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1. (Non-linear Pricing with Countervailing Effects.) Consider the
following version of the screening game considered in section 5 of Lec-
ture 4, where the a θ2-buyer has reservation utility v, which may differ
from zero:

Problem (P): max
T1,T2,q1,q2

T1 + T2 − cq1 − cq2

subject to
θ1V (q1)− T1 ≥ 0, (1)

θ2V (q2)− T2 ≥ v, (2)

θ1V (q1)− T1 ≥ θ1V (q2)− T2, (3)

θ2V (q2)− T2 ≥ θ2V (q1)− T1. (4)

We shall assume that v ≥ 0, c = 1
4
, θ1 = 3, θ2 = 4, and V (q) = ln(1+q).

A scheme (T1, T2, q1, q2) satisfying (1)-(4) is called incentive feasible.
The seller then seeks to find an incentive feasible scheme that gen-
erates for him the highest expected profits, and such a solution is
called incentive optimal, or simply optimal, and will be denoted by
(q∗∗2 , q

∗∗
1 , T

∗∗
2 , T ∗∗1 ). (We have also referred to this solution as the second-

best solution in Lecture 4.)

We shall use Kuhn-Tucker Theorem to find the optimal scheme for the
seller.1

1Hint: It is useful to first make some observations and take simplifying steps. At
first, define xj ≡ V (qj), so that xj , just like qj , is a non-negative real number, and
qj = h(xj) ≡ exj − 1. Now, the objective function becomes strictly concave in (x1, x2),
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(a) Suppose that v = 0. Prove or disprove that for the seller, the
optimal scheme is such that q∗∗2 = 15 and q∗∗1 = 7. What are the
associated T ∗∗2 and T ∗∗1 ?

(b) Now, assume instead that v = ln(9) > 0. Find the optimal scheme
(q∗∗2 , q

∗∗
1 , T

∗∗
2 , T ∗∗1 ) for the seller.

(c) Assume now that v = ln(13). Find the optimal scheme (q∗∗2 , q
∗∗
1 , T

∗∗
2 , T ∗∗1 )

for the seller.

Solution. Following the hint and defining h(xj) ≡ exj − 1, we can
re-write the maximization problem as

Problem (P): max
T1,T2,x1,x2

f(T1, T2, x1, x2) ≡ T1 − ch(x1) + T2 − ch(x2)

subject to
g1 ≡ T1 − θ1x1 ≤ 0;

g2 ≡ T2 − θ2x2 ≤ 0;

g3 ≡ T1 − T2 + θ1(x2 − x1) ≤ 0;

g4 ≡ T2 − T1 + θ2(x1 − x2) ≤ 0.

Let µj be the associated Lagrange multiplier for constraint gj ≤ 0.
Note that

Df =


1
1

−ch′(x1)
−ch′(x2)

 , Dg1 =


1
0
−θ1

0

 , Dg2 =


0
1
0
−θ2

 ,
given (T1, T2). Second, we can re-write (1)-(4) as gi(T1, T2, x1, x2) ≤ 0, i = 1, 2, 3, 4, and
verify that each gi is affine (and hence convex) in (x1, x2). Third, say that the incentive
feasible scheme (T1, T2, x1, x2) makes constraint i binding if gi(T1, T2, x1, x2) = 0, and
show that we can disregard an incentive feasible scheme (T1, T2, x1, x2) that makes neither
(1) nor (2) binding. Then classify the set of incentive feasible schemes into two categories:
those making (1) binding and those making (2) binding. Then, proceed on your own,
following and mimicking the above reasoning.
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Dg3 =


1
−1
−θ1
θ1

 , Dg4 =


−1
1
θ2
−θ2

 .

Consider part (a). It is useful to gain some insights before computing.

• Note that the θ2-buyer can always pretend to be the θ1-buyer and
take the deal (T1, x1), which would allow the θ2-buyer to obtain a
payoff

θ2x1 − T1 ≥ θ1x1 − T1 ≥ 0,

and the first inequality would be strict if x1 > 0 (or equivalently
q1 > 0). Thus x1 > 0 together with g4 ≤ 0 would imply g2 ≤ 0.
That is, if we conjecture that x1 > 0 then removing the second
constraint would not alter the optimal solution to (P).

• Following the removal of g2 ≤ 0, we can further conjecture that
the first constraint g1 ≤ 0 must be binding at an optimal solution,
for otherwise we could raise T1 and T2 by the same tiny positive
amount without violating g1, g3,and g4, but this would increase f !

• The removal of g2 ≤ 0 and the conjecture that g1 = 0 at optimum
now allow us to further conjecture that g4 must be binding at an
optimal solution, for otherwise we could raise T2 alone by a tiny
positive amount without violating the other constraints, but this
would increase f !

• Now, following g1 = 0 = g4 and following the removal of g2 ≤ 0,
we can re-state g3 ≤ 0 as

(θ1 − θ2)(x2 − x1) ≤ 0,

but this last inequality would not be binding so long as x2 > x1.

Thus if we conjecture that x2 > x1 > 0 at optimum then we would also
conjecture that2

2Recall that by Theorem 4 of Lecture M, µj = 0 if gj < 0 at optimum or if gj ≤ 0 can
be removed.
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µ2 = µ3 = 0, T1 = θ1x1, T2 = T1 + θ2(x2 − x1) = θ2x2 − (θ2 − θ1)x1.

Now, by the fact that f is concave and g1, g2, g3, g4 are all convex, the
sufficiency of Kuhn-Tucker Theorem applies, and hence we only need
to find µ1, µ4 ≥ 0 such that

Df = µ1Dg1 + µ4Dg4 ⇒


1
1

−ch′(x1)
−ch′(x2)

 = µ1


1
0
−θ1

0

 + µ4


−1
1
θ2
−θ2

 ,

and if a solution to this system of equations exists and if the solution
implies that x2 > x1 > 0 and g2, g3 < 0, then we are done. Moreover,
because f is strictly concave in (x1, x2), the solution would be unique!

Upon solving
Df = µ1Dg1 + µ4Dg4,

we obtain

µ1 = 2, µ2 = 1, 2θ1 − θ2 = ch′(x1), θ2 = ch′(x2),

so that we have

x1 = ln(8), x2 = ln(16)⇒ T1 = 3 ln(8), T2 = 4 ln(16)− ln(8).

Now, it is easy to verify that at this solution, we indeed have x2 > x1 >
0 and g2, g3 < 0!

Remark 1. Note that if the seller were facing the θ1-buyers alone,
then it would be optimal for the seller to offer (q∗1, T

∗
1 ) = (11, 3 ln(12)),

which is the so-called first-best contract for a θ1-buyer.3 Why would the
seller choose to sell only q∗∗1 = 7 units to θ1-buyers in the second-best

3Verify that, similarly, the first-best contract for θ2-buyers is (q∗2 , T
∗
2 ) = (15, 4 ln(16)).

However, if this contract is offered by the seller, a θ1-buyer would never like to take it.
For this reason, the seller never has to distort q2 in the second-best contract (a property
referred to as efficiency at the top), and this explains why we have q∗∗2 = q∗2 = 15.
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contract? Recall that the seller cannot tell a θ2-buyer from a θ1-buyer,
and if the seller offers (q∗1, T

∗
1 ) to θ1-buyers, then a θ2-buyer would be

tempted to take the deal (q∗1, T
∗
1 ), and it would become difficult for the

seller to persuade the θ2-buyer to choose (q2, T2) over (q1, T1). To make
sure that θ2-buyers would choose (q2, T2) over (q1, T1), the seller must
reduce q1 to below q∗1. Of course, this choice of q1 would reduce the
money that the seller can earn from θ1-buyers, but it would allow the
seller to earn much more from θ2-buyers, and hence is worthwhile.‖

Now, consider part (b). Here, note that, other things equal, we must
re-define g2 as T2− θ2x2 + ln(9) in (P). Again, we shall start with some
useful observations.

Now note that the second-best contract obtained for part (a) yields for
the type-θ2 buyers a surplus4 of θ2V (q∗∗1 ) − T ∗∗1 = (θ2 − θ1)V (q∗∗1 ) =
ln(8) < ln(9), and hence that contract violates g2 ≤ 0 and becomes
infeasible in part (b)!

Thus the seller must fine-tune the above second-best contract obtained
in part (a) in order to generate for the type-θ2 buyers a surplus which
is no less than ln(9). The question is: what is the cheapest way for the
seller to attain this goal?

Since q∗∗1 = 7 is already overly low compared to q∗1 = 11 (recall Remark
1), the optimal way to fine-tune the part-(i) second-best contract so
that the modified contract can become feasible in part (b) is to raise
q1 from q∗∗1 = 7 to q∗∗1 = 8 and to lower T2 accordingly to make g4 ≤ 0
remain binding: this will allow the seller to offer enough surplus to the
type-θ2 buyers, and it will also improve the seller’s revenue obtained
from the type-θ1 buyer (recall Remark 1). Thus we conjecture that
the second-best contract in part (b) is such that q∗∗1 = 8, T ∗∗1 = 3 ln(9),
and with q∗∗2 = q∗2 = 15 and T ∗∗2 = 4 ln(16)− ln(9).

Now, we apply Kuhn-Tucker Theorem to verify the above conjecture.
By conjecture, the seller would leave a θ2-buyer exactly a surplus of

4Recall that g4 = 0 at the optimum in part (a), which means that a θ2-buyer’s surplus,
θ2x2 − T2 is equal to θ2x1 − T1.
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ln(9), implying that g2 = 0. Although the seller would raise q1 but
there is no reason that the seller would leave a surplus to the θ1-buyers,
and hence we conjecture that, once again, g1 = 0. Moreover, the seller
would earn as much money as possible from the θ2-buyers by raising
T2 until g4 = 0. The only constraint that would not be binding, as
we conjecture, is the third constraint, so that we also conjecture that
µ3 = 0.

Thus we conjecture that

µ3 = 0, T1 = θ1x1 = θ2x1 − ln(9),

and require that

Df = µ1Dg1 + µ2Dg2 + µ4Dg4

⇒


1
1

−ch′(x1)
−ch′(x2)

 = µ1


1
0
−θ1

0

 + µ2


0
1
0
−θ2

 + µ4


−1
1
θ2
−θ2

 ,
so that we have

T1 = 3 ln(9), x1 = ln(9)⇒ h′(x1) = ex1 = 9,

and hence µ1, µ2, µ4 must satisfy



µ1 − µ4 = 1;

µ2 + µ4 = 1;

−9
4

= −3µ1 + 4µ4,

implying that

µ1 =
7

4
, µ2 =

1

4
, µ4 =

3

4
,

so that

h′(x2) = ex2 = 16(µ2 + µ4) = 16⇒ x2 = ln(16),
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which by g2 = 0, implies that

T2 = 4 ln(16)− ln(9).

It is easy to see that g3 < 0, x2 > x1 > 0, as we conjectured. This
finishes part (b).

Now, consider part (c). Here, note that, other things equal, we must
re-define g2 as T2−θ2x2 +ln(13) in (P). Once again, we shall start with
some useful observations.

First recall that the second-best contract obtained for part (b) yields for
the type-θ2 buyers a surplus of ln(9), and hence that contract violates
g2 ≤ 0 and becomes infeasible in part (c)!

Thus the seller must fine-tune the above second-best contract obtained
in part (i) in order to generate for the type-θ2 buyers a surplus which
is no less than ln(13). The question is again: what is the cheapest way
for the seller to attain this goal?

In part (c), even if we put q1 = q∗1 = 11, the surplus for the type-
θ2 buyer generated by the second-best contract for part (b) would be
(θ2 − θ1)V (q∗1) = ln(12), which is still less than ln(13). Raising q1 to
above q∗1 can only do worse for the seller. Thus for (q1, T1), the seller
should offer the first-best contract for the θ1-buyers; and for (q2, T2),
the seller should offer q∗2 but reduce T2 sufficiently to generate for the
θ2-buyer a surplus of ln(13). Thus we conjecture that g1, g2 would both
be binding, with g3 < 0 and g4 < 0. The part-(c) second-best contract
is such that T ∗∗2 = 4 ln(16)−ln(13), q∗∗1 = q∗1 = 11, T ∗∗1 = T ∗1 = 3 ln(12),
and q∗∗2 = q∗2 = 15.

Now, we apply Kuhn-Tucker Theorem to verify the above conjecture.
By conjecture, we have

µ3 = µ4 = 0, T1 = θ1x1, T2 = θ2x2 − ln(13),

and we require that

Df = µ1Dg1 + µ2Dg2
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⇒


1
1

−ch′(x1)
−ch′(x2)

 = µ1


1
0
−θ1

0

 + µ2


0
1
0
−θ2

 ,
so that we have

µ1 = µ2 = 1,

implying that

−1

4
ex1 = −3, −1

4
ex2 = −4,

and hence

x1 = ln(12), x2 = ln(16)⇒ T1 = 3 ln(12), T2 = 4 ln(16)− ln(13).

It is easy to verify that at this contract we have x2 > x1 > 0, g3 =
ln(13) − ln(16) < 0 and g4 = ln(12) − ln(13) < 0, just as conjectured.
This finishes part (c).

Remark 2. We did not consider the situation where v is greater than
ln(13). If v gets even larger, and if the seller still wants to serve the
θ2-buyers, then T2 may have to fall so much that even the θ1-buyers
would like to take (q2, T2). In this case, the seller may have to raise
q2 to above q∗2 = 15 to discourage the θ1-buyers from taking (q2, T2),
and the seller may also have to reduce T1 in order to persuade the θ1-
buyers to choose (q1, T1) over (q2, T2). At optimum it may happen that
g1, g4 < 0 = g2 = g3, which is in sharp contrast with the case where
v = 0. Finally, when v tends to infinity, the seller would eventually
choose to abandon the θ2-buyer, and in that case the seller would offer
(q∗1, T

∗) together with (q2, T2) = (0, 0).

2. (Chain-store Paradox with Five Entrants.) Let us modify the
game of chain-store paradox in Lecture 4 by assuming 5 entrants in-
stead of 3. Find as many PBE’s as possible for this reputation game.

Solution. It is easy to verify that no entrants will ever enter if x1 ≥ 1
2
.

There are two remaining cases.
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• Case 1: x1 ∈ [1
4
, 1
2
).

Consider the subgame where E1 has just entered. It is easy to
see that preying E1 with probability zero is not the sane incum-
bent’s equilibrium behavior: if it were, then the incumbent’s ac-
tion would fully reveal whether the incumbent is sane or not so
that the sane incumbent would get zero by not preying, but by
preying the sane incumbent would be recognized as the crazy in-
cumbent, which would yield a strictly positive payoff for the sane
incumbent.

Preying E1 with probability one, on the other hand, is consistent
with a PBE: it will induce both E2 and E3 to stay out, but after
that E4 and E5 will enter. More precisely, because of the sane
and the crazy incumbents’ pooling behavior after E1 enters, upon
seeing E1 being preyed, the rest 4 potential entrants believe that
x2 = x1 ∈ [1

4
, 1
2
), and according to our analysis for the 4-entrant

case in Lecture 4, E2 would rather stay out, which implies that
x3 = x2 ∈ [1

4
, 1
2
), so that E3 would also stay out, according to

our analysis for the 3-entrant and 2-entrant cases in Lecture 4.
In this pooling equilibrium preying E1 thus yields for the sane
incumbent a payoff of −1+ 3

4
+ 3

4
> 0, which is indeed higher than

the deviation payoff generated by not preying E1, which is zero.

Rationally expecting that both types of the incumbent will prey
after E1 enters, E1 will stay out for sure. It follows that x2 = x1 ∈
[1
4
, 1
2
), and hence E2 will stay out also; according to our analysis

for the 4-entrant case in Lecture 4. But then x3 = x2 = x1 ∈
[1
4
, 1
2
), and hence E3 will stay out also, according toour analysis

for the 3-entrant and 2-entrant cases in Lecture 4. It follows that
x4 = x3 = x2 = x1 ∈ [1

4
, 1
2
), and hence both E4 and E5 will enter,

according to our analysis for the 3-entrant and 2-entrant cases in
Lecture 4.

There is no semi-separating equilibrium for the stage where the
incumbent interacts with E1; see below.

• Case 2: x1 ∈ (0, 1
4
).
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It is easy to verify that in equilibrium of the subgame where E1

has just entered, the sane incumbent must randomize between
preying and not preying.5

Thus after E1 enters, the sane incumbent may prey or not prey
both with positive probabilities. When E1 is not preyed, the rest 4
potential entrants know immediately that the incumbent is sane,
and hence x2 = 0, which implies that all the rest 4 potential en-
trants will then enter and the sane incumbent gets zero by not
preying E1. In order for the sane incumbent to get zero contin-
uation payoff by preying E1, it is necessary that upon seeing E1

being preyed, x2 = 1
4
. This fact can be proved by contraposition

as follows.

(a) Suppose instead that x2 <
1
4

after E1 is preyed, so that ac-
cording to our analysis for the 4-entrant case in Lecture 4 E2

will enter with probability one. If that did happen, then the
sane incumbent would get −1 + 0 < 0 by preying E1, so that
the sane incumbent would be better off by not preying E1, a
contradiction.

(b) Suppose instead that x2 >
1
4

after E1 is preyed, so that accord-
ing to our analysis for the 4-entrant case in Lecture 4 E2 will
stay out with probability one, which implies that x3 = x2 >

1
4
,

and hence E3 will also stay out. If that did happen, then the
sane incumbent would get −1 + 3

4
+ 3

4
+ 0 + 0 > 0 by preying

E1, implying that the sane incumbent would not feel indif-
ferent about preying and not preying E1, which is again a
contradiction.

Now, if the sane incumbent preys E1 with probability y1 ∈ (0, 1)

5Unlike in the previous case, now there can be no pooling behavior on the part of the
incumbent after E1 enters: if instead such an equilibrium did exist, then x2 = x1 <

1
4

and hence E2 would enter after seeing E1 being preyed, but according to our analysis
for the 4-entrant case in Lecture 4, by preying E1 the sane incumbent’s payoff would be
−1 + 0 < 0, which is a contradiction because the sane incumbent could be better off not
preying E1.
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after E1 gets in, y1 must satisfy

x1
x1 + (1− x1)y1

=
1

4
⇒ y1 =

3x1
1− x1

.

Note that for y1 to lie strictly between 0 and 1, it is necessary that
x1 <

1
4
. (This proves that the sane incumbent cannot randomize

between preying E1 and not preying E1 in the above Case 1, and
hence the pooling behavior reported there is indeed the unique out-
come when the incumbent is facing E1.)

What about the equilibrium behavior of E2, E3, E4 and E5 upon
seeing E1 being preyed? Let E2 stay out with probability a upon
seeing E1 being preyed, and E3 stay out with probability b upon
seeing E2 stay out. Show that any a, b ∈ (0, 1) satisfying

3a(1 + b) = 4

are now consistent with equilibrium, for then the sane incumbent
will indeed feel indifferent between preying E1 and not preying
E1. For example, a = 1 and b = 1

3
are consistent with a PBE. In

this particular equilibrium, after seeing E1 being preyed, E2 stays
out for sure because x2 = 1

4
, and following that E3 enters with

probability 2
3
. In equilibrium, E1 knows that preying will occur

with probability 4x1 and hence E1 will enter if and only if x1 <
1
8
.

Now you can summarize the equilibrium path as follows.

(a) If x1 ∈ (0, 1
8
), then E1 enters, and if E1 is preyed, then in one

equilibrium (where a = 1, b = 1
3
) E2 stays out and E3 enters

with probability 2
3
. Then if E3 is preyed, then E4 may or may

not enter, and if E4 does not enter, then E5 may or may not
enter.

(b) If x1 ∈ [1
8
, 1
4
), then E1 stays out, E2 enters, and if and only if

E2 is preyed, then E3 stays out and E4 and E5 may or may
not enter.

3. (Debt Financing and Internet Shopping Agent.) There are n
sellers, each being a local monopolist selling an identical product to
1
n

local consumers. (Thus the population of all consumers is one.)
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Each consumer will buy either zero or one unit of the product, with
willingness to pay equal to r > 0. Initially, a consumer only knows his
local seller, and hence he purchases from that seller at the price r. The
sellers have zero costs of production. Thus each seller’s profits are r

n
.

Now, suppose that an ISA (Internet Shopping Agent) emerges, and it
announces an access fee κ for consumers and an access fee φ for sellers.
Given the ISA’s announcements, each seller can choose its own price p
and then decide whether to spend φ to advertise its price p at the ISA;
and at the same time, each consumer can decide whether to pay κ to
the ISA and go see the price advertisements posted by sellers. Assume
that once a consumer pays κ, he will purchase from the seller that posts
the lowest price at the ISA (as long as that price does not exceed r),
and if no sellers post any prices at the ISA, then he will return to his
local seller and make a purchase (as long as the local seller’s price does
not exceed r).

The ISA is essentially an online platform that we have encountered in
Homework 1. It is clear that for φ, κ > 0, the game has an equilib-
rium where no sellers or consumers would pay the access fees, but we
shall focus on the equilibrium that is most favorable to the ISA in this
exercise.

We shall assume that n = 2, and all the local sellers have borrowed the
same amount of debt, with face value D ∈ [0, r

2
). Assume that there is

one shareholder (S) and one creditor (C) at each seller’s firm, and other
than selling the product, the local seller has no other sources of income
(and it possesses no other assets). The shareholder S will choose p and
decide whether to pay φ. The debt will mature right after sellers and
consumers make transactions. Each local seller is protected by limited
liability.

The game proceeds as follows. At first, given D, r and n = 2, the
monopolistic platform announces φ and κ. Then sellers and consumers
must simultaneously decide whether to pay their access fees, and sellers
would have to choose their unit prices at the same time. Then, if
a consumer chooses to not pay κ, then he visits his local seller and
decides whether to make a purchase; and if he chooses to pay κ, then
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he visits the ISA to look for the lowest price, and if he finds no price
listings, then he returns to his local seller. Then after the sellers-buyers
transactions, each shareholder S at seller i must pay min(zi, D) to his
creditor C, where zi is seller i’s realized profits from the transactions
with consumers.

(i) Verify that the following is a symmetric equilibrium when D = 0: In
equilibrium, given κ, all consumers join the ISA for sure, but given φ,
a seller is equally likely to, or not to, pay φ. In equilibrium φ = r

4
, and

a seller would price at r when it does not pay φ; and its price p after
paying φ is random, which has the following distribution function:

F0(p) =



0, p ≤ r
2
;

2− r
x
, x ∈ [ r

2
, r];

1, x ≥ r.

Compute the ISA’s optimal choice of κ, denoted by κ0.

(ii) Very that the following is a symmetric equilibrium when D ∈ (0, r
2
):

In equilibrium, given κ, all consumers join the ISA for sure, but given
φ, a seller is equally likely to pay or not to pay φ. In equilibrium φ = r

4
,

and a seller would price at r when it does not pay φ; and its price p
after paying φ is random, which has the following distribution function:

FD(p) =



0, p ≤ r+D
2

;

2− r−D
x−D , x ∈ [ r+D

2
, r];

1, x ≥ r.

Compute the ISA’s optimal choice of κ, denoted by κD.

(iii) Suppose that D = 0. Does the presence of the ISA benefit or
hurt the local sellers? Compare the case with D = 0 to the case with
D ∈ (0, r

2
). Does the ISA benefit or hurt sellers more because of debt

financing?
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(iv) Suppose that D ∈ (0, r
2
). Is debt default-free when the ISA is ab-

sent? Is debt default-free when the ISA is present?

Solution. It is clear that part (i) is a special case of part (ii). Thus
let us verify the above assertions in part (ii). Suppose that the other
seller would follow the equilibrium strategy prescribed above, a seller
spending φ and then pricing at r+D

2
would win every consumer’s pa-

tronage for sure6 and obtain profits r+D
2
− φ = r+2D

4
, implying that

the payoff for the borrowing shareholder is r+D
2
− D − φ = r−2D

4
. On

the other hand, if a seller does not spend φ, then with probability 1
2

it would get nothing7; and with probability 1
2

it would get the profits
r
2
, so that the borrowing shareholder’s payoff is again 1

2
· r−2D

2
= r−2D

4
.

Thus the borrowing shareholder is willing to spend φ with probability
1
2
. It is easy to verify that given the rival seller follows the prescribed

mixed strategy, a borrowing shareholder, after spending φ, feels indif-
ferent about all the prices p ∈ [ r+D

2
, r]. The borrowing shareholder has

no reasons to price below r+D
2

or above r.

Note that in the equilibrium that is most favorable to the ISA, κ must
be chosen to make the consumers’ participation constraint binding. If
a consumer chooses to not participate (or to not pay κ), then his payoff
is

α ·
∫ r

r+D
2

(r − z)dFD(z) + (1− α) · 0;

and if he chooses to participate instead, then he would get

−κ+ α2
∫ r

r+D
2

∫ r

r+D
2

[r −min(x, y)]dFD(x)dFD(y)

+2α(1− α) ·
∫ r

r+D
2

(r − z)dFD(z) + (1− α)2 · 0,

so that we have in equilibrium, given D ∈ [0, r
2
),

κD = α2
∫ r

r+D
2

∫ r

r+D
2

[r−min(x, y)]dFD(x)dFD(y)+(α−2α2)·
∫ r

r+D
2

(r−z)dFD(z),

6This happens because either the rival seller would not spend φ or it would but then
its price would exceed r+D

2 with probability one.
7When its rival seller chooses to spend φ and advertise a price p ∈ [ r+D

2 , r], which by
assumption, captures all consumers’ patronage.
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which, with α = 1
2
, is equal to

κD =
1

4

∫ r

r+D
2

∫ r

r+D
2

[r −min(x, y)]dFD(x)dFD(y).

There is no need to get a closed-form solution for the above integral.

For part (iii) and (iv), it is easy to verify that the presence of an ISA
hurts a seller (as r+2D

4
< r

2
),8 but when the sellers are partially financed

by debt, they are hurt less.9

For part (iv), note that a seller can fully repay its debt in the absence
of an ISA, since D ≤ r

2
. The presence of an ISA not only reduces a

seller’s expected profits, it also implies that the same amount of debt,
D, is no longer default-free. In both the event that the seller spends φ
and the event that the seller does not, the seller’s profits may fall short
of D with a positive probability.

4. (Should Competitive Physical Retailers Go Mobile?) Consider
a Hotelling city, where consumers uniformly reside along the unit in-
terval [0, 1], and two firms A and B are located respectively at the left
and the right endpoints of the unit interval. Firm j produces a single
product j without costs, j ∈ {A,B}, and each consumer may either
buy 1 unit of product A, or buy 1 unit of product B, or buy nothing.

At each point t ∈ [0, 1], there exists exactly one consumer, whom
we shall refer to as consumer t. Consumer t would obtain a surplus
v − pA − tc if he buys from firm A, and a surplus v − pB − (1 − t)c if
he buys from firm B, where v > 0 is the gross utility that consumer t
derives from consuming 1 unit of product A or product B, c > 0 repre-
sents the consumer’s round-trip transportation cost per unit distance,

8This can be seen by letting D = 0, where both sellers choose to participate in the
ISA and then price below r with a positive probability. This is another version of the
prisoner’s dilemma: given that its rival seller plans to join the ISA and that all consumers
are prepared to visit the ISA, a seller has no better choice than join the ISA also.

9The presence of debt implies that (the shareholder of) a seller would never price too
low: an overly low price may benefit the debtholders by increasing the seller’s profits in
the event of default, which however does not benefit the shareholders.
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and pj is the retail price chosen by firm j. A consumer gets zero surplus
if he buys nothing.

We shall remodel the game by allowing the two firms to first decide
whether to engage in mobile marketing before starting price compe-
tition. In the following, we assume that v is very large so that in
equilibrium all consumers will be served. We assume that if a buyer t
can obtain the same consumer surplus from buying from either firm,
then it is equally likely that he may buy from either firm. We shall use
the following lemma:

Lemma 1 Consider a simultaneous game where firms 1 and 2 endowed
with the same product are competing in price to serve a single buyer
with unit demand. Let v denote the buyer’s willingness to pay. Suppose
that v > c2 > c1 > 0, where cj > 0 is firm j’s unit cost of operation.
This game, referred to as a Bertrand game with differential costs, has
a continuum of payoff-equivalent equilibria (p1, p̃2), where p1 = c2, and
the distribution function for firm 2’s random price p̃2, denoted by F2(·),
is such that10

x− c2
x− c1

≤ F2(x), ∀x ∈ (c2, v].

In any such equilibrium, firm 1 gets to serve the buyer for sure.

The new game consists two stages and it proceeds as follows.

• At stage 1, the firms must simultaneously announce whether or
not they would adopt uniform pricing in stage 2. A firm that
makes such a commitment is said to have adopted U in stage 1.
A firm that chooses to not adopt U in stage 1 would learn about
each consumer’s location t separately before making a price offer
in stage 2, and such a firm is said to have adopted D (denoting
price discrimination) in stage 1.

10In words, firm 2’s equilibrium mixed strategy must ensure that firm 1 does not wish
to price at anywhere higher than c2. This requires that F2(·) be first-order stochastically
dominated by some benchmark distribution function.
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• At stage 2, the firm(s) that have adopted U at stage 1 must simul-
taneously announce a unit price that applies to all buyers; let pi
denote the announced uniform price if firm i has chosen to adopt
U. Upon seeing these announced uniform prices, the firm(s) that
chose to adopt D at stage 1 must simultaneously announce a price
schedule that specifies a (probably different) price for each distinct
buyer t ∈ [0, 1]; let pj(·) denote such a price schedule if firm j has
chosen to adopt D.11

• Then, simultaneously, each and every buyer t ∈ [0, 1] learns about
the two firms’ price offers, and decides whether to buy 1 unit from
firm A or to buy 1 unit from firm B, or not to make any purchase.

(i) Show that if the stage-1 outcome is (U,U), then at stage 2 both
firms would announce the uniform unit price c and obtain profit c

2
.

(ii) Suppose that the stage-1 outcome is (D,D). Show that at stage 2,

• when t < 1
2
, firm A would announce pA(t) = c(1 − t) − ct with

probability one and firm B would adopt a mixed strategy p̃B whose
distribution function FB(·) is such that FB(0) = FB(0+) = 0,
FB(v − c(1− t)) = 1, and p[1− FB(p)] ≤ pA(t) for all p ∈ (0, v −
c(1− t)];
• when t > 1

2
, firm B would announce pB(t) = ct − c(1 − t) with

probability one and firm A would adopt a mixed strategy p̃A whose
distribution function FA(·) is such that FA(0) = FA(0+) = 0,
FA(v− ct) = 1, and p[1−FA(p)] ≤ pB(t) for all p ∈ (0, v− ct]; and

• when t = 1
2
, both firms would announce pA(t) = pB(t) = 0.

Conclude that, before learning about the realization of t, each firm gets
expected profit c

4
.12

11We have in mind the following scenario: a firm can use some free app to identify each
and every buyer’s real-time location as long as every buyer keeps using a smart phone all
the time (which we assume). A firm that has adopted U has committed to give up this
opportunity of offering different prices to individual buyers.

12Hint: Although the firms do not have production costs, they must ultimately re-
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(iii) Show that if the stage-1 outcome is (U,D), then at stage 2 firm A
would announce the uniform price pA = c

2
and firm B would announce

the price schedule pB(t) = max[pA+ct, c(1−t)]−c(1−t), so that buyers
located in [0, 1

4
] would buy from firm A and the rest buyers would buy

from firm B. Show that firm A’s profit is c
8

and firm B’s profit is 9c
16

.13

(iv) Show that in any pure-strategy equilibrium the stage-1 outcome
must be (D,D). Conclude that mobile geographic targeting reduces
profits, but the two firms must engage in mobile geographic target-
ing (a form of prisoners’ dilemma).14

Solution. Part (i) follows directly from Problem 2 of Homework 3.
Part (ii) follows directly from Lemma 1.

To gain some intuition, we can look at the case where the two firms
compete in the delivered price (or FOB, free-on-board price) rather than
in the mill price, assuming that the firms, instead of a buyer, must pay
the transportation cost and make the delivery to the buyer; here we
assume that the firms and the buyer would incur the same amount of
transportation cost.15

Thus let PA(t) and PB(t) denote the delivered prices charged to buyer
t by firms A and B. Given t, firms A and B must respectively incur a
unit cost ct and c(1− t) to make the delivery. Since the two firms are
selling a homogeneous product, this game given t is a Bertrand game
with differential costs. Thus we can quote Lemma 1.

imburse a buyer’s transportation costs tc or (1−t)c. Thus given t, the two firms essentially
become Bertrand-competitive firms with different unit costs. In this case, the low-cost firm
must win the buyer’s patronage with probability one; see Lemma 1.

13Hint: Given t and pA, if pA + ct > (1− t)c, then firm B can and will find a price pB
to win buyer t’s patronage. Thus when pricing uniformly at pA, firm A knows that only
those buyers with pA + ct ≤ (1− t)c would ultimately buy from firm A.

14We have assumed that getting the app service to identify a buyer’s location is costless.
Hence conclude that a very high price for the app service can benefit the firms.

15Think of a pizza man, who delivers a pizza at a delivered price equal to the mill price
plus the actual transportation cost for making that delivery. Note that we have assumed
in Problem 2 of Homework 3 that a buyer must pay for his own transportation cost.
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According to Lemma 1, if ct < c(1− t), then PA(t) = c(1− t), and firm
B must adopt a mixed pricing strategy P̃B(t) whose realizations are
higher than c(1− t) with probability one; and similarly, if ct > c(1− t),
then PB(t) = ct, and firm A must adopt a mixed pricing strategy P̃A(t)
whose realizations are higher than ct with probability one. At t = 1

2
,

so that the two firms are faced with the same unit cost, they must
price at PA(1

2
) = PB(1

2
) = ct = c(1− t) = c

2
and each gets zero profits.

Now, we can recover the equilibrium mill prices by simply noting that
PA(t) = pA(t) + ct and PB(t) = pB(t) + c(1− t).

Note that in equilibrium firm A wins buyer t’s patronage for sure if
t < 1

2
, and firm B wins buyer t’s patronage for sure if t > 1

2
. To

compute firm A’s equilibrium expected profit, note that

∫ 1
2

0
pA(t)dt = c · (t− t2)|

1
2
0 =

c

4
.

Similarly, to compute firm B’s equilibrium expected profit, note that

∫ 1

1
2

pB(t)dt = c · (t2 − t)|11
2

=
c

4
.

Consider part (iii). Given t and pA, if pA + ct > (1− t)c, then firm B,
which operates at zero costs, can and will find a price pB to win buyer
t’s patronage. Thus when pricing uniformly at pA, firm A knows that
only those buyers with pA + ct ≤ (1− t)c⇔ t ≤ c−pA

2c
would ultimately

buy from firm A. Hence at the beginning of stage 2 firm A seeks to

max
pA

(
c− pA

2c
)pA

so that firm A would price at pA = c
2

and obtains a volume of sales
equal to 1

4
, implying that firm A’s equilibrium profit is c

8
.

On the other hand, firm B would lose to firm A when facing any buyer
t ∈ [0, 1

4
). One best response for firm B when facing buyer t = 1

4
is

obviously pB(t) = 0. When facing any buyer t > 1
4
, firm B would

price just slightly below pA + ct − (1 − t)c = c(2t − 1
2
) and win the
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buyer’s patrongage for sure. (Strictly speaking, firm B does not have
a well-defined best response in this subgame!) Consequently, firm B’s
equilibrium expected profit is essentially

∫ 1

1
4

c

2
(4t− 1)dt =

c

2
· (2t2 − t)|11

4
=
c

2
· (1 +

2

16
) =

9c

16
.

Consider part (iv). It is clear that (U,D) is inconsistent with a pure-
strategy equilibrium: firm A would get c

8
under (U,D), but it would

get c
4

if it would deviate and adopt D in stage 1 instead! For the same
reason, (D,U) is inconsistent with a pure-strategy equilibrium either.

It is also clear that (U,U) is inconsistent with a pure-strategy equilib-
rium: firm B would get c

2
under (U,U), but it would get 9c

16
if it would

deviate and adopt D in stage 1 instead!

Finally, it is obvious that (D,D) is consistent with equilibrium, and it
is the stage-1 outcome of the unique pure-strategy equilibrium of the
game.

Remark. Allowing the players to have a larger strategy space may
lead to a lower equilibrium payoff for each and every player—we have
learned this fact since Lecture 1. Here, allowing the players to engage in
third-degree price discrimination results in each and every player get-
ting a lower equilibrium payoff, and although the players would become
better off if they could both commit to not performing third-degree
price discrimination, each of them has an incentive to renege on such
a commitment. This is one version of the prisoners’ dilemma that we
discussed in Lecture 1.

To compare what happens in stage 2 under respectively (U,U) and
(D,D), note that under (U,U) firm i cannot serve firm j’s local buyers
with a very low price, because pricing uniformly in this way would
mean to give up the chance to extract surplus from one firm’s own
local buyers. (This reasoning has been emphasized in Problem 1 as
well.) Under (D,D), because firm i can serve different buyers at different
prices, firm i can offer a very low price to firm j’s local buyers without
having to worry about firm i’s own local buyers. This forces firm j to
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defend its turf by offering a much lower price. In equilibrium, price
discrimination forces both firms to charge lower prices to their own
local buyers, but without changing a firm’s equilibrium turf: firm A is
still serving buyers at t < 1

2
and firm B is still serving buyers at t > 1

2
.

Hence both firms end up having lower profits under (D,D) than under
(U,U).

5. (A CSV Model with Inefficient Mergers.) Consider two firms,
called firm 1 and firm 2, run by risk-neutral entrepreneurs A1 and A2

respectively. Both firms are penniless. Each firm is endowed with one
investment project at date 0, which needs a date-0 capital outlay of
I = 18

100
, which the firm must raise from (one of) the competitive risk-

neutral investors. Nobody in this exercise has time preferences. For
j = 1, 2, firm j’s project will generate date-1 cash flow z̃j ≥ 0, whose
realization zj is costlessly observable to only entrepreneur j. An in-
vestor must spend a cost c for state verification if he also wishes to
learn this realization, and following state verification, zj will become
public information at date 1. The game proceeds as follows.

• At date 0, the two entrepreneurs A1 and A2 can decide whether
to have their firms merged into a new firm, and if they decide to
do so, then each of them will hold 1

2
of the new firm’s equity. The

merger itself would be inefficient. It creates no synergistic gain;
instead, if the new firm can raise 2I = 36

100
at date 0, then the new

firm’s date-1 cash flow generated by its investment project (which
the new firm can choose to abandon) will be equal to z1 + z2 − δ,
where δ > 0 is a constant.

• If a merger has taken place at date 0, then at date 0 the new firm
must either abandon its investment projects or try to raise 2I by
offering an optimal financial contract to (one of) the competitive
investors, and the chosen investor can either accept or reject the
contract. The game ends at date 0 if the new firm’s offer gets
turned down by investors, and in that case each entrepreneur’s
payoff is zero; otherwise, the investor provides the amount 2I of
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cash to the new firm, and the game moves on to date 1.

• If there has been no merger at date 0, then at date 0 each firm
j can either abandon its investment project or try to raise I by
offering its own financial contract to (one of) the competitive in-
vestors. The game ends at date 0 for firm j, if Aj’s offer gets
turned down by investors, and in that case Aj’s payoff is zero;
otherwise, the chosen investor must provide the amount I of cash
to firm j, and the game moves on to date 1.

• Suppose that the game continues at date 1. Then the cash flows
are realized and the firm(s) and the contracting investor(s) must
then act according to the date-0 contract(s) regarding state veri-
fication and profits-sharing.

Suppose that

c =
7

20
, z1 = z, z2 = 1− z,

where z is uniformly distributed over the unit interval [0, 1].

(i) Suppose that the two firms have chosen to not undergo the merger.
What is the equilibrium face value of debt chosen by entrepreneur A1?
What is entrepreneur A2’s equilibrium payoff (computed at date 0)?

(ii) Suppose that the two firms have completed the merger. In this
subgame, the new firm will implement its investment projects if and
only if δ ≤ δ∗. What is δ∗?

(iii) In equilibrium a merger of the two firms occurs at date 0 if and
only if δ ≤ δ∗∗. What is δ∗∗?

Solution. Consider part (i). Let the face value of debt be F1 in A1’s
offer. We must solve the following binding IRB condition:

18

100
= I = (E[z|z < F1]− c)prob.(z < F1) + F1prob.(z ≥ F1)
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= (
F1

2
− c)F1 + F1(1− F1)

= −F
2
1

2
+ (1− c)F1

= −F
2
1

2
+

13

20
F1

⇒ F1 =
18

20
or

8

20
,

so that F1 = 2
5
. Entrepreneur A1’s payoff from offering a debt contract

with face value equal to F1 = 1
2

is

E[z1]− I − c · prob.(z1 < F1)

=
1

2
− 18

100
− 7

20
· 2

5
=

9

50
.

By symmetry, this is also entrepreneur A2’s equilibrium payoff.

Consider part (ii). If the two firms choose to merge into a new firm,
then by undertaking its investment projects, the new firm’s date-1 cash
flow will be equal to z1 +z2−δ = 1−δ for sure if the new firm can raise
2I = 36

100
at date 0. The new firm will go ahead with these investment

projects if and only if

δ ≤ δ∗ =
64

100
.

This finishes part (ii).

Finally, consider part (iii). If the condition stated in part (ii) holds,
then entrepreneur A1’s payoff after going through the merger and cost-
less borrowing would be

1

2
[

64

100
− δ],

which exceeds 9
50

, the payoff that entrepreneur A1 would obtain if firm
1 remains stand-alone, if and only if

δ ≤ δ∗∗ =
28

100
=

7

25
.

Remark. More generally, corporate hedging is beneficial when the
firm is faced with a CSV problem. Without such a problem, individual
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investors can hedge their own risks, and corporate hedging cannot do
a better job. In the presence of a CSV problem, corporate hedging can
raise the lowest possible outcome of the firm’s date-1 cash flow, which
reduces the expected dead-weight cost that the borrowing firm and the
lending investor have to spend on earnings verification. Here, in this
exercise, corporate hedging takes a very costly form: going through a
merger with another firm whose date-1 cash flow (if it gets financed)
will be highly negatively correlated with the current firm’s date-1 cash
flow.
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