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1. This note consists of five parts. In part I, we shall review the costly-
state-verification (CSV) model of debt financing and give several ap-
plications. In part II. we shall discuss how risky short-term debt and
long-term debt may respectively affect a borrowing firm’s status in
product market competition. In part III, we discuss several topics in
stock trading, including initial public offering (IPO), friendly merger,
hostile takeover, tender offer, the free-rider problem, the determination
of equilibrium bid and ask prices in an over-the-counter market, and
the implications of different trading mechanisms for risk-sharing effi-
ciency and the equilibrium transaction costs. In part IV, we review a
reputation game with entry deterrence. Finally, in part V, we introduce
the concept of Nash implementation, and talk about the subjects to be
covered in Game Theory with Applications to Finance and Marketing,
II.

2. (Part I.) Consider the following simplified version of the CSV model
studied in Gale and Hellwig (1985, RES). Entrepreneur A must raise
I > 0 dollars from a competitive bank B at date 0 in order to implement
an investment project, which yields a random cash inflow (interchange-
ably, profit) z̃ at date 1. Assume that A and B are both risk-neutral
without time preferences, and A has all bargaining power against B
at date 0 when they sign a financial contract (because there are many
banks competing with B at date 0). Assume also that z̃ is uniformly
distributed over the unit interval [0, 1]. (The results will remain valid
if instead z̃ has a positive density over its support, which is a compact
interval.) At date 1, only A gets to see the realization of z̃ (called
the earnings state or the realized profit), but if B wants, B can spend
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c > 0 (to hire a CPA) to find out the true profit (and to produce legal
evidence for that true profit). Assume that I + c < E[z̃] = 1

2
; that is,

the investment project has a positive NPV.

A date-0 incentive-feasible financial contract is a tuple

C ≡ {R0(ẑ), R1(ẑ, z), d(ẑ); ∀z, ẑ ∈ [0, 1]}

such that, given contract C has been signed at date 0,
(1) A must first make an earnings report ẑ ∈ [0, 1] at date 1;
(2) B will then spend c to find out A’s true profit (equivalently, to ver-
ify A’s earnings state), if and only if it is specified in C that d(ẑ) = 1,
where ∀ẑ ∈ [0, 1], d(ẑ) equals either 0 or 1;
(3) A must repay B the amount R0(ẑ) if A has reported a profit ẑ such
that d(ẑ) = 0;
(4) A must repay B the amount R1(ẑ, z) if A has reported a profit ẑ
such that d(ẑ) = 1, and A’s true profit is instead z (which will be re-
vealed to the public after B spends c);
(5) (Condition LL) 0 ≤ R1(ẑ, z) ≤ z, 0 ≤ R0(ẑ) ≤ ẑ;
(6) (Condition ICA) for all z ∈ [0, 1], reporting ẑ = z is A’s date-1
optimal strategy; and
(7) (Condition IRB) B can at least break even by accepting contract C.

Some explanations are in order. In plain words, an incentive-feasible
contract must specify when B will send a CPA to audit A’s profit at date
1, and this decision d is contingent on A’s profit report ẑ. Moreover,
if given A’s profit report ẑ, B must audit A’s profit according to the
contract, then the true profit z will become known, and in that case A’s
repayment to B can depend on both A’s report ẑ and the true profit
z; this explains the function R1(·, ·). On the other hand, if given A’s
profit report ẑ, B should not audit A’s profit according to the contract,
then since the true profit remains A’s private information, the contract
can only specify a repayment R0(·) that is contingent only on A’s profit
report ẑ. Furthermore, the repayment R1 cannot exceed the true profit
z, and in case of no audit, the repayment cannot exceed the profit report
ẑ; these are referred to as the limited-liability constraint for A. Note
that R1 and R0 are also required to be non-negative; these are called
limited-liability constraint for B. The latter says that B is not obliged
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to lending more money to the firm at date 1. These limited-liability
constraints are written as Condition LL in (5). Next, note that we have
required that A must always truthfully report the date-1 profit under
an incentive-feasible contract. This is Condition ICA, and it originates
from the revelation principle in contract theory, which says that for
each contract that makes d, R0, and R1 contingent on some verifiable
messages there exists a contract that makes d, R0, and R1 contingent on
ẑ and z only and that induces truthtelling as A’s best response in each
and every true state z (which gives rise to the constraint ICA), where
equivalence means that the two contracts yield the same payoff for A.
Finally, an incentive-feasible contract must ensure that B is willing to
accept it in the first place, and this is stated as Condition IRB.

To sum up, in designing a financial contract, we can always confine
our attention to the set of incentive-feasible contracts defined above.
Among these incentive feasible contracts, A’s favorite contracts (which
may not be unique) will be termed incentive efficient, or simply the op-
timal financial contracts. Now let us characterize an optimal financial
contract.

Step 1. Suppose that C is incentive-feasible. Then R0(ẑ1) = R0(ẑ2)
for all ẑ1, ẑ2 such that d(ẑ1) = d(ẑ2) = 0.

Proof. Suppose that d(ẑ1) = d(ẑ2) = 0 but, say, R0(ẑ1) > R0(ẑ2).
Then given that the true profit is ẑ1, A strictly prefers to lie and report
ẑ2. This is a contradiction to ICA. ‖

Step 2. If C is incentive-feasible, then there exists some z ∈ [0, 1] such
that d(z) = 1.

Proof. Suppose that d(z) = 0 for all z ∈ [0, 1]. Then according to
Step 1, A must make the same repayment regardless of the true profit
z. Condition LL implies that, by reporting z = 0, A does not have to
repay anything. This violates IRB, since B, after paying I > 0 at date
0, can get nothing back at date 0. This shows that C is not incentive-
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feasible, a contradiction. ‖

Step 3. Suppose that C is incentive-feasible. Let F = R0(ẑ) for all ẑ
such that d(ẑ) = 0. Then F ≥ R1(z, z) for all z such that d(z) = 1.

Proof. This assertion is vacuously true if d(z) = 1 for all z ∈ [0, 1].
So, let us assume that there exists z′ with d(z′) = 0 and let F = R0(z

′).
If for some z with d(z) = 1 we have R1(z, z) > F , then when the true
profit is z, A strictly prefers to lie and report profit z′, which violates
ICA, a contradiction. ‖

To sum up, the first three steps have shown that if C is incentive-feasible
with F being the repayment made by A to B in the event of d = 0, then
R(z) ≤ min(z, F ) for all z ∈ [0, 1], where R(z) = R1(z, z) if d(z) = 1
and R(z) = R0(z) if d(z) = 0. A contract C that specifies R1(z, z) = z
and K = [0, F ) is referred to as a standard debt (SD) contract, which is
uniquely defined by the face value of debt, F . Note that a SD contract
is incentive feasible, and with such a contract, R(z) = min(z, F ) for all
z ∈ [0, 1]. The remaining steps will establish that no other contracts
can outperform an optimal SD contract. That is, with respect to the
costly state verification problem, standard debt contracts are optimal
contracts.

Step 4. Suppose that C is incentive-feasible. Let F = R0(z) for all z
with d(z) = 0. Define the event

K ≡ {z ∈ [0, 1] : d(z) = 1}.

Then [0, F ) ⊂ K. That is, we must have d(z) = 1 whenever z < F .

Proof. Suppose that z < F and yet d(z) = 0. Then we would have
F = R0(z) ≤ z < F , a contradiction. ‖
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Step 5. Suppose that C is incentive-efficient. Then IRB is binding
under C.

Proof. By definition, C is incentive-efficient if and only if it solves the
following maximization problem:

max
K,F,R1(·,·)

∫
K

[z −R1(z, z)]dz +
∫
[0,1]\K

[z − F ]dz

subject to

(IRB)
∫
K
R1(z, z)dz + F [1− prob.(K)]− c prob.(K) ≥ I;

0 ≤ R1(z, z) ≤ max[z, F,R1(z
′, z)], ∀z, z′ ∈ K;

0 ≤ F ≤ z, ∀z ∈ [0, 1] \K.

Suppose instead that IRB is not binding under C. Then for sufficiently
small e > 0, for all z′, z ∈ K, we can replace F and R1(z

′, z) by respec-
tively F (1− e) and R1(z

′, z)(1− e) and ensure that the new contract is
still incentive feasible. Since A would be better off offering B the new
contract rather than C, by definition C cannot be incentive efficient.
Thus we have a contradiction. ‖

Step 6. C is incentive-efficient if and only if it solves the following
minimization program:

min
K,F,R1(·,·)

prob.(K)

subject to

prob.(K) =
1

F + c
[
∫
K
R1(z, z)dz + F − I],

0 ≤ R1(z, z) ≤ max[z, F,R1(z
′, z)], ∀z, z′ ∈ K;

0 ≤ F ≤ z, ∀z ∈ [0, 1] \K.
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Proof. By Step 5, C is incentive-efficient only if IRB is binding, which
implies that

∫
K
R1(z, z)dz + F [1− prob.(K)] = c prob.(K) + I,

and hence we can re-write the A’s objective function as

∫
K

[z −R1(z, z)]dz +
∫
[0,1]\K

[z − F ]dz = E[z]− I − c prob.(K).

It follows that C is incentive efficient if and only if it solves the following
maximization problem:

max
K,F,R1(·,·)

E[z]− I − c prob.(K)

subject to

prob.(K) =
1

F + c
[
∫
K
R1(z, z)dz + F − I],

0 ≤ R1(z, z) ≤ max[z, F,R1(z
′, z)], ∀z, z′ ∈ K;

0 ≤ F ≤ z, ∀z ∈ [0, 1] \K.

Now that E[z], I, and c > 0 are all constants, we can further re-write
Mr. A’s optimization problem as

min
K,F,R1(·,·)

prob.(K)

subject to

prob.(K) =
1

F + c
[
∫
K
R1(z, z)dz + F − I],

0 ≤ R1(z, z) ≤ max[z, F,R1(z
′, z)], ∀z, z′ ∈ K;

0 ≤ F ≤ z, ∀z ∈ [0, 1] \K.

This completes the proof. ‖
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Define F ∗ as the unique solution to

g(F ) ≡ −1

2
F 2 + (1− c)F − I = 0.

Then, 0 < F ∗ = (1− c)−
√

(1− c)2 − 2I < 1− c.

Step 7. Recall that a standard debt contract can be uniquely defined
by its face value F .

• A standard debt contract with face value F has prob.(K) = F .

• A standard debt contract with face value F is incentive feasible if
and only if F ∗ ≤ F ≤ 1.

• The SD contract with face value F ∗ dominates all other SD con-
tracts, and will be denoted by C∗. Under C∗, IRB is binding.

• B’s payoff from holding a standard debt with face value F is
strictly increasing in F on the interval [F ∗, 1−c), and it is strictly
decreasing in F on the interval (1− c, 1].

Proof. It is easy to see that a standard debt contract satisfies A’s IC
constraints and the limited liability constraints if and only if 0 ≤ F ≤ 1.
To satisfy B’s IR constraint, B’s payoff from accepting the standard
debt contract, which is∫

K
R1(z, z)dz + F [1− prob.(K)]− c prob.(K)− I

=
∫ F

0
zdz + F [1− F ]− cF − I

= −1

2
F 2 + (1− c)F − I = g(F ),

must be non-negative; that is, a SD contract with face value F would
make IRB binding if and only if g(F ) = 0.

Since we have assumed that the net present value of the project is
positive,

E[z̃] =
1

2
> c+ I,
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we have

(1− c)2 − 2I = c2 + 2[
1

2
− (c+ I)] > 0,

implying that g(F ) ≥ 0 if and only if

F ∗ = (1− c)−
√

(1− c)2 − 2I ≤ F ≤ (1− c) +
√

(1− c)2 − 2I.

However, we have

1

2
− c− I > 0⇒ 1− 2c− 2I > 0⇒ (1− c)2 − 2I > c2

⇒
√

(1− c)2 − 2I > c⇒ (1− c) +
√

(1− c)2 − 2I > 1.

Since F > 1 would violate A’s IR constraint, we conclude that a stan-
dard debt contract is incentive feasible if and only if F ∗ ≤ F ≤ 1.

The last assertion now follows from the fact that the concave function
g(F ) attains its maximum at F = 1− c. ‖

Step 8. Suppose that C is incentive efficient. Then under C the event

E = K
⋂

[F, 1]

is a zero-probability event.

Proof. Suppose that E occurs with a positive probability under the
incentive efficient contract C, and we shall demonstrate a contradiction.

First note that under C, prob.(K) = F+prob.(E).

Consider a standard debt contract C ′ with face value equal to the con-
stant function R0(·) under the incentive efficient contract C. Then
under C ′ B receives F if z ∈ [F, 1] and z − c if z ∈ [0, F ]. However,
under C, B receives R1(z)− c ≤ z − c if z ∈ [0, F ], F if z ∈ [F, 1]

⋂
Kc,

and R1(z) − c ≤ F − c if z ∈ [F, 1]
⋂
K. That is, B gets weakly more

from accepting C ′ than accepting C. Since B must break even when
accepting the incentive efficient contract C, the SD contract C ′ is also
incentive feasible, which, by Step 7, implies that F ∈ [F ∗, 1].
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Note that the standard debt contract C∗ is incentive feasible and it
makes IRB binding, and it has a probability of state verification equal
to F ∗ ≤ F < F+prob.(E), so that by Step 6, C cannot be incentive
efficient, a contradiction! ‖

Note that Step 4 and Step 8 together imply that under an incentive
feasible contract, prob.(K) = F ≡ R0(·).
Step 9. Suppose that C is incentive efficient. Then under C the event

G = {z ∈ [0, F ] : R1(z, z) < z}

is a zero-probability event, where F = R0(·).

Proof. Suppose instead that G may occur with a positive probabil-
ity under the incentive efficient contract C. We shall demonstrate a
contradiction.

First note that under C, by Step 6, prob.(K) = F .

Consider the standard debt contract C ′ with face value F . Because G
may occur with a positive probability, B gets strictly more from accept-
ing C ′ than accepting C. Since C is incentive efficient, the SD contract
C ′ is also incentive feasible, and under C ′, IRB is not binding. This
implies, by Step 7, that F ∈ (F ∗, 1].

Recall that the standard debt contract C∗ with face value F ∗ is incen-
tive feasible and it makes IRB binding, and it has a probability of state
verification equal to F ∗. The SD contract C ′ and the incentive efficient
contract C both share a probability of state verification equal to F .
Since F > F ∗, by Step 6, C cannot be incentive efficient, a contradic-
tion! ‖

Thus Steps 8 and 9 together have established that an incentive efficient
contract in the current model is “essentially” a standard debt contract.

Remark. We have assumed that the contracting parties can only com-
mit to a deterministic state-verification policy (i.e., d must equal either
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zero or one). Consequently, ICA may hold as an inequality under the
optimal contract. In fact, verifying with probability one is un-necessary
for the purpose of inducing truth-telling. Mookherjee and Png (1989,
Quarterly Journal of Economics) show that the optimal state verifica-
tion policy would be stochastic whenever stochastic policies are feasible;
see the example in the next section. We have also assumed that the
entrepreneur is risk-neutral. Winton (1994, Review of Financial Stud-
ies) shows that when the entrepreneur is risk-averse, standard debt is
no longer optimal as it results in the entrepreneur bearing too much
risk. The optimal contract would leave the entrepreneur with a positive
payoff even in the event of state verification. If we interpret state veri-
fication as the event of bankruptcy, then Winton’s theory is consistent
with the empirical fact that shareholders tend to get a positive payoff
in the event of bankruptcy.

3. (Example 1.) At date 0 A must offer a contract to B to raise I, but
only A gets to see the realized profit z at date 1. In this exercise, we
assume that z is equally likely to take on 3 or 0, and that

I = 1, c =
1

5
.

(i) Suppose first that A can commit in the date-0 contract either d = 0
or d = 1. In this case, let F be the face value of the equilibrium debt
contract that A offers B at date 0. Then F =? Compute A’s equilib-
rium payoff.

(ii) Now, suppose instead that A can commit in the date-0 contract
any d ∈ [0, 1]. In this case, let F ′ be the face value of the equilibrium
debt contract that A offers B at date 0. Then F ′ =? Compute A’s
equilibrium payoff.

(iii) Now, suppose instead that the date-0 contract must give investor
B the right to verify the earnings state at date 1, but state verification
occurs at date 1 when and only when it is in B’s interest to verify the
profit at date 1. That is, the date-0 contract cannot commit to any d

10



that is inconsistent with B’s preferences at date 1. Moreover, assume
that B can obtain the true profit z whenever state verification proves
that ẑ 6= z; that is, the date-0 contract imposes the maximum penalty
for lying. Let F ′′ be the face value of the equilibrium debt contract that
A offers B at date 0. Then F ′′ =? Compute A’s equilibrium payoff.1

Solution. For part (i), recall that F must satisfy B’s binding IR
constraint:

1

2
F − 1

2
c = I ⇒ F =

11

5
.

In this case, A’s payoff is equal to

1

2
(3− F ) =

2

5
.

Consider part (ii). First note that in part (i), when z = 3, by telling
the truth A would get

3− 11

5
=

4

5
,

1Hint: At date 1, A must first report ẑ ∈ {0, 3}. Given F ′′, it can be shown that

• B will never verify if A has reported ẑ = 3; and

• given that B may verify with probability d after A has reported ẑ = 0, A will always
tell the truth when z = 0.

Thus suppose that A may lie about the true profit z = 3 with probability a, and B may
verify with probability d following A’s report ẑ = 0. It can be shown that in equilibrium
A must feel indifferent about telling the truth or lying when z = 3, and B must feel
indifferent about spending or not spending c after A reports that ẑ = 0. It follows that,
given F ′′, we must have 

3− F ′′ = 3(1− d);

0 = −c+
1
2 ·a

1
2 ·a+

1
2 ·1
· 3,
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but A’s payoff would drop to zero if A chose to lie and to trigger state
verification. That is, A’s IC constraint is strictly satisfied under the
contract in part (i). This is wasteful, because A would still be willing to
tell the truth if the probability d following ẑ = 0 were reduced slightly.
Note that we have assumed that this cannot be done in part (i), where
A can only commit to a deterministic policy of state verification.

Now, since any d ∈ [0, 1] is allowed in part (ii), A can do better by offer-
ing a date-0 contract (F ′, d) such that both IRB and ICA are binding.
Solving the following system of equations simultaneously,


1
2
F ′ − 1

2
dc = I;

3− F ′ = 3(1− d),

we obtain

d =
I

3
2
− 1

10

=
5

7
, F ′ =

3
3
2
− 1

10

=
15

7
.

In this case, A’s equilibrium payoff is

1

2
(3− F ′) =

3

7
.

Finally, consider part (iii). Given F ′′, what would happen in the date-1
subgame where A has reported ẑ? It can be shown that

• B will never verify if A has reported ẑ = 3; and

• given that B may verify with probability d after A has reported
ẑ = 0, A will always tell the truth when z = 0.

Thus suppose that A may lie about the true profit z = 3 with probabil-
ity a, and B may verify with probability d following A’s report ẑ = 0.
It can then be shown that in equilibrium

0 < a, d < 1;

12



that is, A must feel indifferent about telling the truth or lying when
z = 3, and B must feel indifferent about spending or not spending c
upon seeing A’s report that ẑ = 0.

It follows that, given F ′′, we must have


3− F ′′ = 3(1− d);

0 = −c+
1
2
·a

1
2
·a+ 1

2
·1 · 3,

so that

d =
F ′′

3
, a =

1
10

1
2
(3− 1

10
)

=
1

14
.

Now, at date 0, F ′′ must be the solution to the following maximization
problem:

max
F

1

2
[3a(1− d) + (1− a)(3− F )]

subject to

d =
F ′′

3
, a =

1
10

1
2
(3− 1

10
)

=
1

14
,

and the following IRB:2

1

2
(1− a)F ′′ − I ≥ 0.

At optimum, IRB must be binding, and hence we obtain

2B no longer expects to incur a state-verification cost! At the state verification date,
upon seeing ẑ = 0, B either chooses to not verify the state (which costs nothing), or B
may verify and yield a return which is expected to exactly cover B’s verification cost.
These two actions are equally good, and hence B will randomize over them upon seeing
the earnings report ẑ = 0.
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F ′′ =
3− 1

5
3
2
− 1

5

=
28

13
.

It follows that A’s equilibrium payoff becomes

1

2
(3− F ′′) =

11

26
.

Remark. In this exercise, A’s payoff in part (ii) is the highest, and
his payoff in part (i) is the lowest. This is quite natural: B will break
even under the optimal contract obtained in part (i) or part (ii) or part
(iii), but the expected cost for state verification differs over the three
scenarios.

Part (ii) allows A to directly minimize that expected cost, and hence it
maximizes A’s payoff. Via the mixed-strategy equilibrium of the date-
1 subgame, part (iii) can implement a probability of state verification
lower than d = 1, but since in equilibrium state verification may occur
with probability ad = 1

14
× 28

39
even in the true state z = 3, A’s optimal

payoff in part (iii) is less than in part (ii). Indeed, since in part (iii)
state verification may occur in the state z = 3, in order for B to break
even in both part (ii) and part (iii), we must have F ′′ > F ′, and hence
A’s payoff in part (iii), which is 1

2
(3−F ′′) is less than A’s payoff in part

(ii), which is 1
2
(3− F ′).

4. (Part II.) Now we review a few game-theoretic models of debt fi-
nancing with imperfectly competitive firms.

(Example 2.) (Risky Short-term Debt May Lead to More
Aggressive Cournot Competition.)
Consider two firms 1 and 2 engaging in Cournot competition at date 1.
They produce the same product and face the following inverse demand:

P = k(1− q1 − q2),
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where k > 0 is a constant. Firm 2’s unit production cost is kc, and
firm 1’s unit production cost is kc̃1 which is equally likely to be k(c+d)
and k(c− d). Firm 1 must choose q1 before seeing the realization of c̃1.
We assume that

1 > c+ d > c > c− d > 0.

Firms are risk-neutral without time preferences.
(i) Suppose that firms seek to maximize expected profits. Find the
Nash equilibrium.
(ii) Suppose that firm 1 has borrowed some debt prior to date 1. Let
the face value of firm 1’s debt be F , with

(Λ) max(k[
1− c− 4d

3
][

1− c+ 2d

3
], k[

(1− c)2

9
−(1− c)d

3
]) < F < k[

1− c+ 2d

3
]2.

Assume that each firm seeks to maximize its equity value, and investors
are all risk-neutral without time preferences. Find a Nash equilibrium
in which firm 1 does not always default on its debt.

Solution. It is useful to consider a situation where firm i’s unit cost
is ci. It is easy to show that firm i’s reaction function is

Ri(qj) =
1− qj − ci

2
, i, j = 1, 2,

so that in equilibrium

(Γ) q∗i =
1 + cj − 2ci

3
, i, j = 1, 2.

In part (i), note that E[c̃1] = c, and since both firms are risk-neutral
(so that only the expected unit cost matters), in equilibrium both firms
produce the same output, which is

q∗1 = q∗2 =
1− c

3
.

Consider part (ii). Let Π̃j denote firm j’s profit. Then by assumption
firm 1 seeks to maximize

E[max(Π̃1 − F, 0)],
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where
Π̃1 = kq1(1− q1 − q2 − c̃1).

Since firm 2’s profit kq2(1− q1− q2− c) is strictly concave in q2, firm 2
will adopt a pure strategy q∗2 in equilibrium. In an equilibrium where
firm 1 does not default on its debt in the low-cost state, there are two
possibilites: either firm 1 never defaults on its debt, or it defaults on
its debt only in the high-cost state. Observe that in either case, firm
1 must also adopt a pure strategy q∗1 in equilibrium. Hence there are
two possibilities regarding the equilibrium (q∗1, q

∗
2): either

kq∗1(1− q∗1 − q∗2 − c− d)q∗1 ≤ F < kq∗1(1− q∗1 − q∗2 − c+ d)q∗1

or
kq∗1(1− q∗1 − q∗2 − c− d)q∗1 > F

must be true. In the former case, given q∗2, firm 1’s equilibrium best
response is

q∗1 =
1− q∗2 − c+ d

2
,

which together with firm 2’s reaction function

q∗2 =
1− q∗1 − c

2

implies that

(q∗1, q
∗
2, p
∗) = (

1− 2(c− d) + c

3
,
1− 2c+ (c− d)

3
,
k[1 + c+ (c− d)]

3
),

and in this equilibrium, firm 1’s profit is

kq∗1(1− q∗1 − q∗2 − c− d)q∗1 = k[
1− c− 4d

3
][

1− c+ 2d

3
]

if its realized unit cost is c+ d; and firm 1’s profit is

kq∗1(1− q∗1 − q∗2 − c+ d)q∗1 = k[
1− c+ 2d

3
]2

if its realized unit cost is c − d. Condition (Λ) implies that this equi-
librium does exist. In the latter case, firm 1 will never default on its
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debt in equilibrium, and hence the equilibrium is as stated in part (i).
If the latter equilibrium exists, then firm 1’s equilibrium profit would
be

k[
(1− c)2

9
− (1− c)d

3
]

when its realized unit cost is c + d, but condition (Λ) implies that
firm 1 must default on its debt when its realized unit cost is c + d, a
contradiction to the conjecture that firm 1 never defaults on its debt
in equilibrium. Hence the latter equilibrium does not exist.3

Our conclusion is thus that, under condition (Λ), in equilibrium firm
1’s objective function becomes

1

2
[kq1(1− q1 − q∗2 − c+ d)− F ] +

1

2
· 0.

Note carefully that, given q∗2, firm 1 has essentially become a firm with
unit cost c− d! In equilibrium, firm 2 must reduce its output to below
1−c
3

, because firm 2 realizes that firm 1 has become more aggressive
than in part (i) in choosing its output, and, expecting this, firm 2’s
best response to cut back on its own output. Indeed, in the SPNE we
have, using the formulae in (Γ),

q∗∗1 =
1 + c− 2c+ 2d

3
=

1− c+ 2d

3
>

1− c
3

= q∗1,

3Condition (Λ) is needed here because without such a condition, this game may not
have a (mixed- or pure-strategy) Nash equilibrium. The following is a numerical example.
Suppose that

k = 1, c = d =
1

10
, F =

109

1800
.

In equilibrium, either firm 1 defaults on its debt in the high-cost state, or it does not. But
one can verify that neither is consistent with equilibrium. Indeed, if firm 2 expects firm 1
to default on its debt in the high-cost state, then firm 2 expects firm 1 to expand output,
and hence firm 2 must cut back on its own output, resulting in firm 1 having a realized
profit in the high-cost state exceeding F . On the other hand, if firm 2 expects firm 1 to
never default on its debt, then the two firms will choose the same output level, leading
to firm 1 having a realized profit in the high-cost state which is less than F . The non-
existence of equilibrium is not surprising, because a game where players’ strategy spaces
are not finite sets may not have a Nash equilibrium. Existence of equilibrium requires
certain convexity conditions.
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and

q∗∗2 =
1 + c− d− 2c

3
=

1− c− d
3

<
1− c

3
= q∗2.

To sum up, by issuing risky short-term debt, firm 1 gains a competitive
advantage, since it behaves as if its unit cost were low with probability
one, and expands output accordingly. By the fact that the two firms’
output choices are strategic substitutes, this forces its rival to produce
less and concede in market share. Note that to have this commitment
value, firm 1’s debt must be risky: firm 1 must get nothing when its
unit cost is high and the profit that it makes cannot fully repay the
debt. Note that var[Π̃1] rises because of firm 1’s risky debt, which is
the asset substitution effect pointed out in Jensen and Meckling (1976).
That risky short-term borrowing may induce a firm to expand output
and compete more aggressively was first pointed out by Brander and
Lewis (1986, AER).

5. (Example 3.) (Long-term Debt May Promote Collusion.)
Now, assume that the two firms in Example 2 also compete at date 0,
and that firm 1 borrows debt at date 0 when it is penniless. Again,
the debt with face value F will be due at date 2. It is now referred
to as a long-term debt. At date 0, each firm can spend a cost h on
promotion. If neither promotes, each firm gets v at date 0. If exactly
one firm promotes, then that firm gets 2v − h, leaving the other firm
with zero profit. If both promote, then each gets v − h > 0.

To make things interesting, let us assume that

(∆)
kd(2− 2c− d)

9
> v − h,

and that

(Σ) F−(2v−h) < max(k[
1− c− 4d

3
][

1− c+ 2d

3
], k[

(1− c)2

9
−(1− c)d

3
])

< F − (v − h) < k[
1− c+ 2d

3
]2.

Note that, were the date-1 competition not existent, the two firms
would compete at date 0 with their only concerns being their date-0
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profits. It is clear that they are playing a version of the game called
the prisoner’s dilemma, where the only Nash equilibrium is the one in
which both promote.

Since firms are rational, and since they know that they have to com-
pete again at date 1, they seek to maximize the sum of profits over
dates 0 and 1 when taking date-0 actions. Condition (Σ) says that if
firm 1 does not make enough profits at date 0, it will panic because the
long-term debt will default at date 2 in the event that c̃1 = c+ d, and
hence it will expand output, which will hurt firm 2. Realizing this, firm
2 must “make firm 1 look good” at date 0, so that at the beginning of
date 1, firm 1 knows that its debt will never default at date 2, which
will then induce firm 1 to choose a low output, thereby raising firm
2’s output and date-1 profit. Condition (∆) says that by conceding at
date 0 and then gaining at date 1, firm 2 will become better off. Hence
in the SPNE, firm 2 does not promote at date 0, leaving firm 1 with
a profit (2v − h), which results in a symmetric date-1 output choice
q∗i = 1−c

3
as in part (i) of Example 5.

Remark. That long-term borrowing can mitigate competition before
the debt maturity date gets close was first pointed out by Glazer (1994,
JET). We have examined in Example 3 the case where only firm 1 is
financially leveraged.

Now consider the case where both firms have issued long-term debt with
identical face value, and where both firms have unit cost kc̃1. If the two
firms compete only at date 1, as in Example 2, then risky short-term
debt would make both of them worse off. This happens because both
firms would behave as if their unit cost were sure to be c− d! (This is
like a prisoner’s dilemma, where in equilibrium each firm has a lower
value; recall that firm value is the sum of debt value and equity value.)
On the other hand, If these firms compete at both dates 0 and 1, as in
Example 3, then debt actually benefit both of them: each firm would
want to make the other firm look good at date 0 in order to boost its
own date-1 profit. Consequently these two firms would be able to avoid
the inefficient date-0 outcome of the prisoner’s dilemma. Moreover, the
high profits they make at date 0 also allow them to avoid competing
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aggressively at date 1! Note that without long-term borrowing, the two
firms would be trapped in an inefficient outcome at date 0, although
their date-1 equilibrium output choices would be as efficient as in the
presence of long-term borrowing.

6. (Example 4.) The Bolton-Scharfstein (1990) CSV model.

Firm B needs F dollars to operate in the product market at respectively
date 0 and date 1. Profits are generated at respectively date 1 and date
2. Firm B has no cash initially, and it has to borrow from an investor
who has all bargaining power against firm B. Profits are only observable
to firm B and verifying profits is prohibitively costly for the investor.
The revelation principle implies that the contract-design problem be-
tween B and the investor can be modeled as a direct revelation game
with no loss of generality. In the direct revelation game, the repayment
of the financial contract only depends on the firm’s report of profit. As-
sume that at each date t (t = 1, 2) the profit of B can be either π1 (with
probability θ) or π2, with π2 > π1, π ≡ E(π) = θπ1 + (1 − θ)π2 > F ,
and π1 < F . Also, assume all parties are risk neutral with no time
preference.

(i) Show that if firm B operates for only one period, the investor will
refuse to lend F . (Hint: If the investor does, B will always report
π1 < F .)

Because of (i), we now suppose that B operates for two periods and
that π2 − π1 < F . The financing is assumed to proceed as follows. At
date 0, the investor lends F to B. Then at date 1, B reports its date-1
profit πi ∈ {π1, π2}. If B reports its date-1 profit to be πi, then it has
the obligation of paying the investor Ri at date 1. After this repayment
is made, with probability βi the debt is renewed. In case the debt is
renewed at date 1, then the investor gives F to B at date 1, and at date
2, B reports its profit πj. The second period repayment is denoted by
Rij if at date 1 firm B has reported πi and at date 2 it reports πj.

The game proceeds as follows. The investor first decides to or not
to lend at date 0. If lending is the decision, then the investor offers
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a financial contract (R1, R2, β1, β2, R11, R12, R21, R22) to B, and B can
either accept or reject.4 Such a contract specifies only variables that
can be subsequently observed by both contracting parties and can be
verified by the court of law (so that the latter can enforce it). When
specifying these contract variables, the investor must make sure that B
will accept (accepting generates for B a utility higher than otherwise),
which is called B’s individual rationality condition (IR condition). The
investor must also make sure that B will truthfully report its profits
(truthtelling is better than lying), which is called B’s incentive com-
patibility condition (IC condition). Finally, the repayment Ri and Rij

must really be affordable by B when the true profts are respectively πi
and πj at dates 1 and 2. This is called the limited liability condition
(LL condition).

Any contract satisfying these three conditions is said to be feasible.
The investor wants to find a feasible contract that maximizes her own
expected utility. The solution is called an optimal contract (because
such a contract is Pareto optimal within the set of feasible contracts).
Thus, when deciding to lend at date 0, the investor’s optimal contract
problem is

max
βi,Ri,Ri

−F + θ[R1 + β1(R
1 − F )] + (1− θ)[R2 + β2(R

2 − F )],

subject to
(IC at date 1) π2 −R2 + β2(E(π)−R2) ≥ π2 −R1 + β1(E(π)−R1);
(LL at date 1) πi ≥ Ri,
(LL at date 2) πi −Ri + π1 ≥ Ri, i = 1, 2;
(IR at date 0) θ[π1−R1+β1(E(π)−R1)]+(1−θ)[π2−R2+β2(E(π)−
R2)] ≥ 0.
Note that in the above, we have used the fact that Rij must be inde-
pendent of πj in order to satisfy B’s second period IC condition, and
we have written Rij as Ri. This is also why we did not impose B’s IC
condition at date 2.

(ii) Show that under optimal contract, firm B always tells the truth

4This implies that the borrower may be a small firm, which lacks bargaining power
when negotiating the loan contract with a large bank.
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when reporting the second-period profit. (Hint: Like the reasoning in
part (i), if the repayment were dependent on the second-period report,
B would always report π1 in the second period, violating B’s IC con-
straint.)

(iii) Show that the optimal contract (R∗1, β
∗
1 , R

∗
2, β

∗
2) is (π1, 0, E(π), 1) if

θF + (1− θ)E(π) > π1,

and (π1, 1, π1, 1) if otherwise. (Hint: Show that the above IC condition
has to be binding at optimum. Thus,

π2 −R2 + β2(E(π)−R2) = π2 −R1 + β1(E(π)−R1).

Replace this equality into the objective function and note that the ob-
jective function becomes strictly increasing in β2. This implies that the
objective function does not depend on R2 and R2 separately; rather,
it depends on R2 + R2 only (and similarly for the constraints.) Thus,
there is no loss to set R2∗ = π1. Also, the objective function is in-
creasing in both R1 and R1. Finally, note that the objective function
is decreasing in β1 if and only if

θF + (1− θ)E(π) > π1.

Depending on whether this inequality holds, the optimal contract can
be fully solved.)

(iv) Show that the investor lends F to B at date 0 if and only if

F <
(π1 + (1− θ)E(π))

2− θ
.

Up to now, we have assumed that π2 − π1 < F , and so refinancing at
date 1 is necessary for firm B to continue its business in the second
period.
(v) Show that, if instead,

min(π2 − F, F ) ≥ π1,
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then the investor refuses to lend at date 0 even if B can operate for two
periods.

Solution. Consider part (i). Apparently, B will always report π1 < F
in this one-period setting, and expecting this, investors never want to
lend to B in the first place.

Consider part (ii). As in part (i), if the second-period repayment were
made dependent on the second-period profit report in a non-trivial way,
then B will always report π1 in the second period, violating B’s second-
period IC constraint. Thus, the optimal contract requires that Rij be
independent of πj.

Consider part (iii). First it can be proved that the above IC condition
must be binding at optimum. Thus,

π2 −R2 + β2(E(π)−R2) = π2 −R1 + β1(E(π)−R1).

Replace this equality into the objective function and note that the
objective function becomes strictly increasing in β2. This means that
β∗2 = 1, which in turn implies that the objective function does not
depend on R2 and R2 separately; rather, it depends on R2 + R2 only
(and the same is also true for the constraints). Thus, there is no loss
to set R2∗ = π1. Also, the objective function is increasing in both R1

and R1. Thus, R1 = R1 = π1, according to LL. Finally, note that the
objective function is decreasing in β1 if and only if

θF + (1− θ)E(π) > π1,

and in this case, β∗1 = 0. On the other hand, when

θF + (1− θ)E(π) ≤ π1,

it is optimal to set β∗1 = 1.

Next, consider part (iv). We need to show that the investor lends F to
B at date 0 if and only if

F <
(π1 + (1− θ)E(π))

2− θ
.
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This follows from the fact that the investor’s expected profit is

π1 − F + (1− θ)(E(π)− F ),

which cannot be negative.

Finally, assume in part (v) that

min(π2 − F, F ) ≥ π1.

We need to show that the investor would refuse to lend to B at date 0
even if B can operate for two periods. To see that this is so, note that
if the above inequality holds, B will always report π1, with no concern
about whether he will get refinancing. This happens because, by the
above assumption, once B gets to operate for one period, B will collect
enough money to cover the second-period F . Recognizing this fact,
investors will not lend to B in the first place. This is one version of the
free cash flow problem discussed in Jensen (1986, American Economic
Review). There, Michael Jensen points out that there may be substan-
tial benefits resulting from a voluntary reduction of a firm’s internal
funds (by buying shares back, paying dividends, or repaying existing
debts).

7. (Part III.) In this part, we shall discuss several applications of game
theory in stock trading.

(a) (Going Public Before Acquisition) A start-up firm endowed
with a highly innovative new product may find it difficult to obtain
financing from traditional loan-making commercial banks, but it
may get financed by venture capitalists or angel investors, who
specialize in screening and fostering high-risk investment projects.
Funds are provided in a stage-finance manner, where success in
operations in previous stages is necessary for the start-up firm to
obtain financing in the next stage. Most start-up firms end up
failing in the first several stages, and the very few of them that
survive may turn out to be highly profitable. A successful start-
up firm tends to attract attention from large established firms,5

5Google was once considered a takeover target by Yahoo, when Google was
still cheap. For some reasons Yahoo passed up the takeover; see for instance
https://finance.yahoo.com/news/remember-yahoo-turned-down-1-132805083.html.
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and may become a takeover target. Zingale (1995) discusses why
a successful start-up firm may benefit from going public before
contacting an acquiring firm, and how much ownership the initial
entrepreneur should retain when going public.6 Intuitively, by sell-
ing shares to a continuum of small investors, the start-up firm can
utilize the free-rider problem to extract most monetary surplus
from the acquiring firm, but small investors would always ignore
the non-pecuniary private benefits that directing large sharehold-
ers possess, and to best extract such benefits from the acquiring
firm, the initial entrepreneur must possess an adequate owner-
ship. Consequently, a start-up firm would generally benefit from
going public, and there generally exists an optimal percentage of
ownership that the initial entrepreneur should continue to possess
following the IPO.

(b) (Coase Theorem and Trade Efficiency) Before discussing Zin-
gale’s story, let us first review the famous Coase Theorem7 and
the free-rider problem that arises when an acquiring firm makes a
tender offer to a continuum of small shareholders of a target firm.

Consider a bilateral trading model, where a seller is about to sell a
product to a buyer. The seller’s reservation value for the product is
c, and the buyer’s valuation for the product is v. The transaction
price is p.

When v and c are the seller and the buyer’s common knowledge,
and when bargaining is costless, Coase theorem says that trade
will happen for sure if v > c, with p lying somewhere between v
and c. Underlying Coase theorem is the fact that both agents are
rational, and they can share the surplus v − c when trade occurs.

When trade does not occur, the seller gets c, and the buyer gets
0. We call these payoffs the two agents’ status-quo payoffs. If the
two agents have equal bargaining power, as assumed in the Nash
bargaining solution, then they will split the transaction surplus (or
efficiency gain) v − c equally, so that after bargaining the seller’s

6Zingales, L., 1995, Insider Ownership and the Decision to Go Public, Review of Eco-
nomic Studies, 62, 425-448.

7Coase, R., 1937, The Nature of the Firm, Economica, 4, 386-405.
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payoff becomes c + 1
2
(v − c) = 1

2
(v + c), and the buyer’s payoff

becomes 0 + 1
2
(v − c) = 1

2
(v − c). The transaction price to fulfill

the Nash bargaining solution is p = 1
2
(v + c), so that the seller

gets p and the buyer gets v − p.

The Nash bargaining solution has assumed that the seller and
the buyer have the same bargaining power. If the seller has all
bargaining power, then he will set p = v; and if instead the buyer
has all bargaining power, then he will set p = c. In any case, under
Coase theorem, trade will occur for sure, and so the expected
surplus from trade is a fixed amount, and it is in this situation that
maximizing one’s own share of surplus is the same as minimizing
the rival’s share of surplus.

Now, what if v < c? Then trade efficiency dictates that the seller
should keep the product. No trade can take place. When v = c,
the two parties feel indifferent about to or not to trade, and we
shall assume that trade would still take place.

Finally, we should emphasize that under information asymmetry,
Coase theorem no longer applies, and there usually is a loss of
trade in the above bilateral trading model. For example, suppose
that the seller has all bargaining power, so that ψ = 1. Under
symmetric information, trade would occur with p = v, so that the
seller’s payoff is v and the buyer’s payoff is zero. Under asym-
metric information, say c = 0 for sure and v can take on v2 with
probability π or v1 with probability 1 − π, where v2 > v1 > c.
When π > v1−c

v2−c , it is in the seller’s best interest to announce
p = v2, but then trade cannot occur when actually v = v1. In
fact, it is a well-known result in contract theory that under infor-
mation asymmetry, attaining full trade efficiency is almost always
impossible (Myerson-Satterthwaite Theorem).8

(c) (Tender Offer and the Free-rider Problem.) In Grossman
and Hart (1980),9 the share value of an all-equity target firm would

8Myerson, R., and M. Satterthwaite, 1983, Efficient Mechanisms for Bilateral Trading,
Journal of Economic Theory, 29, 265-281.

9Grossman, S., and O. Hart, (1980), Takeover Bids, The Free-Rider Problem, and the
Theory of the Corporation, Bell Journal of Economics, 11(1): 42-64.
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be v if a takeover succeeds, and it is q in the absence of the takeover
attempt, where v > q. The target firm has a continuum of small
shareholders. In this case, since a single shareholder’s decision
regarding whether to tender his shares has no impact on the like-
lihood of success of the raider’s takeover attempt, each shareholder
is willing to tender his shares if and only if p ≥ v, where p is the
unconditional tender price made by the raider. Now, if the raider
obtains no private benefit (that cannot be transferred to the tar-
get shareholders) from the takeover, then the raider cannot make
a profit by submitting an acceptable bid p ≥ v. In this case, the
takeover cannot succeed even if v > q.

Note that the above free-rider problem occurs because (i) the tar-
get firm’s shares are diffusely held; and (ii) the target firm’s stock-
holders and the raider have the same valuation for the target firm.

Grossman and Hart (1980) and the subsequent literature have rec-
ommended several ways to get around (i) and (ii) stated above.
Shleifer and Vishny (1986)10 analyze the efficiency role of large
shareholders. The presence of a large shareholder can get around
(i). To see this, suppose that the target has a single stockholder
S. If the raider has all bargaining power against S, then the ten-
der offer with p = q will be accepted by S: the takeover succeeds
if and only if S is willing to tender his shares, and given p, ten-
dering is optimal for S. In general, if the raider and S both have
some bargaining power, and if v, q are their common knowledge,
then efficient takeovers will always succeed. This is an applica-
tion of a theorem due to Ronald Coase. For example, let S and
the raider trade via a double auction, where they must simulta-
neously submit bids s and b respectively, and trade takes place at
price p = s+b

2
if and only if b > s. In this case, for all p ∈ [q, v],

b = s = p is one equilibrium, and the takeover succeeds in each
and every such equilibrium.

Regarding (ii), Grossman and Hart emphasize that a takeover may
still succeed in the absence of a large shareholder if the raider is

10Shleifer, A., and R. Vishny, (1986a), Large Shareholders and Corporate Control, Jour-
nal of Political Economy, 94, 461-488.
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allowed to obtain some private benefits from a successful takeover.
A private benefit is by definition a benefit that the raider can-
not credibly share with other stockholders. One way to generate
private benefits for the raider is to stipulate in the target firm’s
charter that following a successful takeover the raider is allowed
to take some actions that benefit the raider at the expense of the
target’s remaining shareholders who have refused to tender their
shares. This likely dilution of minority shareholders’ post-takeover
benefits reduces the latter’s payoff from holding out, and encour-
ages them to tender their shares. Alternatively, without the help
from the target firm’s charter, the raider may benefit from making
a two-tier offer. One obvious drawback with these treatments is
that they may also promote the likelihood of success of inefficient
takeovers.

(d) (Zingale’s IPO Story.) Consider a start-up firm run by an
initial owner (i), who anticipates correctly that a raider (r) will
subsequently show up to propose a takeover bid. The firm will
generate cash earnings vr if the raider gets control, and vi if the
initial owner continues to get control. The party k ∈ {r, i} getting
control would obtain a private benefit Bk, which other people can
never share or try to take away.

If we regard the initial owner as a seller with reservation value
c = Bi + vi and the raider as a buyer with valuation v = Br + vr

as in the preceding section, then trade would not take place if
Bi+vi > Br+vr. Hence we consider only the case where Bi+vi ≤
Br + vr.

There are three cases to consider.

(i) Br < Bi. In this case, Bi + vi ≤ Br + vr implies that there
exists a solution φ∗ ∈ (0, 1) to the following equation (with φ being
the unknown)

Bi + φvi = Br + φvr ⇒ φ∗ =
Bi −Br

vr − vi
,

so that the initial owner would optimally give a share (1− φ∗) <
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100% of cash flow rights (but with no voting rights) to small share-
holders.

The idea is as follows. Since Coase theorem applies and Bi + vi ≤
Br + vr, the bargaining game becomes a constant-sum game, and
in such a game the initial owner’s goal to maximize his own payoff
is equivalent to minimizing the raider’s payoff.

What is the raider’s payoff? By bargaining with the initial owner
(who has sold a fraction (1−φ) of cash flow rights to outside small
investors), the raider would get a fixed fraction of the transaction
surplus v − c when v ≥ c (so that trade would take place) and he
would get a zero payoff when v < c (so that no trade happens),
where v ≡ Br + φvr and c ≡ Bi + φvi.11 Thus to minimize the
raider’s payoff, the initial owner should select φ to minimize v− c
while making sure that trade would take place (i.e., v ≥ c). Since
Bi + vi ≤ Br + vr and Br < Bi, it must be that vr > vi. Thus to
minimize

v − c = −(Bi + φvi) + (Br + φvr),

which is increasing in φ ∈ [0, 1], while making sure that trade
would not lose (i.e., v ≥ c), the initial owner should optimally

choose φ∗ = Bi−Br

vr−vi .

(ii) vr < vi. In this case, to minimize the raider’s payoff, the initial
owner would again try to reduce v−c while making sure that trade
would take place (i.e., v ≥ c). Since vr < vi, to minimize

v − c = −(Bi + φvi) + (Br + φvr),

which is now decreasing in φ ∈ [0, 1], while making sure that trade
would not lose, the initial owner should optimally choose φ∗ = 1,
so that the firm is maintained private in the first stage.

(iii) vr ≥ vi, Br ≥ Bi. In this case, to minimize the raider’s payoff,
the initial owner would again try to reduce v−c while making sure

11And because of the assumed free-rider problem, the raider would get zero additional
payoffs if trying to buy more shares from small shareholders.
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that trade would take place (i.e., v ≥ c). To minimize

v − c = −(Bi + φvi) + (Br + φvr),

which is increasing in φ ∈ [0, 1], while making sure that trade
would not lose (i.e., v ≥ c), the initial owner should optimally
choose φ∗ = 0, so that the initial owner would hold all voting
rights but no cash flow rights.

Note that the equation

Bi + φvi = Br + φvr

has a solution φ contained in [0, 1] only in case (i). Hence with
0 < ψ < 1 the initial owner can fully extract the raider’s surplus
only in case (i).

(e) (Optimal Design of a Tender Offer When Target Firm
Has a Finite Number of Large Shareholders.) We have
shown above that when the target firm has a continuum of small
shareholders the free-rider problem is so severe that the raider can
only keep his private benefit at the end of a tender offer.

Holmström and Nalebuff (1992)12 show that following a successful
tender offer a raider typically possesses 5 to 15 percent ownership
and does not always enjoy large private benefits. They show that
when the target-firm shareholders are no longer infinitesimal a
raider can typically keep 50% or more of the takeover gain.

Using Zingales’ notation, let us suppose that φ = 0 = Bi = Br =
vi = 0, and vr = 1. What would happen if the raider attempts a
takeover with an un-conditional tender offer v, where 0 < v < 1?

Suppose that the target firm has N shareholders, each holding 1
N

of the firm’s ownership (or eash holding one share). The raider
must acquire K shares to get control. Suppose that the raider has

12Holmström, B., and B. Nalebuff, 1992, To the Raider Goes the Surplus? A Re-
examination of the Free-rider Problem, Journal of Economics & Management Strategy, 1,
1, 37-62.
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announced a bid v ∈ (0, 1) (for the entire firm). What would be
the outcome of this tender offer game?

When N is very large, as pointed out by the authors, asymmetric
equilibria are very unconvincing: people hardly know one another,
but in equilibrium they need to forecast correctly who would be
those players doing one thing, and who would be those players
doing another thing. In particular, when players are anonymous,
it is natural to focus on symmetric equilibrium. In a symmetric
equilibrium, every small shareholder chooses to tender his share
with probability p. It is immediate that 0 < p < 1 (why?), and
hence we can only have a symmetric mixed-strategy equilibrium.
In such an equilibrium, a shareholder gets v

N
by tendering his

share, and hence by not tendering his share, he must expect a
probability v of success of the takeover attempt (so that he would
get an expected payoff of 1

N
× v).

For example, suppose that N = 3, K = 2, and v = 1
2
. In this

case, by not tendering his own share, he expects that the takeover
attempt may succeed with probability p2, so that

p2 = v =
1

2
⇒ p =

√
2

2
.

The takeover attempt may succeed with probability

3p2(1− p) + p3 =
3−
√

2

2
∼ 0.8,

so that it generates a total surplus of

(3p2(1− p) + p3) · (vr − vi) =
3−
√

2

2
,

from which the three target-firm shareholders obtain N · v
N

= v =
1
2
, and hence the raider ends up with a surplus of

2−
√

2

2
.

In general, in the symmetric mixed-strategy equilibrium, by not
tendering his share(s), a single shareholder must believe that the
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other N−1 shareholders would altogether tender at least K shares
with probability v. This allows the authors to show that, given v,
or given the p induced by v, the raider would obtain a surplus of N − 1

K − 1

 pK(1− p)N−K .

The authors then go on to show that it is in the raider’s best
interest to offer

v =
K

N
.

(Thus it is optimal for the raider to offer v = 2
3

in the above
numerical example.) With the optimal bidding policy, the raider
would obtain a surplus of N − 1

K − 1

 (
K

N
)K(

N −K
N

)N−K .

Now, if 50% majority is needed for control (i.e., K
N

= 1
2
), then the

authors show that the raider’s surplus is about 4% when N = 100
and 0.4% when N = 1000. As N ↑ ∞, it approached zero, as
it becomes less and less likely that a single shareholder would
become pivotal. This gives a rationale for Grossman and Hart’s
doctrine that with a continuum of small shareholders, the raider
would obtain no surplus.

A surprising (but actually intuitive) result is that the raider would
become better off if the target firm has imposed a super-majority
rule (a seemingly anti-takeover action). In fact, it is in the raider’s
best interest if the target firm sets K = N : every share held
by a target-firm shareholder now becomes pivotal, and hence all
shareholders are willing to tender at any v > 0.

(f) (A Numerical Example.) An acquirer (Mr. A) is attempting
to take over a target firm, T. Firm T is all-equity financed, and it
has three shareholders, each holding 1 share of the firm’s equity
(so that the firm has 3 shares of common stock outstanding). The
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current value of firm T is zero (as a normalization). If Mr. A
is able to obtain 2 or more than 2 shares, then the takeover will
succeed, and the value of firm T will become 18 in that event.

Suppose that Mr. A has announced a share price p = 3 to the
three shareholders of firm T, saying that Mr. A is willing to
buy as many shares from them as possible at the price p. The
three shareholders must simultaneously and independently decide
whether to sell his share to Mr. A at the price p.

We look at an equilibrium where each and every target shareholder
may sell his share to Mr. A (or tender his share) with probability
π, and compute the likelihood that Mr. A’s takeover attempt may
succeed. Then we compute Mr. A’s best choice of p.

Analysis. We claim that this game has no pure-strategy NE’s.
Indeed, if π = 0 in the symmetric NE, then the takeover attempt
fails for sure, but then a target shareholder’s equilibrium payoff
would be zero, while he can deviate unilaterally by selling his share
and obtain a payoff of p = 3, which is a contradiction.

Similarly, if π = 1, then the takeover would succeed for sure, and
a target shareholder’s equilibrium payoff would be p = 3, while he
can deviate unilaterally and obtain a payoff of 6 by keeping his
share till the takeover is completed, which is another contradic-
tion!

We conclude that a symmetric NE must involve each target share-
holder using a mixed strategy; i.e., we must have 0 < π < 1.

In this symmetric NE, a target shareholder can get p = 3 by ten-
dering his share for sure, and for him to feel indifferent about ten-
dering and not tendering his share, he must believe that without
tendering his own share, the takeover attempt may still succeed
with probability p

18
3

= 1
2
. Recall that for the takeover attempt

to succeed, Mr. A must obtain at least 2 shares. Thus, without
tendering his own share, a target shareholder must believe that
the takeover attempt may still succeed with probability π2. Thus
we have
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1

2
= π2 ⇒ π =

√
2

2
.

It follows that the probability that Mr. A’s takeover attempt may
succeed is

prob.(at least two target shareholders would tender shares)

=

 3

2

 π2(1− π)1 +

 3

3

π3(1− π)0

= 3π2(1− π) + π3 =
3−
√

2

2
,

so that Mr. A’s takeover attempt generates a total surplus of

[3π2(1− π) + π3] · (18− 0) = 27− 9
√

2,

from which the three target shareholders together take away 3p =
9,13 and hence Mr. A ends up with an expected profit of

27− 9
√

2− 9 = 18− 9
√

2.

Now, let us derive the optimal p for Mr. A. Note that

p = 6π2

and Mr. A’s expected profit from offering the share price p = 6π2

is
(18− 0)[3π2(1− π) + π3]− 3p = 36f(π),

where

f(x) = x2(1− x).

13Note that from a target shareholder’s perspective, tendering and not tendering his
own share are both equilibrium best responses. Thus his equilibrium payoff equals the
payoff of tendering his share, which is p = 3.
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It is easy to verify that

f ′′(x) ≤ 0⇔ x ≥ 1

3
;

f ′(x) > 0⇔ 0 < x <
2

3
;

f ′(x) = 0⇔ x ∈ {0, 2

3
};

and

f(0) = f(1) = 0, f(
2

3
) =

4

27
.

Thus f(x) has a unique maximum at 2
3

over the unit interval [0, 1].
Mr. A would optimally offer the share price

p∗ = 6× (
2

3
)2 =

8

3
,

which generates for Mr. A the expected profit of 36f(2
3
) = 16

3
>

18− 9
√

2. The likelihood that the takeover attempt may succeed
is 20

27
.

(g) (The Bid-Ask Spread for a Stock Traded in an Over-the-
counter Market.) The true value ṽ of a traded stock is uniformly
distributed over the unit interval [0, 1]. Two market makers first
announce bid and ask prices for absorbing one-share sell and buy
orders simultaneously, and then a public trader will be selected
to trade with market makers. It is equally likely that the public
trader may either be an informed speculator that alone has ob-
served the realization of ṽ, or a liquidity trader who must buy or
sell one share with equal probability for personal reasons. In stock
market equilibrium, a market maker must make zero expected
profits when absorbing a sell or buy order. We shall compute the
equilibrium ask and bid prices.
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(h) Analysis. Let µ be the likelihood that the public trader may turn
out to be an insider (rather than a liquidity trader). Observe that
from market makers’ perspective, the probability that the selected
public trader is a liquidity trader wishing to sell at the bid price
B is (1− µ) · 1

2
; and the probability that he is instead a informed

speculator wishing to sell at the bid price B is µ· Pro.(ṽ ≤ B). In
order that market makers earn zero expected profits by posting
B, it is necessary that

B = E[v|The public trader agrees to sell at B].

Expanding, we have

B =
B

2
· µB

(1− µ)1
2

+ µB
+

1

2

(1− µ)1
2

(1− µ)1
2

+ µB
.

Following a similar procedure, we can obtain

A =
−
√

(1 + µ)2 − 2µ(1 + µ) + (1 + µ)

2µ
.

Now, we can obtain A and B by plugging in µ = 1
2
, and we have

A =
3−
√

3

2
, B =

√
3− 1

2
.

The bid-ask spread is equal to 2 −
√

3, which is positive because
the market makers must make profits when trading with a liquid-
ity trader in order to break even—they always incur losses when
trading with an informed trader!

(i) (Comparing Transaction Costs of Stock Trading Over Three
Trading Mechanisms.) The following example is taken from
Biais, Foucault, and Salanié (1998).14

There are two liquidity suppliers (whom we shall refer to as dealers
for simplicity) and a buyer that want to trade a stock in this

14Biais, B., T. Foucault, and F. Salanié, 1998, Floors, dealer markets and limit order
markets, Journal of Financial Markets, 1, 253-284.
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example. The buyer submits to a trading platform a market order
to buy 4 shares of the stock. The buyer’s payoff is −∞ if he fails
to buy exactly 4 shares; and his payoff is −∑2

j=1 tj if he succeeds
in buying the 4 shares by paying tj to dealer j. Dealer j has payoff
tj − V (qj) when he sells qj shares and receives a payment tj. It is
assumed that

q 1 2 3 4

V1(q) 10 21 33 56

V2(q) 12 25 39 64

If the Walrasian trading mechanism is adopted by the trading plat-
form, as we have assumed in the preceding lectures, then it ensures
that markets clear in equilibrium with each dealer’s marginal rate
of substitution between the stock and cash being equal to the price
ratio of the stock to cash, so that

V ′1(q1)

1
=
p

1
=
V ′2(q2)

1
,

and
q1 + q2 = 4,

where cash is taken to be the numeraire. Thus we have p = 12,
q1 = 3 and q2 = 1.

In reality, trading platforms do not use the Walrasian mechanism.
Compare the following three mechanisms:

• In a floor market, the platform first announces the buyer’s
market order, and then the dealers must simultaneously an-
nounce share prices p1 and p2, saying that dealer j is willing
to accept any number of shares qj ∈ [0, 4] that the platform
subsequently asks him to deliver to the buyer at the price pj.

• In a limit-order market, or an electronic communication net-
work, the platform first announces the buyer’s market order,
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and then the dealers must simultaneously submit individual
supply curves, where a supply curve indicates that, after hav-
ing sold n shares, dealer j is willing to sell one additional share
at some price pj(n+ 1) ∈ <+

⋃{+∞}, with pj(n+ 1) ≥ pj(n)
for all n = 0, 1, 2, 3.

• In an over-the-counter dealer market, the platform first an-
nounces the buyer’s market order, and then the dealers must
simultaneously announce menus of options that the buyer can
select from, where a dealer’s menu may consist of several bun-
dles like: {(T1, q1), (T2, q2), · · ·}, from which a buyer must pay
the dealer a total of Tk dollars and purchase qk shares if he
picks the option (Tk, qk). Here, unlike in the limit-order mar-
ket, the dealer may commit to selling at a lower price for one
additional share.

In all three mechanisms described above, the trading platform will
try to minimize the buyer’s expenditure (so that price priority is
enforced), and when ties occur, the platform is assumed to adopt
a prorata rationing rule, and try to maintain equal sales for the
two dealers.

In this example, dealers have the greatest freedom in choosing
trading strategies if the platform is an over-the-counter dealer
market.15 The floor market offers dealers the least freedom in
choosing trading strategies. It turns out that these two mecha-
nisms are both conducive to tacit collusion between dealers, mak-
ing the buyer suffer from high transaction costs.

We shall explain in the lecture how the following equilibria are

15Observe the different assumptions made in the preceding section and here. In the
preceding section, when we derive the equilibrium bid and ask prices, we assume that
dealers are faced with an adverse selection problem; that is, the buyer (or seller) may
possess privileged inside information. Here the buyer is sure to be an uninformed liquidity
trader. Moreover, dealers in the preceding section are risk-neutral, and here they are risk
averse, which makes Vj(q) a convex function of q. Finally, here the buyer can split his order
between the two dealers, but in the preceding section, exactly one dealer will be chosen to
absorb the buyer’s order. In reality, dealers are faced with information asymmetry (as in
the preceding section), but they can offer a client complicated trading choices (as assumed
here), and a buyer can indeed split orders among multiple dealers (also as assumed here).
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sustained under the different trading mechanisms.

• In the floor market, there is one equilibrium16 where both
dealers announce the share price 14, and the platform asks
each dealer to deliver 2 shares at this price. Comparing this
equilibrium to the Walrasian efficient outcome, we see that
the buyer must pay 56 rather than 48 for the 4 shares, and
the allocation of the stock between the dealers does not attain
efficient risk sharing.

• In the limit-order market, there is a unique17 equilibrium
where dealer 1 submits a single limit order (p1, q1) = (12, 12)
and dealer 2 submits a single limit order (p2, q2) = (12, 4). In
this equilibrium, the aggregate supply is 16 at the price 12,
and the prorara rationing rule applies, so that dealer 1 gets to
sell 3 shares and dealer 2 1 share. As we can see, this outcome
coincides with the Walrasian equilibrium outcome.

• In the over-the-counter dealer market, there is one equilibrium
where dealer 1 offers two trading options {(12, 1), (57, 4)} and
dealer 2 offers two trading options {(45, 3), (57, 4)}. Take
dealer 1 for example. Given dealer 2’s strategy, which says
that the buyer either must give up trading with dealer 2, or
buy 3 shares from dealer 2 at a total price of 45, or buy the
entire 4 shares at 57, dealer 1 is left with 3 choices: either

16An equilibrium is a vector of trading strategies, one for each dealer, such that given
the trading strategy that the vector prescribes for the other dealer j, dealer i finds the
strategy that the vector prescribes for him already a best choice. This is defined as a Nash
equilibrium in non-cooperative game theory.

17Let us briefly explain the equilibrium uniqueness. In equilibrium, any two executed
limit orders must have expressed the same price. Indeed, if (pi, qi) and (pj , qj) are both
executed, and yet pi < pj , then raising pi to pi + ε would still ensure execution, which
raises the payoff for the dealer submitting (pi, qi). Now, if all executed limit orders are
executed at the price p, then a dealer j can submit (p− ε, qj(p− ε)) to gain price priority
and get sure execution, where q(z) is the unique solution to z = U ′j(x) with x being the
unknown. To sustain the equilibrium, no dealer should find this a profitable move. Thus
we reach the conclusion that in equilibrium, it must be that all executed limit orders have
expressed the same price p, and dealer i has already expressed that he is willing to sell
qi(p) shares at the price p. This means that in any limit-order market equilibrium, where
dealer j sells qj shares, it must be that U ′1(q1) = p = U ′2(q2) and q1 + q2 = 4, proving that
(q1, q2, p) is nothing but the Walrasian equilibrium outcome!
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he can sell 4 shares to the buyer (when the buyer chooses to
give up dealer 2), or he can sell 1 share to the buyer (when
the buyer chooses to buy 3 shares from dealer 2), or he can
sell nothing (when the buyer chooses to buy 4 shares from
dealer 2). Given dealer 2 promises to offer the entire 4 shares
at a total price of 57, if dealer 1 wishes to sell 1 share to the
buyer, his price p1 must satisfy p1 + 45 ≤ 57, so that his best
choice is 12, explaining why he offers (12, 1) in his own menu.
In equilibrium, the platform executes the two options (12, 1)
and (45, 3), so that dealer 1 sells 1 share and dealer 2 sells 3
shares, and the buyer’s expenditure is 57.

To conclude, we see that in the absence of information asymmetry,
the limit-order market best guards the buyer’s interest, and it
ensures allocative efficiency for the two dealers. The other two
trading mechanisms tend to raise the buyer’s trading costs, and
fail to attain allocative efficiency for the dealers.

8. (Part IV.) A Reputation Game with Entre Deterrence.

Consider the following reputation game about a Cournot-competitive
industry that extends for n periods. In each period t, the price of the
homogeneous product (referred to as product X) supplied by all the
firms is Pt = A−Qt, where A > n+ 1 is a positive constant, and Qt is
the sum of supply quantities chosen by the firms.

This industry has an incumbent firm, I, and n potential entrants, Ej,
j = 1, 2, · · · , n. There is no discounting, and each firm seeks to maxi-
mize (the sum of) expected profits.

At t = i ∈ {1, 2, · · · , n}, Ei can decide whether to spend a one-time
cost ki ≡ k(n+ 1− i) to enter the industry, where k > 0 is a constant.
Once it enters, it can costless supply 1 unit of product X at each period
t = i, i+1, · · · , n. Let mi denote the number of entrants among E1, E2,
· · ·, Ei which are operating at t = i. The incumbent firm’s unit cost is c̃,
and at t = i, all entrants believe that c̃ may take on 1 with probability
xi or 0 with probability 1−xi. (Bayesian updating is applied whenever
possible.) The timing of the relevant events is as follows.
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• At t = i, before Ei enters, Ei can observe whether entry has
occurred at an earlier point in time, and the supply quantities
chosen by all the firms operating at that point in time. However,
c̃ and the incumbent firm’s past profits remain unobservable to
Ei.

• Then, Ei must decide whether to spend ki and enter the industry
or stay out and get zero payoffs.

• Then, given mi all the firms operating at t = i must make output
decisions simultaneously, where m0 = 0, and for i ≥ 1, mi = mi−1
if Ei stays out and mi = mi−1 + 1 if Ei enters.

• Then Pt is realized at t = i and the date-t profits accrue to the
firms. Then the game ends if i = n; or else the game moves on to
t = i+ 1.

We shall assume that n = 3, A > 4, and A− 1 < 2k < A. Notice that
k1 = 3k, k2 = 2k, and k3 = k. The outcome of c̃ will be referred to as
the incumbent’s type.

(i) First consider t = 3. Given m3 ∈ {0, 1, 2, 3}, the date-t supply
quantity chosen by the type-1 incumbent is A , and given x3 and
m3, the expected date-t product price is B . Thus E3 enters if
and only if m3 = C and x3 satisfies the weak inequality (write it
down!) D .18

(ii) Now, consider t = 2. Suppose first that E1 has entered at t = 1. In
this case we can get m2, so that the type-0 incumbent’s date-2 output
quantity plus the type-1 incumbent’s date-2 output quantity must be
equal to E .

(iii) Continue with t = 2. Now, suppose that E1 did not enter at t = 1.
In this latter case, we can get m2 also, and show that E2 would stay

18Thus we are making the tie-breaking assumption that Ei would enter when feeling
indifferent about entering or staying out.
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out if and only if x2 satisfies a strict inquality, and when E2 does stay
out, the type-1 incumbent’s profit at t = 2 is equal to F .

(iv) Now, consider t = 1. If E1 has entered, then there is a (an-
swer ‘pooling’ or ‘separating’) G PBE, where the type-1 incum-
bent’s sum of expected profits over the date-1-date-3 period is equal
to H . Thus E1 would stay out if and only if x1 satisfies the
strict inquality (write it down!) I , and following that, the type-
1 incumbent’s sum of expected profits over the date-1-date-3 period is
equal to J .

Solution. We shall solve the PBE using backward induction, and we
shall record our findings as a series of lemmas along the way.

Since once entering the industry, an entrant can supply 1 unit without
incurring any costs, and since A > n+ 1 (which implies that the prod-
uct price is never negative), the optimal choice of output quantity in
any operating period for such an entrant is exactly 1 unit.

Lemma 0. The sum of output quantities supplied by the entrants
operating at date t is mt.

Now observe that the type-0 incumbent has no concerns for reputation.

Lemma 1. Given mt, the type-0 incumbent’s date-t output choice is
A−mt

2
.

Now we solve the PBE of the above reputation game using backward
induction.

First consider the date-3 subgame where E3 has just made its entry
decision. Since this is the last period of the game, the incumbent has
no reputation concern any more. By Lemma 0, given m3 and c̃, the
incumbent would seek to

max
q
q(A−m3 − q − c̃)
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so that the type-c̃ incumbent’s date-3 output choice is

q(c̃) =
A−m3 − c̃

2
.

It follows that in state (m3, c̃), the realized date-3 product price is

P3(c̃) = A−m3 − q(c̃) =
A−m3 + c̃

2
,

and hence given (m3, x3), E3 expects its post-entry expected profit to
be

1 · [x3 × P3(1) + (1− x3)× P1(0)] =
A−m3 + x3

2
.

Thus E3 will enter in equilibrium if and only if, by our tie-breaking
assumption,

A−m3 + x3
2

≥ k ⇔ x3 ≥ 2k +m3 − A,

where note that with E3’s entry we have m3 ≥ 1. Note that if E3 enters
and yet m3 ≥ 2, then

1 ≥ x3 ≥ 2 + 2k − A > 1,

which is a contradiction. Thus we conclude that E3 would enter in
equilibrium if and only if m3 = 1 and x3 satisfies

x3 ≥ 1 + 2k − A.

Lemma 2. If m2 ≥ 1 so that either E1 or E2 has already entered prior
to date 3, then we have m3 = m2; and in the opposite case, we have
1 ≥ m3 ≥ m2 = 0, so that m3 = 1 if and only if x3 ≥ 1 + 2k − A.

Now, consider the date-2 subgame where E2 has just entered the in-
dustry.
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Since 1 ≥ m3 ≥ m2 ≥ 1, the incumbent knows that by Lemma 2
m3 = m2 and E3 would never enter, so that the type-c̃ incumbent’s
date-3 profit, according to part (i), will be

(
A−m2 − c̃

2
)2,

which is independent of the incumbent’s choice of date-2 output quan-
tity. Thus there is a separating date-2 equilibrium, with the type-c̃
incumbent’s date-2 output choice being

A−m2 − c̃
2

.

It follows that in state (m2, c̃), the realized date-2 product price is

P2(c̃) =
A−m2 + c̃

2
,

so that before making its entry decision, E2 would expect its post-entry
profit at date 2 (and at date 3 also, why?) to be

1 · [x2 × P (1) + (1− x2)× P (0)] =
A−m2 + x2

2
.

Note that E2 would not deviate and stay out if and only if

2× A−m2 + x2
2

≥ 2k ⇔ x2 ≥ 2k +m2 − A,

implying that m2 = 1. Thus we conclude that there exists a PBE at
the date-2 subgame where E2 enters for sure if and only if E1 did not
enter at date 1 and if x2 ≥ 1 + 2k − A.

Next, consider the date-2 subgame where E2 has just decided to stay
out. Then m2 = m1 = 1 if E1 entered at date 1 and m2 = m1 = 0 if
E1 did not.

In the former case, by Lemma 2 E3 would never enter, so that the type-
c̃ incumbent’s date-3 profit, according to part (i), will be independent of
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the incumbent’s choice of date-2 output quantity. Thus there is again a
separating date-2 equilibrium where the expected date-2 product price
is

A− 1 + x2
2

,

and we must check that E2 indeed would not deviate and make entry:
following a deviation the expected date-2 product price would become

A− 2 + x2
2

,

and we must require that

2× A− 2 + x2
2

< 2k ⇔ x2 < 2 + 2k − A,

but the last inequality holds always! Thus if E1 has entered at date
1, there is a separating PBE at date 2 where E2 does not enter, and
following that the type-c̃ incumbent would choose the output quantity

A− 1− c̃
2

at both date 2 and date 3.

Now, consider the latter case, where E1 and E2 have both chosen to
stay out. Can there be a separating PBE at this point, where the two
types of the incumbent choose different output quantities? In such an
equilibrium, the type-1 incumbent would expect E3 to enter at date
3 after seeing its date-2 output choice, which differs from the type-0
incumbent’s output choice A

2
; recall Lemma 2. Thus in this supposed

separating PBE, the type-1 incumbent would choose the output quan-
tity A−1

2
, yielding for the type-1 incumbent the continuation payoff

(A−1)2+(A−2)2
4

. If the type-1 incumbent deviates and chooses A
2

instead,
then it would get the date-2 payoff

A

2
× (A− A

2
− 1) =

A(A− 2)

4
,

but this would lead to x3 = 0 and m3 = 0, so that the type-1 incumbent
would get
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A− 1

2
× (A− A− 1

2
− 1) =

(A− 1)2

4
.

Thus the type-1 incumbent would surely want to deviate! This proves
that there cannot be a separating PBE.

Can there be a pooling PBE for the latter case, where both types of
the incumbent produce A

2
units at date 2? Note that a deviation will

be taken as evidence that the deviator is the type-1 incumbent, so that
the optimal deviating output choice for the type-1 incumbent is A−1

2
.

In this PBE, we have x3 = x2, and if x2 ≥ 1+2k−A, then by Lemma
2 E3 would enter even though no deviation at date 2 is detected, which
would then induce the type-1 incumbent to strictly prefer producing
A−1
2

units instead of A
2

units. Thus for such a PBE to prevail at date
2, it is necessary that x2 < 1 − 2k + A. When this inequality does

hold, the type-1 incumbent would get A(A−2)
4

at date 2 and (A−1)2
4

at

date 3 in equilibrium, and he would get (A−1)2
4

at date 2 and (A−2)2
4

at
date 3 after a deviation. Thus this pooling PBE does exist given that
x2 < 1− 2k + A.

Lemma 4. The date-2 equilibrium given (m1, x2) is as follows.

• If m1 = 0 and x2 ≥ 1 + 2k − A, then E2 would enter for sure,
leading to m2 = 1, and following that there is a separating date-2
equilibrium, with the type-c̃ incumbent’s date-2 and date-3 com-
mon output choice being

A− 1− c̃
2

.

• If m1 = 0 and x2 < 1− 2k + A, then E2 would stay out for sure,
leading to m2 = 0, and following that there is a pooling date-2
equilibrium, with A

2
being the equilibrium date-2 output choice for

both types of the incumbent, and upon seeing this date-2 output
choice E3 would stay out for sure. The type-c̃ incumbent would
then produce A−c̃

2
units at date 3.
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• If m1 = 1, then regardless of x2, E2 would stay out for sure, leading
to m2 = 1, and following that there is a separating date-2 equi-
librium, with the type-c̃ incumbent’s date-2 and date-3 common
output choice being

A− 1− c̃
2

.

Now, consider the date-1 subgame where E1 has just entered, so that
m1 = 1, and by Lemma 4 and Lemma 2, E2 and E3 would both stay
out for sure. We claim that following entry by E1, there is a separating
PBE, where the type-1 incumbent gets

3× (A− 2)2

4
.

To see this, note that if the type-1 incumbent deviates and produces
A−1
2

at date 1, then it would choose exactly the same output quantity at
dates 2 and 3, just like deviation never occurs; recall the last statement
in Lemma 4. Thus following E1’s entry, this separating PBE exists
always! It follows that there is a date-1 equilibrium where E1 would
enter for sure if and only if x1 ≥ 1 + 2k − A.

Finally, consider the date-1 subgame where E1 has just chosen to stay
out, so that m1 = 0. We claim that there is no separating equilibrium
at date 1. If there were, then x2 = 1 after the type-1 incumbent
makes the equilibriu date-1 output choice, and by Lemma 4 E2 and
E3 would enter at date 2 and stay out at date 3 respectively. The type-1
incumbent’s payoff in this supposed equilibrium would be

A(A− 2)

2
+ 2× (A− 2)2

4
.

By deviating and choosing the output A
2

at date 1, the type-1 incumbent
can ensure that x2 = 0, so that by Lemma 4 E2 would stay out for
sure, and following that the type-1 incumbent can again choose A

2
as

its date-2 output to ensure that E3 would stay out for sure; the type-1
incumbent would then produce A−1

2
units at date 3. Thus with a series

of deviations, the type-1 incumbent can get the payoff

47



2× A(A− 2)

2
+

(A− 1)2

4
,

showing that the deviation payoff is higher!

Now, can there be a pooling equilibrium following E1’s staying out?
Note that if x1 ≥ 1 + 2k−A, then upon seeing the incumbent’s date-1
outpout choice A

2
in the pooling equilibrium, by Lemma 4 E1 would

enter, and following that there would be a date-2 separating outcome.
It is clear that the type-1 incumbent had better deviate at date 1 in
this case!

Thus we focus on the case where x1 < 1 + 2k − A. By Lemma 4,
following the date-1 pooling choice of output, E2 would stay out, and
following that there is again a date-2 pooling equilibrium that induces
E3 to also stay out. Thus in this pooling PBE the type-1 incumbent
gets the equilibrium payoff

2× A(A− 2)

4
+

(A− 1)2

4
,

whereas after choosing the date-1 output A−1
2

during a deviation, by
Lemma 4, the type-1 incumbent would expect both E2 and E3 to
enter, so that its deviation payoff is

(A− 1)2

4
+ 2× (A− 2)2

4
.

Clearly, no deviation would occur.

Lemma 5. The date-1 equilibrium depends on x1.

• If x1 < 1 + 2k−A, then there is pooling at date 1 and date 2, and
all three entrants would stay out.

• If x1 ≥ 1 + 2k − A, then there is separating at date 1, and only
E1 enters in equilibrium.
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The type-1 incumbent would always pool with the type-0 incumbent
as long as no entrants have ever entered before. The type-1 incumbent
would instead distinguish itself from the type-0 incumbent following
the first occurrence of entry. Note that the condition

0 < 1 + 2k − A < 1

says that under full information E1’s decision is to enter if and only
if the incumbent is of type 1. Given x1, the incumbent’s expected
output quantity following entry of E1 is at least x1, and it is exactly
equal to x1 if following entry of E1 the type-1 incumbent would rather
distinguish itself from the type-0 incumbent, which is exactly what
would happen given x1 ≥ 1 + 2k − A. Thus E1 would stay out if and
only if x1 < 1 + 2k − A.

9. (Part V.) Nash Implementation.

10. A set of I players are facing uncertain states of nature contained in
the sample space Θ, and they must make a collective choice for each
state θ ∈ Θ. Let A denote the set of feasible social choices, @ and
a a typical element of A. Suppose that each player i ∈ {1, 2, · · · , I}
can separately see the realized θ, but θ is not verifiable in the court of
law, and hence is not contractible. Moreover, for each θ, there exists a
subset f(θ) ⊂ A which consists of all the social choices acceptable to a
central planner. The central planner, who is not one of the I players,
would like to design a game form for the I players, such that the set
of Nash equilibrium outcomes of that game form in state θ coincides
with f(θ). (Here we assume that participating in the game form is
mandatory for each player, so that we do not need to impose an IR
condition.) We shall refer to f(·) as a social choice rule (SCR) or a
social choice correspondence (SCC).

A game form is a pair (g, S), where S is the common strategy space
for each and every player, and g : SI ⇒ A maps each strategy profile
s ≡ (s1, s2, · · · , sI) into a social choice. Note that player i’s payoff
function is θ-dependent, and hence the game form (g, S), failing to fully
describe the payoff function for each player, is not a normal form game.
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However, for each θ ∈ Θ, (g, S, θ) is indeed a normal-form game. Let
s∗(θ) be one pure-strategy Nash equilibrium of the game (g, S, θ). Let
Eg(θ) be the set of all pure-strategy Nash equilibria in state θ. Then,
define g(Eg(θ)) ≡ {g(s∗) : s∗ ∈ Eg(θ)} as the set of equilibrium social
choices. We say that (g, S) fully implements f in Nash equilibrium if
and only if g(Eg(θ)) = f(θ) for all θ ∈ Θ. We say that f is Nash
implementable if we can find at least one game form (g, S) that fully
implements f .

11. (Example 5.) Two women, Amy and Beth, carry one baby to the
king, and each of them claims to be the mother of the baby. There are
two possible states: the mother is either Amy (state α) or Beth (β).
Thus let Θ = {α, β}. For the king, there are 4 feasible actions: to give
the baby to Amy (a); to give it to Beth (b); to cut the baby in half and
let each woman take one half (c); or to let both women and the baby
die (d). Can you find a game form to fully implement the social choice
rule f satisfying f(α) = a and f(β) = b?

12. Theorem N1. (Maskin 1977; Maskin 1999) f is Nash implementable
only if f is monotonic.19

Proof. Define the lower contour set at a for agent i in state θ by

Li(a, θ) ≡ {b ∈ A : aRi(θ)b}.

We shall prove Theorem N1 by contraposition. Recall from section 17
that f is not monotonic if and only if there exist θ, φ ∈ Θ and a ∈ A
such that for all i = 1, 2, · · · , I,

Li(a, θ) ⊂ Li(a, φ),

and yet a ∈ f(θ) \ f(φ).20 We show that in this case no game forms
(g, S) can fully implement f in Nash strategy.

19Maskin, E., 1977, Nash Equilibrium and Welfare Optimality, MIT working paper.
Maskin, E., 1999, Nash Equilibrium and Welfare Optimality, Review of Economic Studies,
66, 23-38.

20An equivalent definition for f being monotonic is this: for any θ, φ ∈ Θ and a ∈ A with
a ∈ f(θ) \ f(φ), there must exist agent i and some b ∈ A such that b ∈ Li(a, θ) \ Li(a, φ),
or such that aRi(θ)b but bP i(φ)a.
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Suppose instead that there were such a game form (g, S). Then there
exists some Nash equilibrium s∗ for the game (g, S, θ) such that g(s∗) =
a ∈ f(θ). That is, for agent i, given his rival agents would play s∗−i in
state θ,

a = g(s∗i , s
∗
−i)R

i(θ)g(si, s
∗
−i), ∀si ∈ Si,

⇒ g(si, s
∗
−i) ∈ Li(a, θ) ⊂ Li(a, φ), ∀si ∈ Si,

but then s∗i continues to be agent i’s best response against s∗−i in state
φ! As this is true for all agents i, we conclude that s∗ would also
arise as a pure-strategy Nash equilibrium in state φ. But then a ∈
g(Eg(φ)) \ f(φ), showing that (g, S) does not fully implement f in
Nash equilibrium.

13. To state our next result, we introduce the notion of no veto power. An
SCC f satisfies (weak) no veto power if for all i ∈ {1, 2, · · · , I}, for all
θ ∈ Θ, and for all a ∈ A,

Lj(a, θ) = A, ∀j 6= i⇒ a ∈ f(θ).

In words, if a is top ranked by all agents j 6= i in state θ, then a ∈ f(θ)
whether agent i likes a or not. (Agent i has no veto power!)

14. Theorem N2. (Maskin 1977; Repullo 198721) Suppose that I ≥ 3,
and that f is monotonic and satisfies no veto power. Then f is Nash
implementable.

Proof. The proof is by construction of a canonical game form (g, S)
which fully implements f . Define for all i, Si = Θ×A×Z+, where Z+

denotes the set of positive integers, and define g : S → A as follows:

(a) If s is such that there exists i ∈ {1, 2, · · · , I} such that si =
(η, ai, ki) and for all j 6= i, sj = (θ, a, k) with a ∈ f(θ), then

g(s) =


ai, if ai ∈ Li(a, θ);

a, otherwise.

21Repullo, R., 1987, A Simple Proof of Maskin’s Theorem on Nash Implementation,
Social Choice and Welfare, 4, 39-41.
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(b) If s is such that (a) does not apply, then g(s) = ai where i is
an agent announcing the highest ki, with ties being broken by
selecting among the agents announcing the highest ki the person
with the smallest i.

We shall show first that f(θ) ⊂ g(Eg(θ)) for all θ ∈ Θ, and then that
g(Eg(θ)) ⊂ f(θ) for all θ ∈ Θ.

• f(θ) ⊂ g(Eg(θ)) for all θ ∈ Θ.

Given any a ∈ f(θ), define for all i, si = (θ, a, 1). Then s is
such that (a) holds, and if agent i alone would like to deviate
and to implement another ai, he must choose some ai ∈ Li(a, θ),
and hence he has no incentive to make unilateral deviations. Thus
a ∈ g(Eg(θ)), and this being true for all θ ∈ Θ and for all a ∈ f(θ),
we conclude that f(θ) ⊂ g(Eg(θ)) for all θ ∈ Θ.

• g(Eg(θ)) ⊂ f(θ) for all θ ∈ Θ

Let s ∈ Eg(θ), and we shall show that g(s) ∈ f(θ). Suppose θ is
the true state. We take cases.

– Suppose that s is such that si = (η, a, k) ∀i ∈ {1, 2, · · · , I},
with a ∈ f(η), so that g(s) = a.

For all i ∈ {1, 2, · · · , I}, if agent i wishes to deviate unilat-
erally from s, then according to (a) above, agent i must an-
nounce some s′i = (φ, ai, ki) with ai ∈ Li(a, η). Since s is a
Nash equilibrium in the true state θ, agent i weakly prefers
the equilibrium outcome a = g(s) to ai in the true state θ,
and this implies that

ai ∈ Li(a, η)⇒ ai ∈ Li(a, θ),

and this being true for all i ∈ {1, 2, · · · , I}, we conclude that
a ∈ f(θ) since f is monotonic.

– Suppose that s is such that si = (η, a, k) ∀i ∈ {1, 2, · · · , I},
with a /∈ f(η).
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In this case, by (b), any agent i can deviate and announce s′i =
(φ, ai, k

′), where k′ > k, so that the outcome ai rather than
g(s) would be implemented. Since s is a Nash equilibrium in
the true state θ, it must be that

g(s)Ri(θ)ai, ∀ai ∈ A,

or equivalently,
Li(g(s), θ) = A,

and with this being true for each single agent i, we conclude
that g(s) ∈ f(θ) by the fact that f satisfies no veto power.

– Suppose that s is such that there exist i 6= j, si 6= sj.

In this case, thanks to the fact that I ≥ 3, some agent h /∈
{i, j} can implement any ah ∈ A by announcing an integer kh
exceeding kn for all n 6= h. Since s is a Nash equilibrium in
the true state θ, it must be that

Lh(g(s), θ) = A, ∀h /∈ {i, j}.

Moreover, it is impossible that sh = si and sh = sj, simply
because si 6= sj. Suppose that sh 6= si. Then we can repeat
the above argument and conclude that

Lj(g(s), θ) = A.

It follows that g(s) is top ranked in state θ by all agents n 6= i,
so that g(s) ∈ f(θ) by the fact that f satisfies no veto power.
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