the former is the case. Then upon seeing m2, player 2
belives that player 1 is of type t2, and hence player 2 must respond
by choosing a2, yielding a payoff of 2 for the type-t2 player 1, who
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can however ensure himself a payoff of at least 4 by sending signal m1

instead. This is a contradiction.

Thus suppose that the latter is the case. Then upon seeing m2, player
2 belives that player 1 is of type t1, and hence player 2 must respond
by choosing a1, yielding a payoff of 2 for the type-t1 player 1. Upon
seeing m1, player 2 belives that player 1 is of type t2, and hence player
2 must respond by choosing a1, yielding a payoff of 10 for the type-
t2 player 1. It is clear that this type of player 1 would never deviate
unilaterally by sending m2 or m3. What about the type-t1 player 1?
By sending m1, he will be regarded as type t2 for sure, and player 2
will choose a1 accordingly, which yields only a payoff of 1 for him. If
he sends m3, player 2 must respond by choosing a3 in order to sustain
the separating PBE, and for a3 to be player 2’s best response, player
2 must believe that the signal-sender is of type t1 with a probability
exceeding 3

4
. Hence we have verified that these beliefs and strategies

indeed constitute a separating PBE.

Finally, to see that the separating PBE is intuitive, note that only
m3 is an off-equilibrium signal, and hence seeing m3 is the only zero-
probability event relevant in Cho-Kreps refinement. Intuition suggests
that the type-t2 player 1 should not have sent m3, after player 2 receives
m3, because no matter what action player 2 will take after seeing m3,
the type-t2 player 1 would get a payoff strictly less than 10, where 10 is
his equilibrium payoff. But if player 2 believes for sure that it was the
type-t1 player 1 that has sent m3, then player 2’s best response would
be a3, which yields a deviation payoff of 1 for the type-t1 player 1, so
that this type would never deviate in the first place. To sum up, the
separating PBE is intuitive.

3. In the following dynamic game with incomplete information, player 1
has two equally likely types, denoted by t1 and t2, and given his type,
the informed player 1 must choose either strategic game A or strategic
game B. After observing player 1’s choice, the informed player 1 and
the uninformed player 2 must simultaneously take actions in the chosen
strategic game. In each strategic game, player 1 can choose either U
or D, and player 2 can choose either L or R. The resulting payoff x for
the type-t1 player 1, y for the type-t2 player 1, and z for player 2, are
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written as a row vector (x, y, z). The following two tables summarize
the players’ type-and-action-contingent payoffs. For example, if player
1 chooses game A and then action U, and if player 2 chooses action L
in game A, then x = 2, y = 1, and z = 3.

Strategic Game A

L R
U (2, 1, 3) (1, 2, 5)
D (1, 2, 0) (0, 12, 10)

Strategic Game B

L R
U (3

2
, 21, 3) (3

4
, 2, 1)

D (0, 0, 0) (0, 10, 4)

We shall only consider PBEs in which players use pure strategies in
each and every subgame. For supporting beliefs, let us define µA ≡
prob(t1|A) and µB ≡ prob(t1|B), where A and B stand for “strategic
game A” and “strategic game B” respectively.
(i) Find all separating and pooling PBEs of this game.2

(ii) For each PBE obtained in part (i), determine whether it is a Cho-
Kreps intuitive equilibrium or not.3

2Hint: For each PBE, you must write down explicitly player 1’s and player 2’s strate-
gies, together with µA and µB . In particular, for player 1’s strategy, you must state
clearly  t1 → (A,U) or (A,D) or (B,U) or (B,D)

t2 → (A,U) or (A,D) or (B,U) or (B,D)

 ,

and for player 2’s strategy, you must state clearly A→ L or R

B → L or R

 .

3Hint: For part (i), show that this game has two pooling but no separating equilibria;
and for part (ii), show that both pooling PBEs are intuitive.
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Solution. For part (i), we can show that this game has two pooling
but no separating equilibria. For part (ii), we can show that both
pooling PBEs are intuitive. Now we give details.

At first, there is a pooling PBE where player 1’s strategy is

 t1 → (A,U)

t2 → (A,D)

 ,
and player 2’s strategy is

 A→ R

B → R

 ,
and where

µA =
1

2
, µB ≤

2

3
.

This PBE is intuitive, because by sending the off-the-equilibrium signal
B, (1) type-t1 may get 3

2
(if player 2 is willing to choose L), which is

greater than t1’s equilibrium payoff, which is 1; and (2) type-t2 may
get 21 (if player 2 is willing to choose L), which is greater than t1’s
equilibrium payoff, which is 12. Thus any µB ∈ [0, 1] is consistent with
the intuitive criterion.

There is another pooling PBE where player 1’s strategy is

 t1 → (B,U)

t2 → (B,U)

 ,
and player 2’s strategy is4

4Following the equilibrium signal B, player 2’s pure strategy must be L: if R were to
be taken, then the type-t2 A would rather send signal A and then play D, which would
yield a payoff 12, higher than the maximal payoff 10 that he could get in the supposed
equilibrium.
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 A→ R

B → L

 ,
and where

µA ∈ [0, 1], µB =
1

2
.

This PBE is also intuitive, because (1) by sending the off-the-equilibrium
signal A, type-t2’s maximal possible payoff is 12 (if player 2 is willing
to choose R), which is still less than t2’s equilibrium payoff, which is
21; and (2) any µA that rules out t2 must be such that µA = 1, and
given µA = 1, player 2’s best response is R, so that by sending the
off-the-equilibrium signal A, type-t1’s payoff would become 1 (as long
as player 2 adopts the intuitive belief µA = 1 and chooses R), which is
still less than t1’s equilibrium payoff, which is 3

2
, showing that t1 would

not want to deviate from his equilibrium strategy.

There is no separating PBE for this game. To see this, suppose first that
there were a separating PBE where the type-t2 player 1 sends signal
A. In this PBE, player 2 would correctly expect the type-t2 player 1
to play D after sending signal A, and hence player 2’s best response
would be R, yielding 12 for the type-t2 player 1. However, the type-t2
player 1 could have deviated and sent signal B, which would convince
player 2 that U would then follow, and hence player 2 would choose L
after seeing B, yielding a deviation payoff of 21 for the type-t2 player
1, which is a contradiction.

Next, suppose that there were a separating PBE where the type-t1
player 1 sends signal A. In this PBE, player 2 would correctly expect
the type-t1 player 1 to play U after sending signal A, and hence player
2’s best response would be R, yielding 1 for the type-t1 player 1. On
the other hand, the type-t2 player 1 is expected to send signal B. Thus
seeing B, player 2 expects to have 2 possible pure-strategy NEs, (U,L)
and (D,R). To sustain the current PBE, however, player 2 must believe
in (U,L) only: if player 2 believed in (D,R), so that the type-t2 player
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1 must play D after sending signal B, then the type-t2 player 1’s equi-
librium payoff would be 10, but he could have deviated and sent signal
A and then played D to reach the outcome (A,(D,R)), which would
yield 12 > 10 for the type-t2 player 1. Thus we conclude that in this
supposed separating PBE, player 2 would expect player 1 to play U
after seeing B, and hence player 2’s best reponse upon seeing B is L.
But then the type-t1 player 1 could have sent B and then played U to
reach the outcome (B,(U,L)), which would yield 3

2
> 1 for the type-t1

player 1, which is also a contradiction. Hence we conclude that this
game has no separating PBEs.

Recall that in the game of beer and qiche discussed in Lecture 4, the un-
informed player’s payoff depends on his own action and the informed
player’s type, but not on the informed player’s action. In the sig-
nalling games discussed in Example 3 of Lecture 4, the uninformed
player’s payoff depends on everything—his own action, the informed’s
action and the informed’s type all affect the uninformed’s payoff. Those
games are said to have common values, because the two players’ pay-
offs both depend on the informed’s type. Here, we have a game with
private values, where the informed’s type per se does not affect the
uninformed’s payoff. The uninformed player still cares about the in-
formed’s type, because different types of the informed player may take
different actions, and those action choices affect the uninformed’s pay-
off. This distinction is relevant in certain signaling games where the
informed’s signals are “contracts” that the informed designs and of-
fers to the uninformed player; see for example Maskin and Tirole’s
two articles in Econometrica, The Principal-Agent Relationship with
an Informed Principal: The Case of Private Values (1990) and The
Principal-Agent Relationship with an Informed Principal, II: Common
Values (1992).

4. Consider the following stock trading model with one traded common
stock and three classes of traders: one insider (or informed specula-
tor), one noise trader, and several Bertrand-competitive market mak-
ers. Everyone is risk-neutral without time preferences. Stock trading
takes place at date 0, and the true value of the stock, denoted v, will
become public information at date 1. The extensive game proceeds as
follows.
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• At the beginning of date 0, the insider alone learns about the
realization of v, when everyone else only knows that v is equally
likely to be −2,−1, 1 or 2.

• Then simultaneously, the insider and the noise trader must each
submit one market order. The insider’s market order is denoted
by X, and the noise trader’s market order is denoted by u, and
we assume that u is equally likely to be 1 or −1; that is, the
noise trader is equally likely to buy one share or sell one share.
By submitting a market order a trader commits to accepting order
execution at the market-clearing price subsequently announced by
the stock-trading platform.

• At the same time when the insider and the noise trader submit
their market orders, the market makers must each submit one
pricing schedule, denoted by P (·). By submitting a schedule Pi(·),
a market maker i commits to absorbing any market order z ∈ <
at the share price Pi(z) that he specifies via Pi(·).
• Then, the stock-trading platform receives X, u and the market

makers’ pricing schedules. The platform insists on matching X
and u first, and in case z = X+u 6= 0, then the platform will pick
one market maker i whose Pi(z) appears to be the lowest when
z > 0 or whose Pi(z) appears to be the highest in case z < 0. In
case z = 0, then the platform will just pick P (0) = E[v].

• Then, the date-0 stock trading session ends, and the game moves
on to date 1. Then the realization of v becomes publicly known,
and each stock-trading participant gets his realized gain or loss
from the date-0 stock-trading.

The above is a signaling game, where v is the informed insider’s type,
and X is the signal he sends. This is referred to as a signaling game
with noise, because market makers (i.e., the uninformed players) do
not observe X directly; rather, what they learn from the stock-trading
platform is z = X + u only (not u and X separately), where we recall
that u is a zero-mean random variable.

We shall look for pure strategy perfect Bayesian equilibria in which
the market makers submit the same P (·). Let us call them symmetric
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PBEs. A symmetric PBE is formally a pair {P (z), X(v)} such that
(i) given P (·), X(v) ∈ arg maxy E[y(v − P (y + u))|v]; and (ii) given
any z = X + u, either P (z) would ensure that no trade would occur
between the selected market maker and the traders submitting market
orders, or in the opposite case, the selected market maker must break
even by absorbing z = X(v) + u; that is, P (z) = E[v|X(v) + u = z].

Show that for each a ∈ (2
3
, 1), {Pa(·), Xa(·)} is one symmetric PBE,

where Xa(·) is such that

Xa(2) = −Xa(−2) = 1 + a, Xa(1) = −Xa(−1) = 1− a,

and Pa(·) is such that

∀z ∈ {−2− a,−2 + a,−a, a, 2− a, 2 + a}, Pa(z) = −Pa(−z),

Pa(a) =
1

2
, Pa(2 + a) = 2, Pa(2− a) = 1,

∀z > 0, z 6= 2 + a, 2− a, a, Pa(z) = 2,

and
∀z < 0, z 6= −2 + a,−2− a,−a, Pa(z) = −2.

Solution. Given Xa(·), define the order imbalance observed by the
market makers by Z(u, v), with

Z(−1, 2) = Z(1,−1) = a, Z(1,−2) = Z(−1, 1) = −a.

Thus, for example, when seeing an order imbalance a, the market
makers think that (u, v) = (−1, 2) and (u, v) = (1,−1) are equally

likely, and hence they set Pa(a) = 2+(−1)
2

= 1
2
. Similarly, they set

Pa(−a) = −2+1
2

= −1
2
.

On the other hand, the order imbalance 2 + a, if it appears, is fully
revealing: it must be that (u, v) = (1, 2), so that Pa(2 + a) = 2. The
order imbalance 2 − a, likewise, can appear only when (u, v) = (1, 1),
and hence Pa(2− a) = 1. Finally it is easy to check that

∀z ∈ {−2− a,−2 + a,−a, a, 2− a, 2 + a}, Pa(z) = −Pa(−z).
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Now consider the off-the-equilibrium order imbalances. Let us specify
the following supporting posterior beliefs for the market makers:

∀z > 0, z 6= 2 + a, 2− a, a, prob.(v = 2|z) = 1,

and

∀z < 0, z 6= −2 + a,−2− a,−a, prob.(v = −2|z) = 1.

Apparently, with these posterior beliefs, Pa(z) is as asserted when z is
not contained in {−2− a,−2 + a,−a, a, 2− a, 2 + a}.
It remains to check that Xa(·) is the insider’s best response given Pa(·).
Given a, define the type-v insider’s payoff in equilibrium a from sub-
mitting market order x as

Ba(v, x) ≡ x(v − E[Pa(x+ u)]), ∀x ∈ <, v = −2,−1, 1, 2.

Given the above supporting beliefs, if x is such that x + u is not con-
tained in the set {−2− a,−2 + a,−a, a, 2− a, 2 + a}, then x can never
be optimal. Finally, it is easy to show that when a ∈ (2

3
, 1),

Ba(2, 1 + a) ≥ Ba(2, 1− a), Ba(1, 1− a) ≥ Ba(1, 1 + a).

Thus Xa(·) is indeed optimal. This finishes the proof.

5. Firm A has a single owner-manager Mr. A, who needs to raise $100 for
a positive-NPV investment project at date 0. There are two possible
date-0 states, called G and B, and the date-0 state is Mr. A’s private
information. In state G, the assets in place of firm A are worth $150
and the new project’s NPV equals $20. In state B, the assets in place
are worth only $x and the new project’s NPV is accordingly $y. The
public investors (also referred to as the outsiders) believe that the state
may be G with prob. a. Mr. A and public investors are all risk-neutral
without time preferences.

The game proceeds as follows. Mr. A first decides to or not to issue
new equity to raise $100 (two feasible signals!). Then, upon seeing
Mr. A’s decision, the public investors form posterior beliefs about the
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date-0 state, and they engage in Bertrand competition to determine
the fraction α of equity that Mr. A must sell in order to raise $100.

(i) Suppose that x = 50 and y = 10. Find all the pure-strategy PBE’s
of this signaling game.

(ii) Suppose that x = 60 and y = −25. Assume that the firm, after
raising $100 from new investors, can either undertake the new invest-
ment project or put $100 in a riskless money market account. The
risk-free interest rate is zero. In this case, a pooling equilibrium where
both types of the firm choose to issue new equity exists if and only if
the prior probability a for the good state is such that a ≥ a∗. Compute
a∗.

(iii) Suppose that x = 60 and y = −25. Unlike in part (ii), assume
instead that the firm, after raising $100 from new investors, must spend
it on the new investment project, regardless of the state. In this case,
a pooling equilibrium where both types of the firm choose to issue new
equity exists if and only if the prior probability a for the good state is
such that a ≥ a∗∗. Compute a∗∗.

(iv) Suppose that x = 60 and y = −25. Suppose that a = a∗∗. Then
in the pooling equilibrium obtained in part (iii), Mr. A ends up pos-
sessing a fraction 1− α of firm A’s equity. Compute α.

Solution. Consider part (i). We first look for separating equilibria.
We shall refer to Mr. A of type j as simply “type j.”

In a separating PBE where only type G issues new equity, in exchange
of the $100 raised, the outsiders must ask for a share α = 100

150+20+100
of

the ownership. But then type B will deviate: by deviating and issuing,
type B would get
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(1− 100

150 + 20 + 100
)(50 + 10 + 100) = 100.74,

which is greater than 50, the payoff of type B if abanoning the new
project. Hence, there is no such separating equilibrium.

Now, consider the separating PBE where only type B issues new equity.
Then, the public investors would ask for a share of ownership equal to
α = 100

10+50+100
. Type B would indeed want to issue new equity: by

issuing, he would get

(1− 100

10 + 50 + 100
)(100 + 50 + 10) = 60,

greater than 50. On the other hand, type G insider would not issue
new equity if and only if

(1− 100

10 + 50 + 100
)(100 + 150 + 20) = 101.25 < 150,

which indeed is true. Thus this separating equilibrium does exist. The
supporting beliefs for this PBE are all equilibrium beliefs, and can be
pinned down by the Bayes Law.

Next, we look for pooling equilibria. Suppose that in equilibrium nei-
ther type issues new equity. But then type B wants to deviate: by
issuing, type B cannot do worse than being identified, but even in that
case, issuing is preferred to not issuing. Therefore there is no such
pooling equilibrium.

Finally, consider the PBE where both types issue new equity. The
outsiders would ask for

α[a(150 + 20 + 100) + (1− a)(50 + 10 + 100)] = 100,

and hence

α =
100

160 + 110a
.
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Type G must be willing to issue new equity in equilibrium:

(1− 100

160 + 110a
)(100 + 150 + 20) > 150;

and so must type B insider:

(1− 100

160 + 110a
)(100 + 50 + 10) > 50.

Thus the pooling equilibrium exists if and only if a > 13
22

.

Note that in this pooling equilibrium the outsiders’ beliefs following
the off-equilibrium signal “not issuing” is irrelevant. Note also that
there does not exist an off-equilibrium signal in a separating equilib-
rium. Thus in part (i), both pure-strategy PBE’s are robust against
Cho and Kreps’ intuitive criterion.

Consider part (ii). In the assumed pooling equilibrium, we must have

α[270a+ (160 + 0)(1− a)] = 100,

and hence

α =
100

[270a+ 160(1− a)]
.

Implicitly we are assuming here how the firm uses the 100-dollar cash
is not verifiable, and since the new project has a negative NPV in the
bad state, it is in Mr. A’s interest to put the cash in the riskless money
market account. For the pooling equilibrium to be viable, we need

270(1− α) ≥ 150, (160 + 0)(1− α) ≥ 60,

so that we must require that

a ≥ a∗ =
13

22
,

as obtained in part (i).
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Consider part (iii). In the assumed pooling equilibrium, we must have

α[270a+ (160− 25)(1− a)] = 100,

and hence

α =
100

[270a+ (160− 25)(1− a)]
.

Implicitly we are assuming here whether the firm undertakes the new
project is verifiable, and even though the new project has a negative
NPV in the bad state, Mr. A has to spend the 100-dollar cash on the
new project if he wants to pool with his counterpart in the good state.
For the pooling equilibrium to be viable, we need

270(1− α) ≥ 150, (160− 25)(1− α) ≥ 60,

so that we must require that

a ≥ a∗∗ =
2

3
.

Finally, for part (iv), we obtain

α =
100

[270a∗∗ + (160− 25)(1− a∗∗)]
=

4

9
.

Remark. Unlike in part (i), where a pooling equilibrium is always
productively efficient, in part (iii) we have a pooling equilibrium with
over-investments. Thus in this pooling equilibrium, neither informa-
tional efficiency nor productive efficiency is attained. In equilibrium
the bad-type firm is willing to undertake a project with negative NPV
because it can share with the new investors the proceeds of $100 that
it obtains from issuing the new equity. In this case, the new investors
lose more than the negative NPV pertaining to the new project.
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