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1. (Set and Function.)

A well-defined collection of objects (called elements) is a set. A set
of sets is usually referred to as a collection, and a set of collections
is usually referred to as a family. A set contains nothing is called an
empty set and denoted ∅. A set contains exactly one element is a
singleton. If two sets A and B are such that B contains each and every
element of A, then we say that A is a subset of B and B a superset of
A, and we write A ⊂ B, and if furthermore B contains an element y
which is not contained in A, then A is a proper subset of B. Two sets
A and B are equal, if A ⊂ B and B ⊂ A. If one has a universe set X
in mind (so that all sets under consideration are subsets of X), then
define the complement of A ⊂ X to be the set containing exactly those
x contained by X but not by A. The complement of A is denoted by
Ac. Denote by 2X the collection containing all subsets of X, which will
be referred to as the power set of X.

2. Given two sets A and B, an assigning rule f is a (single-valued) function
from A into B if ∀a ∈ A, there is b ∈ B such that f(a) = b. In this
case, we write f : A → B, and A and B are called the domain and
range of f respectively. If A is itself a collection of sets, then we say
that f is a set function. If instead B is a collection of sets then f is a
multi-valued function (or a correspondence).1 Given f : A → B, and
given any C ⊂ A and D ⊂ B, the sets f(C) = {f(a) : a ∈ C} and
f−1(D) = {a ∈ A : f(a) ∈ D} are called respectively the image of C
and the pre-image of D under f .2 The function f : A→ B is surjective
if B ⊂ f(A), injective if x, y ∈ A, x 6= y ⇒ f(x) 6= f(y), and bijective
if it is both surjective ane injective. A bijective function is also called
a one-to-one correspondence.

1In general we would write for the correspondence f : A→
⋃
b∈B b instead.

2Let A = B be the set of real numbers. Let f(x) = x2 + 1, C = (−1, 0], and D = [0, 12 ].
What is f−1(D)? What is f−1(f(C))? Is the latter a subset or a superset of C?

1



3. A bijective function f : A → B has an inverse function f−1 : B →
A which assigns for each b ∈ B “the” a ∈ A that satisfies f(a) =
b. (Depending on the context, the notation f−1 should not create
confusion with the pre-image operator.)

4. Two sets A and B are of the same cardinality if we can find a one-to-
one correspondence between them. A set A is finite if it is empty or
there is a one-to-one correspondence between A and the set {1, 2, · · · , n}
for some n ∈ Z+ (and we say in the latter case the cardinality of A,
denoted |A| or #(A), is n), where Z+ stands for the set of strictly
positive integers.3 A set A is countably infinite (denumerable) if there
is a one-to-one correspondence between A and Z+. A set which is
neither finite nor countably infinite is uncountable. A set is countable
if it is not uncountable.4

5. Given an indexed family of sets {Ab; b ∈ β}, where β is an arbitrary
non-empty index set, the Cartesian product of these sets, denoted by
Πb∈βAb, is a set containing each and every function f : β → ⋃

b∈β Ab
satisfying that for all b ∈ β, f(b) ∈ Ab.5 The union of sets {Ab; b ∈ β},
denoted

⋃
b∈β Ab, contains exactly those x contained by some Ab. The

intersection of these sets, denoted
⋂
b∈β Ab, contains exactly those x

contained by all Ab’s. Two sets are disjoint if they have an empty
intersection.

6. A collection {Ab; b ∈ β} of subsets of X is called a partition of X if⋃
b∈β Ab = X and ∀a, b ∈ β, a 6= b⇒ Aa

⋂
Ab = ∅.

3The notation Z+ is taken from James R. Munkres, 1975, Topology: A First Course,
New Jersey: Prentice-Hall. It represents the set of natural numbers. We shall interchange-
ably use the notation N to stand for the same set, as in Kai Lai Chung, 1974, A Course
in Probability Theory.

4The following three statements are apparently equivalent: (i) A is countable; (ii) there
is a surjective function f : Z+ → A; (iii) there is an injective function g : A→ Z+. Because
of (ii) a subset of a countable set is apparently countable. Because of (iii), A = Z2

+ is
countable: simply define g(n,m) = 2n3m. Now since the set of positive rationals has a one-
to-one correspondence with Z2

+, the former is countable. The following three statements
are also equivalent, but less apparent: (a) A is infinite; (b) there exists an injective function
f : Z+ → A; (c) there exists a bijective function of A with a proper subset of itself.

5For example, Suppose that β = {1, 2}, A1 = {x, y}, A2 = {a, b, c}. Then Πb∈βAb =
A1 × A2 = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}, where, for example, (x, a) is a short-
hand notation for f(x) = a. Similarly, if instead β = {2, 1} , then Πb∈βAb = A2 × A1 =
{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)}.
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7. DeMorgan’s Law says that

[
⋃
b∈β

Ab]
c =

⋂
b∈β

Acb, [
⋂
b∈β

Ab]
c =

⋃
b∈β

Acb. (1)

8. The following facts are well known. A countable union or a finite prod-
uct of countable sets is countable. A infinite product of countable sets
need not be countable; in particular, the power set of Z+ is uncount-
able.

9. (Linear Space or Vector Space.)

10. A set V is a (real) linear space on <, where < is the set of real numbers,
if it is equipped with and closed under operations of vector addition
and scalar multiplication together with a number of well-defined op-
erational (such as commutative and associative) laws. Elements in V
are called vectors. Given a finite number of elements x1, x2, · · · , xn in
V , an element y ∈ V is a linear combination of these elements if there
exist real numbers a1, a2, · · · , an such that y =

∑n
i=1 aixi. A subset B

of V is said to span V if all vectors in V are linear combinations of
elements of B. If no proper subset of B can span B, then B is lin-
early independent, and in this case B is a basis for V if B spans V .
The cardinality of (the number of elements in) a basis (any basis) is
called the linear space V ’s dimension. V may be finite-dimenional or
infinite-dimensional depending on whether the cardinality of B is finite
or infinite.

11. Let Vx be a real linear space with origins 0x. A function f : Vx → <
is concave (respectively convex, and affine) if for any two elements
x,x′ ∈ Vx and for any a ∈ [0, 1],

f(ax + (1− a)x′) ≥ (respectively ≤, =) af(x) + (1− a)f(x′).

The function f is said to be linear, if it is affine and f(0x) = 0.

12. A subset A of the linear space V is a convex set if for all x, y ∈ A and
for all real numbers λ ∈ [0, 1], λx + (1 − λ)y ∈ A. The intersection of
a collection of convex sets is itself convex.
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13. (Metric Space and Topology.)

Given any non-empty set X a function d : X ×X → R+ (where R+ or
interchangeably <+ denotes the set of non-negative real numbers) is a
metric if
(i) d(x, y) = 0⇔ x = y, ∀x, y ∈ X;
(ii) d(x, y) = d(y, x) ≥ 0, ∀x, y ∈ X;
(iii) d(x, y) + d(y, z) ≥ d(x, z).
The pair (X, d) is then a metric space. For example, let X = <, which
is the set of real numbers, and define for all x, y ∈ X, d′(x, y) = 1 if
x 6= y and d′(x, y) = 0 if otherwise. Define d(x, y) = |x − y| for all
x, y ∈ X also. Then (X, d) and (X, d′) are both metric spaces, but
they are different metric spaces.

14. A function x : Z+ → X is called a sequence in (X, d). It is said to
converge to z ∈ X if for all real ε > 0 there exists n(ε) ∈ Z+ such that
n ≥ n(ε)⇒ d(x(n), z) < ε. A sequence is Cauchy if for all e > 0, there
exists n(e) ∈ Z+ such that m,n ≥ n(e)⇒ d(x(m), x(n)) < e.

15. Given two metric spaces (X, d) and (Y, d′), a function f : X → Y is
continuous if {f(x(n))} is a convergent sequence in (Y, d′) whenever
{x(n)} is a convergent sequence in (X, d).

16. Given a metric space (X, d), for all z ∈ X and e ∈ R++,6 the subsets
B(z, e) = {x ∈ X : d(x, z) < e} are called open balls in X. A subset
G of X is open if it can be represented as a (perhaps empty) union of
open balls. A subset F of X is closed if F c is open. The closure of
G ⊂ X is the smallest (with respect to the order relation “inclusion”
on X) closed set containing G, and the interior of F is the largest open
set contained in F . A point x ∈ X is a limit point of A ⊂ X if for all
e > 0, B(x, e)

⋂
A

⋂{x}c 6= ∅. The set of limit points of A, denoted A′,
is the derived set of A. A point x ∈ A is an isolated point if for some
e > 0, B(x, e)

⋂
A

⋂{x}c = ∅. A closed subset A of X is perfect if it
contains no isolated points. The boundary of A is the intersection of
the closure of A and the closure of Ac in (X, d). The collection τ of all
the open sets on X is called a topology on X. The pair (X, τ) is called
a topological space.

6Here R++, or interchangeably <++, denotes the set of strictly positive real numbers.
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17. A set A contained in the metric space (X, d) is bounded if for some
x ∈ X and e ∈ R++, A ⊂ B(x, e).

18. Take the linear space (<, ‖ · ‖) for example, where for all x, y ∈ <, the
norm or the length of vector x, denoted by ‖x‖, is such that ‖x‖ = |x|
and we can define a metric from the norm by d(x, y) = |x − y|, which
generates the so-called standard topology on <. In this metric space
(<, d), an open ball is an open interval, and an open set is a countable
union of pair-wise disjoint open intervals. (Why countable, and why
pair-wise disjoint?)

• Let A = {x} for some x ∈ <. Is x a limit point of A? Is x an
isolated point of A? Is A a closed set?

• Suppose that {xn;n ∈ Z+} is a sequence in <, which converges
to x0 ∈ <. Let X contains exactly all the xn’s in the convergent
sequence. Is x0 a limit point of X? If this is not always true, then
offer a condition that ensures this conclusion.

19. Let (X, τ) be a topological space. A subset γ of τ is an open covering
of X if X ⊂ ⋃

U∈γ U . X is compact if every open covering of X contains
a finite sub-covering of X; that is, if for each open covering γ of X,
there exists a finite number of member sets U1, U2, · · · , Un ∈ γ, such
that X ⊂ ⋃n

i=1 Ui.

Note that < with the standard topology is not compact, for the open
covering {(n, n + 2) : n ∈ Z} does not have a finite sub-covering of
<. (We shall see that this is because < is not bounded.) Similarly,
the interval (0, 1) is not a compact subset of R under the standard
topology, for the collection {( 1

n+2
, 1
n
) : n ∈ Z+} is an open covering of

(0, 1) which does not have a finite sub-covering. (We shall see that this
is because (0, 1) is not closed.) It can be shown that compact subsets
of < under the standard topology are exactly those subsets which are
both bounded and closed.

20. The following statements are true.

• A closed subset of a compact space is compact.

• A (finite or infinite) Cartesian product of compact spaces is com-
pact.
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• Consider the metric space (<n, d), where the Euclidean metric d
is such that for x, y ∈ <n, with x = (x1, x2, · · · , xn) and y =

(y1, y2, · · · , yn), we have d(x, y) =
√∑n

i=1(xi − yi)2. Then under
the metric topology d, A ⊂ <n is compact if and only if it is both
closed and bounded.

• Is the first orthant in <2 closed? Is it bounded?

• Given two topological spaces (X, τx) and (Y, τy) and a continuous
function f : (X, τx)→ (Y, τy), f(A) is compact in (Y, τy) whenever
A is compact in (X, τx). That is, a continuous image of a compact
space is compact.

21. (Real Sequence and Real Function.)

If A = Z+ and B = <, then (the image of) f : A → B is called a real
(real number) sequence, and we write f(n) as fn for all n ∈ Z+. If
h : Z+ → Z+ is increasing and x : Z+ → <, then {x(h(n))} is called a
subsequence of {x(n)}.

22. We say that l ∈ < is a limit of the sequence {xn} if for all ε > 0 there
is an N(ε) ∈ Z+ such that

n ∈ Z+, n ≥ N(ε)⇒ |xn − l| < ε.

In this case we say that {xn} converges to l and {xn} a convergent
sequence. The limit of a sequence so defined is unique.

23. A set A ⊂ < is bounded above by u ∈ <, if for all x ∈ A, x ≤ u. In this
case, u is called an upper bound of the set A. The least upper bound of
A, if it exists, is denoted by supA. Lower bounds are similarly defined.
The greatest lower bound of A, if it exists, is denoted by inf A. The
set A is bounded if it has an upper and a lower bound in <.

24. Given a sequence {xn} in <, define its limit inferior as limxn = infn supk≥n xk
and its limit superior as limxn = supn infk≥n xk, which will be shown to
always exist in <⋃{−∞,+∞}, and we can show that they are equal
if and only if the real sequence {xn} converges.

25. A set I ⊂ < is an interval if it is not a singleton (a one-point set)
and if x, y ∈ I, x < y implies that there exists some z ∈ I such that
x < z < y.

6



26. A function g : I → <, where I is some interval, is continuous if for
all x ∈ I and all {xn} converging to x in I, {g(xn)} is a sequence
converging to g(x). The derivative of g(·) at x ∈ I, if it exists (i.e.,

it is a finite number), is the (common) limit of g(xn)−g(x)
xn−x for all {xn}

converging to x. If the derivative of g is defined for all x ∈ I, written
g′(x), we say that g is differentiable on I. In this case, g′(·) itself is a
mapping from I into R. If g′ is a continuous function, we say that g is
continuously differentiable on I.

27. (Axiom of Continuity.) If the real sequence {xn} is increasing (i.e.
xn+1 ≥ xn, for all n ∈ Z+), and if xn ≤ M ∈ < for all n ∈ Z+, then
{xn} converges to some l ≤M and xn ≤ l for all n ∈ Z+.

28. (Nested Interval Theorem.) Suppose that {[an, bn]; Z+} is a se-
quence of closed intervals such that for all n, [an+1, bn+1] ⊂ [an, bn] and
limn→+∞(bn − an) = 0. Then,

⋂
n∈Z+

[an, bn] is a singleton.

29. (Least Upper Bound Property. of <.) Suppose that A is a non-
empty subset of <, and A is bounded above by some u ∈ <. Then
supA exists. Similarly, if A is non-empty and bounded below, then
inf A exists.

30. Define the extended real line < ≡ <⋃{+∞,−∞}. Define sup ∅ = −∞
and inf ∅ = +∞. If A ⊂ < is unbounded above (there exists no upper
bound for A in <), then define supA = +∞. If A ⊂ < is unbounded
below (there exists no lower bound for A in <), then define inf A = −∞.
In this way, all subsets of < have well-defined suprema and infima in
<.

31. Suppose that {xn;n ∈ Z+} is a real sequence. Then its limit inferior

limxn ≡ sup
n∈Z+

inf
k≥n

xk

and its limit superior

limxn ≡ inf
n∈Z+

sup
k≥n

xk

both exist in extended real line <.
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32. For any two real sequences {xn} and {yn}, we have

limxn + limyn ≤ lim(xn + yn) ≤ limxn + limyn

≤ lim(xn + yn) ≤ limxn + limyn.

33. (Bolzano-Weierstrass Theorem.) Every bounded sequence in <
contains a convergent subsequence.

34. A function f : A ⊂ < → < is continuous at x ∈ A if for all ε > 0, there
exists δ(x, ε) > 0 such that

∀y ∈ A, |x− y| < δ(x, ε)⇒ |f(x)− f(y)| < ε.

The function is uniformly continuous at x if δ can be chosen to be
independent of x. We say f is a (uniformly) continuous function on A
if it is (uniformly) continuous at x for all x ∈ A. We can show that if
f : [a, b]→ < is continuous on [a, b], then it is uniformly continuous on
[a, b].

35. (Intermediate Value Theorem.) If f : I → < is continuous where
I is an interval, then f(I) is either a singleton or an interval.

36. (Extreme Value Theorem.) If f : [a, b] → < is continuous then
f([a, b]) is either a singleton or a bounded closed interval. In particular,
there exist m,M ∈ I such that for all x ∈ I, f(m) ≤ f(x) ≤ f(M).

37. Suppose that r : X → Y is a correspondence (a multi-valued function),
where X and Y are some subsets of <n.

• If r(x) 6= ∅ for all x ∈ X, then we say that r(·) is non-empty.

• If r(x) is a convex (compact, closed) subset of <n for all x ∈ X,
then we say that r(·) is convex-valued (compact-valued, closed-
valued), or simply convex.
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• We say that r(·) is upper hemi-continuous (u.h.c.) at x if for every
open set V containing r(x), there exists an open set U containing
x such that a ∈ U ⇒ r(a) ⊂ V .7 We say that r(·) is u.h.c. if it is
u.h.c. at each and every x ∈ X.

• Suppose that r(·) is closed. If r(·) is u.h.c. at x, then (Θ) whenever
{xn} converges to x and {yn ∈ r(xn)} converges to y, we have
y ∈ r(x). If Y is compact, then r(·) is u.h.c. at x if (Θ) holds.

• We say that r(·) is lower hemi-continuous (l.h.c.) at x ∈ X if for
all open set V ⊂ Y such that V

⋂
r(x) 6= ∅, there exists some open

set U ∈ X such that a ∈ U ⇒ r(a)
⋂
V 6= ∅. We say that r(·) is

l.h.c. if it is l.h.c. at each and every x ∈ X.

• It can be shown that r(·) is lower hemi-continuous (l.h.c.) at
x ∈ X if and only if whenever {xn} converges to x, for each
y ∈ r(x), there exist a subsequence {xn(k)} of {xn} and a sequence

7See:
https://en.wikipedia.org/wiki/Hemicontinuity#Sequential characterization.
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{yn(k) ∈ r(xn(k))} such that the latter sequence {yn(k)} converges
to y.

• If r is u.h.c. and compact-valued, then r(A) is compact in Y if A
is compact in X.

• The correspondence r(·) is said to be continuous if it is both upper
and lower hemi-continuous.

38. Concave Maximization.

39. A (real-valued) symmetric matrix An×n is positive definite (or PD),
if for all xn×1 6= 0n×1, we have x′Ax > 0. A symmetric matrix An×n
is negative definite (or ND), if −A is positive definite. A symmetric
matrix An×n is positive semi-definite (or PSD), if for all xn×1 ∈ Rn,
we have xTAx ≥ 0. A symmetric matrix An×n is negative semi-
definite (or NSD), if −A is positive semi-definite.

40. Consider a twice differentiable function f : Rn → R. Let the Df :
Rn → Rn be the vector function

Df =



∂f
∂x1

∂f
∂x2

...

∂f
∂xn


,

which will be referred to as the gradient of f . Let D2f : Rn → Rn2
be

the matrix function

D2f =



∂2f
∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · · ∂2f
∂x2∂xn

...
...

...
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn


,

which will be referred to as the Hessian of f .
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41. A function f : Rn → R is concave, if for all x,y ∈ Rn and all λ ∈ [0, 1],
f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y). A concave function is said
to be strictly concave if the above defining inequality is always strict.
A function f is (strictly) convex if −f is (strictly) concave. A function
is affine if it is both concave and convex. An affine function is linear
if it passes through the origin; that is, if f(0n×1) = 0. Note that by
definition, f is concave if f is strictly concave.

Theorem 1 A twice differentiable function f : U ⊂ Rn → R is con-
cave, where U is an open convex subset of Rn, if and only if D2f
is a negative semi-definite matrix at each and every x ∈ U ; and f is
strictly concave if D2f is a negative definite matrix at each and every
x ∈ U .8

Suppose that n = 1 in the above theorem. Then f ′′ ≤ 0 if f is concave,
and if x̃ is a random variable with finite expectation, then we have
f(E[x̃]) ≥ E[f(x̃)]. (This is the so-called Jensen’s inequality.)

42. Execise 1 Define the function

f(x, y) = xay1−a, ∀x, y ∈ (0,+∞),

where a is a constant with 0 < a < 1. Clearly f : (0,+∞)× (0,+∞)→
< is twice continuously differentiable. Let us verify that f is strictly
concave. Note that

D2f = a(1− a)xa−2y−1−a

 −y
2 xy

xy −x2

 .
Hence for any  k

h

 ∈ <2,

8If f(x) = −x4, then f ′′(0) = 0 (so that the Hessian of f at zero is negative semi-
definite but not negative definite), but f is strictly concave. Hence the “only if” part
for strict concavity in general does not hold. However, if f : U ⊂ < → < is twice
continuously differentible and concave (so that U becomes an open interval), and if f ′′ is
not constantly zero over any subinterval in U , then f is strictly concave; see the following
link: people.exeter.ac.uk/dgbalken/BME05/LectTwo.pdf.
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we have [
k h

]
D2f

 k

h



= a(1− a)xa−2y−1−a
[
k h

]  −y
2 xy

xy −x2


 k

h


= −a(1− a)xa−2y−1−a(ky − hx)2 ≤ 0,

and the last inequality is strict unless k = h = 0. This proves that D2f
is negative definite for all x, y ∈ (0,+∞), and hence f(·, ·) is strictly
concave.

Execise 2 Define the function

f(x) =
√
x, ∀x > 0.

Clearly f : (0,+∞)→ < is twice continuously differentiable. Note that

D2f =
∂2f

(dx)2
= − 1

4x
3
2

,

so that for all k ∈ <, we have

k ×D2f × k = − k2

4x
3
2

≤ 0,

and the last inequality is strict unless k = 0. This proves that D2f is
negative definite for all x > 0, and hence f(·) is strictly concave.

Execise 3 Define the function

f(x, y) = g(x) + h(y),

where g, h : < → < are two strictly concave twice-differentiable func-
tions. Then f(·, ·) is a strictly concave function also. Indeed, we have
in this case

D2f =

 g′′(x) 0

0 h′′(y)

 ,
12



so that given any  a

b

 ∈ <2,

we have [
a b

]
D2f

 a

b


= a2g′′(x) + b2h′′(y) ≤ 0,

and the last inequality holds strictly except in the case where a = b = 0.
This proves that D2f is negative definite, and hence f(·, ·) is strictly
concave.

The preceding example shows that a twice-differentiable additively sep-
arable function

f(x1, x2, · · · , xn) = f1(x1) + f2(x2) + · · ·+ fn(xn)

is strictly concave if for all j, fj : < → < is strictly concave and twice
differentiable.

Theorem 2 Suppose that f : <n → < is twice-differentiable and con-
cave, then for all x, a ∈ <n, we have9

f(x)− f(a) ≤ Df(a)′(x− a).

The above inequality becomes strict if the Hessian of f is everywhere
negative definite and x 6= a.

Proof. Recall the Theorem of Taylor Expansion with a Remainder: if
f : <n → < is twice continuously differentiable, then for each x, a ∈ <n,
there exists some y lying on the line segment connecting x and a such
that

f(x) = f(a) +Df(a)′(x− a) +
1

2
(x− a)′D2f(y)(x− a).

9The reader should draw a graph for these inequalities for the case of n = 1.
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Now suppose that f is concave, so thatD2f(y) is negative semi-definite.
Then we have

1

2
(x− a)′D2f(y)(x− a) ≤ 0,

so that
f(x)− f(a) ≤ Df(a)′(x− a).

If D2f(y) is negative definite, then given x 6= a, we have

1

2
(x− a)′D2f(y)(x− a) < 0,

implying that

f(x)− f(a) < Df(a)′(x− a). Q.E.D.

43. According to the Theorem of Taylor Expansion with a Remainder, when
moving from a to x ∈ B(a, r) in f ’s domain of definition, the functional
value of f would increase if

Df(a)T (x− a) +
1

2
(x− a)TD2f(y)(x− a) > 0.

Note that when r is small enough, the preceding inequality holds if and
only if10

Df(a)T (x− a) = ‖Df(a)‖‖x− a‖ cos(θ) > 0,

where θ is the angle between the two vectors Df(a) and x− a, which
must be acute to ensure the above inequality.11

10Imagine that we replace (x − a) by ε(x − a), and observe that when ε > 0 is a
tiny number, ε|Df(a)T (x − a)| is much greater than ε2| 12 (x − a)TD2f(y)(x − a)|. Thus
εDf(a)T (x − a) + ε2[ 12 (x − a)TD2f(y)(x − a)] is positive (respectively, negative) if and
only if Df(a)T (x− a) is positive (respectively, negative).

11Recall the following Law of Cosines: Let ∆ABC be a triangle whose sides a, b, c are
such that a is opposite A, b is opposite B and c is opposite C. Let D be such that the two
line segments BD and CD are orthogonal to each other. Then, since the length of BD
is a sinC and the length of AD is |b − a cosC|, we have c2 = a2 + b2 − 2ab cosC. Now,
given two vectors v,w and the angle θ between them, if we let a = ‖v‖, b = ‖w‖ and
c = ‖v −w‖, then it follows from the Law of Cosines that

‖v‖2+‖w‖2−2(v·w) = (v−w)·(v−w) = c2 = a2+b2−2ab cos θ = ‖v‖2+‖w‖2−2‖v‖‖w‖ cos(θ),
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44. We shall from now on confine attention to twice differentiable functions.

A necessary condition for x∗ ∈ <n to solve the following maximization
program (P1)

max
x∈<n

f(x)

is that Df(x∗) = 0, which will be referred to as the first-order con-
ditions for the optimal solution x∗. This necessary condition is also
sufficient, if f is concave.

45. Consider the following maximization program (P2):

max
x∈<n

f(x)

subject to
∀i = 1, 2, · · · ,m, gi(x) = 0,

where m < n.

Theorem 3 (Lagrange Theorem) Suppose that x∗ solves (P2) and
{Dgj(x∗); j ∈ {1, 2, · · · ,m} is a set of linearly independent gradient
vectors. (This is known as a constraint qualifications condition.)
Then, there must exist m constants (called the Lagrange multipli-
ers) π1, π2, · · · , πm such that

(i) ∀i = 1, 2, · · · ,m, gi(x
∗) = 0; and

(ii)
m∑
i=1

πiDgi(x
∗) = Df(x∗).

Conversely, if f is concave and all gi’s are affine, then if x∗ satisfies
(i) and (ii), then x∗ solves (P2). If f is strictly concave, such x∗ is
unique.

implying that the following Cosine Formula for Dot Product must hold:

v ·w = ‖v‖‖w‖ cos(θ).
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To see the role of the constraint qualifications condition in the above
necessary condition, consider the following example with n = m =
2: f(x1, x2) = x1 + x2, g1(x1, x2) = x21 + x22 − 1, g2(x1, x2) = x21 +
(x2 − 2)2 − 1. There is only one feasible solution in this case, namely,
(x1, x2) = (0, 1), which is apparently the optimal solution. Thus x∗ =
(0, 1). However, there does not exist π1, π2 ∈ < such that Df(x∗) =
π1Dg1(x

∗) + π2Dg2(x
∗). This happens because Dg1(x

∗) and Dg2(x
∗)

are linearly dependent!

46. Now, let us prove the sufficiency of Lagrange Theorem. Suppose that
there exists x∗ satisfying
(i) ∀i = 1, 2, · · · ,m, gi(x

∗) = 0; and
(ii)

m∑
i=1

πiDgi(x
∗) = Df(x∗),

for some π1, π2, · · · , πm ∈ <. Consider any other x satisfying
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∀i = 1, 2, · · · ,m, gi(x) = 0.

We must show that
f(x∗) ≥ f(x).

To see that this is true, first note that for all i = 1, 2, · · · ,m, by the
fact that gi is affine, we have aTi x+bi = gi(x) = 0 = gi(x

∗) = aTi x∗+bi,
where ai is the gradient of gi, so that

0 = gi(x)− gi(x∗) = aTi (x− x∗) = Dgi(x
∗)T (x− x∗).

Now, observe that

f(x)− f(x∗) ≤ Df(x∗)T (x− x∗) =
m∑
i=1

πiDgi(x
∗)T (x− x∗) = 0,

and hence x∗ is indeed an optimal solution to (P2). Finally, if both x∗

and x∗∗ are optimal solutions to (P2), then x′ ≡ 1
2
(x∗ + x∗∗) must be

feasible also (i.e., gi(x
′) = 0 for all i), and yet by Jensen’s inequality

we have

f(x′) >
1

2
[f(x∗) + f(x∗∗)] = f(x∗),

which is a contradiction. Hence the optimal solution must be unique
when f is strictly concave.

47. Consider the following maximization program (P3):

max
x∈<n

f(x)

subject to
∀i = 1, 2, · · · ,m, gi(x) ≤ 0.

Theorem 4 (Kuhn-Tucker Theorem) Suppose that there exists some
x̂ such that gi(x̂) < 0 for all i = 1, 2, · · · ,m. (This is called the Slater
Condition.)12 Then if x∗ is a solution to (P3), there must exist m

12Slater condition is a constraint qualification condition, and it applies mainly to the
case where f is concave and gi’s are convex. There are several other constraint qualification
conditions. For example, one of them requires that there exist x̂ such that, for all i =
1, 2, · · · ,m, Dgi(x

∗)T x̂ < 0 whenever gi(x
∗) = 0. Let us call this condition A.

17



non-negative constants (called the Lagrange multipliers for the m
constraints) π1, π2, · · · , πm such that (i)

m∑
i=1

πiDgi(x
∗) = Df(x∗);

and (ii) (complementary slackness) for all i = 1, 2, · · · ,m, πigi(x
∗) = 0.

Conversely, if f is concave and for all i = 1, 2, · · · ,m, gi : Rn → R is
convex, and if x∗ satisfies the above (i) and (ii), then x∗ is a solution
to the above program (P3). If f is strictly concave, such x∗ is unique.

To see the role of the Slater Condition consider the following example
with m = n = 2: f(x1, x2) = x1 + x2, g1(x1, x2) = x21 + x22 − 1,
g2(x1, x2) = x21 + (x2 − 2)2 − 1. There is only one feasible solution in
this case, namely, (x1, x2) = (0, 1), which is apparently the optimal
solution. Thus x∗ = (0, 1). However, there does not exist π1, π2 ∈ <+

such that Df(x∗) = π1Dg1(x
∗) +π2Dg2(x

∗). This happens because we
cannot find some x̂ such that g1(x̂) < 0 and g2(x̂) < 0!
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To see why Df(x∗) must be contained in the polyhedral cone generated
by {Dgi(x∗); i = 1, 2, · · · ,m}, note that in the opposite case we would
be able to find some tiny vector a ≡ x − x∗ such that a and each
Dgi(x

∗) together create an obtuse angle but it and Df(x∗) together
create an acute angle. This implies that we can find another feasible
solution x close to x∗ such that f(x) > f(x∗), which is a contradiction.
I shall demonstrate this fact in class using a graph.13

48. Let me prove the sufficiency of Kuhn-Tucker Theorem. Suppose that
f and all −gi are concave. Suppose that there exist non-negative
π1, π2, · · · , πm such that at x∗, (i)

m∑
i=1

πiDgi(x
∗) = Df(x∗);

and (ii) (complementary slackness) for all i = 1, 2, · · · ,m, πigi(x
∗) =

0. We must show that given any x such that gi(x) ≤ 0 for all i =
1, 2, · · · ,m, we have

f(x)− f(x∗) ≤ 0.

To this end, note that

f(x)− f(x∗) ≤ Df(x∗)T (x− x∗)

=
m∑
i=1

πiDgi(x
∗)T (x− x∗) ≤

m∑
i=1

πi[gi(x)− gi(x∗)]

13The necessity that Df(x∗) must be contained in the polyhedral cone generated by
{Dgi(x∗); i = 1, 2, · · · ,m} is actually a consequence of the following Farkas Lamma: if
a1,a2, · · · ,am,b ∈ <n are such that b · x ≤ 0 whenever ai · x ≤ 0 for all i = 1, 2, · · · ,m,
where x ∈ <n, then it must be that b ∈ P ≡ {

∑m
i=1 tiai : ti ∈ <+,∀i = 1, 2, · · · ,m}.

We say that P is a polyhedral cone generated by a1,a2, · · · ,am. The idea is that P is
non-empty, closed and convex, and if P does not contain b, then there exists a hyperplane
that separates strictly P and b; see section 11 of the lecture note Separating Hyperplane
Theorem. That is, there exists some y ∈ <n and α ∈ < such that p · y < α for all p ∈ P
and yet b · y > α. Note that if p ∈ P is such that p · y > 0, then α > 0, but since tp ∈ P
for any t ∈ <+, we must have tp · y > α for sufficiently large t, a contradiction. Since
0 ∈ P, we actually have α > 0 = 0 · y. Thus we must have p · y ≤ 0 for all p ∈ P and
yet b · y > 0. Now, if we let b = Df(x∗) and ai = Dg(x∗) for all i = 1, 2, · · · ,m, and if
we suppose that the necessity fails but condition A holds, then for ε, e > 0 small enough,
gi(x

∗ + ε(1 − e)y + εex̂) ≤ gi(x
∗) ≤ 0 but f(x∗ + ε(1 − e)y + εex̂) > f(x∗), which is a

contradiction.
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=
m∑
i=1

πigi(x) ≤ 0,

where the first inequality follows from the preceding footnote and the
fact that f is concave, the first equality follows from the assumption
that the Kuhn-Tucker condition holds at x∗, the second inequality fol-
lows from the fact that πi ≥ 0 and gi is convex for all i = 1, 2, · · · ,m,
and the last equality follows from the assumption that the comple-
mentary slackness holds at x∗, and the fact that gi(x) ≤ 0 for all
i = 1, 2, · · · ,m. Thus x∗ is indeed an optimal solution to (P3). Finally,
if both x∗ and x∗∗ are optimal solutions to (P2), then x′ ≡ 1

2
(x∗+ x∗∗)

must be feasible also (i.e., by Jensen’s inequality gi(x
′) ≤ 0 for all i),

and yet by Jensen’s inequality again we have

f(x′) >
1

2
[f(x∗) + f(x∗∗)] = f(x∗),

which is a contradiction. Hence the optimal solution must be unique
when f is strictly concave.

49. Theorem 5 Consider the following maximization problem:

max
x∈<n

f(x)

subject to
gi(x) ≤ 0, ∀i = 1, 2, · · · ,m;

hj(x) = 0, ∀j = 1, 2, · · · , l.
This maximization problem involves m inequality constraints and l equal-
ity constraints. The associated Slater condition is as follows: there
exists x̂ ∈ <n such that

gi(x̂) < 0, ∀i = 1, 2, · · · ,m;

hj(x̂) = 0, ∀j = 1, 2, · · · , l.
When the Slater condition holds, the following Kuhn-Tucker necessary
conditions must hold: at an optimal solution x∗, where {Dhj(x∗); j =
1, 2, · · · , l} consists of a set of linearly independent vectors, there must
exist (µ1, µ2, · · · , µm)T ∈ <m+ and (λ1, λ2, · · · , λl)T ∈ <l such that

(Stationarity) Df(x∗) =
m∑
i=1

µiDgi(x
∗) +

l∑
j=1

λjDhj(x
∗);
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hj(x
∗) = 0, ∀j = 1, 2, · · · , l;

(Complementary Slackness) µigi(x
∗) = 0, ∀i = 1, 2, · · · ,m.

Conversely, when the Slater condition holds, f is concave, gi’s are con-
vex, and hj’s are affine, if x∗, (µ1, µ2, · · · , µm)T ∈ <m+ , and (λ1, λ2, · · · , λl)T ∈
<l satisfy the above Kuhn-Tucker necessary conditions, then x∗ must
be an optimal solution.14

50. The remaining sections give some exercises.

51. Consider the following maximization problem: for some constant a ∈
<+,

max
x∈<

f(x; a) ≡ 2a− (x− a)2

subject to
g(x) = (x− 3)2 − 1 ≤ 0.

Given a, let x∗(a) be the unique optimal solution and π(a) the La-
grange multiplier associated with the constraint g ≤ 0.

(i) Show that in the above maximization problem the Slater condition
is satisfied, and that f and g are respectively concave and convex.

(ii) Show that there exist a, a ∈ <+ with a < a such that π(a) > 0 if
and only if either a < a or a > a. Find a and a.

(iii) Compute x∗(a− 1), π(a− 1), Df(x∗(a− 1)) and Dg(x∗(a− 1)).

14Visit for example
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker conditions
to see a list of regularity conditions (or constraint qualification conditions) including the
Slater condition. After Harold W. Kuhn and Albert W. Tucker published the Kuhn-Tucker
conditions in 1951, scholars discovered that these necessary conditions had been stated by
William Karush in his master’s thesis in 1939. Hence nowadays people also refer to the
Kuhn-Tucker conditions as Karush-Kuhn-Tucker conditions.

21



(iv) Compute x∗(a+ 1), and π(a+ 1), Df(x∗(a+ 1)) and Dg(a+ 1)).

52. Suppose that f : < → < is twice continuously differentiable and strictly
concave. Let x∗ attain the maximum value of f . Show that if f ′(x) > 0
then x∗ > x, and if f ′(x) < 0 then x∗ < x.

53. Consider the following maximization problem:

max
(x,y)∈<2

x,

subject to
g(x, y) = (x+ 1)2 + (y − 2)2 − 4 ≤ 0;

h(x, y) = y − 3 = 0.

Let µg and µh denote the Lagrange multipliers associated with respec-
tively g ≤ 0 and h = 0. Let (x∗, y∗) denote the optimal solution.

(i) Are constraint qualification conditions stated in section 48 of Lec-
ture 0 satisfied?

(ii) Find µg, µh, and (x∗, y∗).

54. Consider the following maximization problem:

Problem (P): max
T1,T2,q1,q2

1

2
[T1 − cq1] +

1

2
[T2 − cq2]

subject to
θ1V (q1)− T1 ≥ 0, (2)

θ2V (q2)− T2 ≥ 0, (3)

θ1V (q1)− T1 ≥ θ1V (q2)− T2, (4)

θ2V (q2)− T2 ≥ θ2V (q1)− T1. (5)

The interpretation is as follows. A large bank is facing a small bor-
rowing firm, which is equally likely to be of type θ1 or type θ2. By
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borrowing q dollars from the bank today (date 0), a type-θj borrowing
firm will generate a cash flow θjV (q) tomorrow (date 1). The bank
cannot tell the borrowing firm’s type, and hence it offers a menu of
choices to the borrowing firm, and asks the firm to pick one. The menu
says that, for j ∈ {1, 2}, if the firm would borrow qj dollars today, then
it has to repay the bank Tj dollars tomorrow.

In designing the menu of bank loan contracts, the bank must make sure
that the borrowing firm is willing to accept the deal, regardless of its
type (so that (1) and (2) must hold); and the bank must also make
sure that a type-θj borrowing firm would rather accept the deal (qj, Tj)
than accept (qi, Ti), which is designed for the other type θi (and hence
(3) and (4) must hold). (We are assuming zero interest rates, so that
there is no discounting.)

Finally, note that the objective function in (P) says that the bank
considers both types of the borrowing firm equally likely, and that for
each dollar lent to the firm, the bank must incur a cost c > 0. The
bank thus seeks to maximize its expected profit from lending to the
firm.

Let us assume from now on that

θ1 = 3, θ2 = 4, V (q) = ln(1 + q), c =
1

4
.

Let (q∗∗2 , q
∗∗
1 , T

∗∗
2 , T ∗∗1 ) denote the optimal solution to the above max-

imization problem. Show that q∗∗2 = 15 and q∗∗1 = 7. What are the
associated T ∗∗2 and T ∗∗1 ? 15

15To apply the Kuhn-Tucker Theorem, first define h(xj) ≡ exj − 1, and re-write the
maximization problem as

Problem (P): max
T1,T2,x1,x2

f(T1, T2, x1, x2) ≡ T1 − ch(x1) + T2 − ch(x2)

subject to
g1 ≡ T1 − θ1x1 ≤ 0;

g2 ≡ T2 − θ2x2 ≤ 0;

g3 ≡ T1 − T2 + θ1(x2 − x1) ≤ 0;

g4 ≡ T2 − T1 + θ2(x1 − x2) ≤ 0.

Let µj be the associated Lagrange multiplier for constraint gj ≤ 0.
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Then, show that f is strictly concave and gj ’s are convex, with

Df =


1
1

−ch′(x1)
−ch′(x2)

 , Dg1 =


1
0
−θ1

0

 , Dg2 =


0
1
0
−θ2

 ,

Dg3 =


1
−1
−θ1
θ1

 , Dg4 =


−1
1
θ2
−θ2

 .
It is useful to gain some insights before computing.

• Note that the θ2 type can always pretend to be the θ1 type and take the deal (T1, x1),
which would allow the θ2-buyer to obtain a payoff

θ2x1 − T1 ≥ θ1x1 − T1 ≥ 0,

and the first inequality would be strict if x1 > 0 (or equivalently q1 > 0). Thus
x1 > 0 together with g4 ≤ 0 would imply g2 ≤ 0. That is, if we conjecture that
x1 > 0 then removing the second constraint would not alter the optimal solution to
(P).

• Following the removal of g2 ≤ 0, we can further conjecture that the first constraint
g1 ≤ 0 must be binding at an optimal solution, for otherwise we could raise T1 and
T2 by the same tiny positive amount without violating g1, g3,and g4, but this would
increase f !

• The removal of g2 ≤ 0 and the conjecture that g1 = 0 at optimum now allow us to
further conjecture that g4 must be binding at an optimal solution, for otherwise we
could raise T2 alone by a tiny positive amount without violating the other constaints,
but this would increase f !

• Now, following g1 = 0 = g4 and following the removal of g2 ≤ 0, we can re-state
g3 ≤ 0 as

(θ1 − θ2)(x2 − x1) ≤ 0,

but this last inequality would not be binding so long as x2 > x1.

Thus if we conjecture that x2 > x1 > 0 at optimum then we would also conjecture that

µ2 = µ3 = 0, T1 = θ1x1, T2 = T1 + θ2(x2 − x1) = θ2x2 − (θ2 − θ1)x1.

Now, by the fact that f is concave and g1, g2, g3, g4 are all convex, the sufficiency of
Kuhn-Tucker Theorem applies, and hence we only need to find µ1, µ4 ≥ 0 such that

Df = µ1Dg1 + µ4Dg4 ⇒


1
1

−ch′(x1)
−ch′(x2)

 = µ1


1
0
−θ1

0

 + µ4


−1
1
θ2
−θ2

 ,
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55. Consider the set X = {1, 2, 3}. We shall define different metrics on
X. (Notice that X is not a linear space; a metric space need not be a
linear space.)

Define d1(x, y) ≡ 1x 6=y(x, y) and d2(x, y) ≡ |x−y|, for all x, y ∈ X. For
j ∈ {1, 2}, let βj contain all open balls in the metric space (X, dj). Let
τj contain all (arbitrary) unions of elements of βj. We say that τj is
the topology generated by βj. If τi and τj are two topologies defined on
X, we say that τi is stronger than τj is τj ⊂ τi.

(i) Verify that d1 and d2 are both metrics on X.

(ii) Write down explicitly β1 and β2.

(iii) Between τ1 and τ2, which one is stronger?

Solution. Consider part (i). Note 1x 6=y(x, y) equals either 0 or 1,
and it equals 0 when and only when x = y. Moreover, 1x 6=y(x, y) =
1x 6=y(y, x) obviously. Finally, given x, y, z ∈ X, 1x 6=y(x, y)+1z 6=y(y, z) ≥
1x 6=z(x, z) obviously if x = z; and in case x 6= z, then 1x 6=y(x, y) +
1z 6=y(y, z) ≥ 1x6=z(x, z) also holds because it is impossible that x = y
and z = y at the same time. Thus d1 is a metric on X.

Next, observe that |x− y| ≥ 0 and equality holds when and only when
x = y. Moreover, |x − y| = |y − x| obviously. Finally, given a, b ∈ <,
|a| + |b| ≥ |a + b| obviously, and hence given x, y, z ∈ X, if we define
a = x−y and b = y−z, then we have |x−y|+|y−z| ≥ |(x−y)+(y−z)| =
|x− z|. Thus d2 is also a metric on X.

Consider part (ii). Let Bj(x, e) denote the open ball centering on x ∈ X
with radius e ∈ <++ under metric dj. By definition, we have

B1(x, e) =


{x}, if e ≤ 1;

X, if e > 1.

and if a solution to this system of equations exists and if the solution implies that x2 >
x1 > 0 and g2, g3 < 0, then we are done. Moreover, because f is strictly concave in
(x1, x2), the solution would be unique!
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Since β1 contains all open balls under d1, we have

β1 = {{1}, {2}, {3}, X}.

Observe also that if x, y, z are three distinct elements of X, then

B2(x, e) =



{x}, if e ≤ min(|x− y|, |y − z|);

{x, y} or {x, z}, if min(|x− y|, |y − z|) < e ≤ max(|x− y|, |y − z|);

X, if e > max(|x− y|, |y − z|).

Since β2 contains all open balls under d2, we have

β2 = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, X}.

Consider part (iii). Since both β1 and β2 contain {1}, {2}, {3}, and
since τj contains all (including empty) unions of elements of βj, we
have

τ1 = τ2 = 2X ;

that is, τ1 and τ2 are the same topology on X.

Remark. This exercise confirms the following fact:

Suppose that (X, d) is a metric space and X is a finite set. Let τ denote
the collection of open sets. Then τ = 2X .16

56. Suppose X, Y are some nonempty sets and f : X → Y . For all A ⊂ X
and B ⊂ Y , define f(A) ≡ {f(x) : x ∈ A}, f−1(B) ≡ {x : f(x) ∈ B}.

Show the following:

(i) f(∅) = ∅ = f−1(∅);
(ii) f(X) ⊂ Y , f−1(Y ) = X;
(iii) A1 ⊂ A2 ⊂ X, B1 ⊂ B2 ⊂ Y ⇒ f(A1) ⊂ f(A2), f−1(B1) ⊂

16For any z ∈ X, pick ez such that 0 < ez < d(x, z) for all x 6= z, x ∈ X. Then the
open ball B(z, ez) = {z}, proving that τ contains all singleton subsets of X. Recall that
τ also contains all possible unions of open balls.
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f−1(B2);
(iv) ∪∞i=1Ai ⊂ X, ∪∞i=1Bi ⊂ Y ⇒ f(∪∞i=1Ai) = ∪∞i=1f(Ai), f

−1(∪∞i=1Bi) =
∪∞i=1f

−1(Bi);
(v) ∩∞i=1Ai ⊂ X, ∩∞i=1Bi ⊂ Y ⇒ f(∩∞i=1Ai) ⊂ ∩∞i=1f(Ai), f

−1(∩∞i=1Bi) =
∩∞i=1f

−1(Bi);
(vi) [f−1(B)]c = f−1(Bc).
(vii) For f : R → R given by f(x) = 3x2+2, show that f−1(f([0, 1])) =
[−1, 1] and f(f−1([0, 5])) = [2, 5].

Solution. Parts (i) and (ii) are definitional. In part (i), since ∅
contains no x ∈ X, f(∅) contains no f(x) in Y ; and since ∅ contains
no f(x) ∈ Y , f−1(∅) contains no x in X. In part (ii), since X contains
each of its elements x, and each f(x) ∈ Y , f(X) ⊂ Y ; and since Y
contains each f(x) with x ∈ X, f−1(Y ) = X. It is easy to find an
example where f(X) 6= Y ; recall that this is true whenever f is not
surjective.

Part (iii) is again definitional. Since A2 contains every x contained by
A1, by definition f(A2) contains every f(x) with x ∈ A1; that is, f(A2)
contains every element of f(A1). Thus f(A1) ⊂ f(A2). Similarly, B2

contains every f(x) contained in B1, and hence f−1(B2) contains every
element of f−1(B1), so that f−1(B1) ⊂ f−1(B2).

Consider part (iv). Note that f(x) ∈ f(∪∞i=1Ai) if and only if x ∈
∪∞i=1Ai, which is true if and only if x ∈ Ai for some i, which in turn is
true if and only if f(x) ∈ f(Ai) for some i, which in turn is true if and
only if f(x) ∈ ∪∞i=1f(Ai). Thus we have f(∪∞i=1Ai) = ∪∞i=1f(Ai).

Similarly, x ∈ f−1(∩∞i=1Bi) if and only if f(x) is contained in each and
every Bi, which is true if and only if x is contained in each and every
f−1(Bi), or equivalently, if and only if x ∈ ∩∞i=1f

−1(Bi). Thus we have
f−1(∩∞i=1Bi) = ∩∞i=1f

−1(Bi).

Consider part (v). Note that f(x) ∈ f(∩∞i=1Ai) if and only if x is
contained in each and every Ai, which implies that f(x) is contained
in each and every f(Ai), or equivalently, f(x) ∈ ∩∞i=1f(Ai). Hence
we have f(∩∞i=1Ai) ⊂ ∩∞i=1f(Ai). It is easy to find an example where
f(∩∞i=1Ai) 6= ∩∞i=1f(Ai). For example, let X = Y = < and f(x) =
x2. Let A1 = (−1, 0) and Ai = (0, 1) for all i ≥ 2. Then we have
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f(∩∞i=1Ai) = f(∅) = ∅, but f(Aj) = (0, 1) for all j so that ∩∞i=1f(Ai) =
(0, 1) also.

Now, consider part (vi). Note that x ∈ [f−1(B)]c if and only if f−1(B)
does not contain x, which is true if and only if B does not contain f(x),
or equivalently, if and only if f(x) ∈ Bc, which in turn is true if and
only if x ∈ f−1(Bc). Thus [f−1(B)]c = f−1(Bc).

Finally, consider part (vii). Note that f([0, 1]) = [2, 5], and f−1([2, 5]) =
[−1, 1] just as asserted. Note also that f−1([0, 5]) = f−1([2, 5]) =
[−1, 1], and f([−1, 1]) = [2, 5], just as asserted.

57. Consider the set X = {1, 2}. Define τ1 ≡ {X, ∅} and τ2 ≡ 2X . Given
j, we say that f : (X, τj) → (<,B(<)) is a continuous function if
f−1((a, b)) ∈ τj whenever a < b, a, b ∈ <. We say that a sequence
{xn;n ∈ Z+} in (X, τj) converges to x ∈ X if for all U ∈ τj with
x ∈ U , there exists some N(U) ∈ Z+ such that xm ∈ U whenever
m ≥ N(U).

(i) Find a function f : (X, dj) → (<,B(<)) such that f is continuous
if j = 2 but not if j = 1.

(ii) Find a sequence {xn;n ∈ Z+} in X such that {xn} converges to
some x ∈ X if j = 1 but not if j = 2.
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Appendix: Heine-Borel Theorem
and

Weierstrass Theorem

1. A collection of sets {Fj; j ∈ J} is said to exhibit the finite intersection
property if whenever we pick a finite number of elements from this
collection, the intersection of those chosen elements is non-empty.

2. Suppose that (X, τ) is a topological space. Then X is compact if and
only if every collection F = {Fj; j ∈ J} of closed sets satisfying the
finite intersection property has a non-empty intersection itself.17

Proof. Note that by DeMorgan’s Law, {F c
j ; j ∈ J} is an open covering

for X if and only if F = {Fj; j ∈ J} is a collection of closed sets
that has an empty intersection. If X is compact then {F c

j ; j ∈ J}
must have an open sub-covering for X, so that F = {Fj; j ∈ J} must
have a sub-collection with an empty intersection. If instead F is a
collection of closed sets that exhibits the finite intersection property,
then {F c

j ; j ∈ J} cannot be an open covering for X, so that F must
have a non-empty intersection itself.

3. (Weierstrass Theorem.) Suppose that (X, τ) is a topological space.
A function f : X → < is upper semi-continuous if and only if for all
r ∈ <, the pre-image f−1((−∞, r)) ∈ τ . If X is compact and f is upper
semi-continuous then there exists x∗ ∈ X such that f(x∗) ≥ f(x) for
all x ∈ X.

Proof. The collection

G ≡ {f−1((−∞, r)); r ∈ <}

is an open covering of X, which, by the fact that X is compact, must
have a finite sub-covering. That is, for some r1 < r2 < · · · < rn,

X ⊂
n⋃
j=1

f−1((−∞, rj))⇔ f(x) < rn, ∀x ∈ X.

17One can show that A ⊂ X is compact if and only if every collection F = {Fj ; j ∈ J}
of closed sets of which the intersection of any finite number of elements is not disjoint from
A also has an intersection that is not disjoint from A.
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This implies that image set f(X) is non-empty and bounded above in
<. Thus f(X) has a supremum, which we denote by f ∗. Define for all
positive integers n,

Fn = {x ∈ X : f(x) ≥ f ∗ − 1

n
}.

By the upper semi-continuity of f , for each n, the complement of Fn
is open and non-empty: if Fn is empty, then f ∗ − 1

n
is a smaller upper

bound than f ∗, which is a contradiction. It follows that {Fn} satis-
fies that the finite intersection property, so that by compactness of X,⋂
n Fn 6= ∅; that is, there exists x∗ ∈ X such that for all n,

f ∗ ≥ f(x∗) ≥ f ∗ − 1

n
,

proving that f(x∗) = f ∗. ‖

4. (Heine-Borel Theorem.) A subset A ⊂ <n is compact if and only if
A is bounded and closed.

Proof. We shall prove the theorem in 5 steps.

(Step 1.) If A is compact, then A is bounded.

Let 0 be the origin of <n. The collection {Bn} defined by, for all positive
integer n,

Bn ≡ {x ∈ <n : d(x, 0) < n},

is an open covering for A, and hence must have a finite sub-covering,
{Bn(1), Bn(2), · · · , Bn(J)}, with n(1) < n(2) < · · · < n(J). This implies
that A ⊂ Bn(J), proving that A is bounded.

(Step 2.) If A is compact, then A is closed.

If A = X then the assertion is obviously true. Thus let x ∈ Ac. For
each y ∈ A, pick ey such that 0 < ey <

1
3
d(x, y), so that the collection
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{B(y, ey) : y ∈ A} is an open covering for A, which has a finite sub-
covering G ≡ {B(y(j), ey(j)); j = 1, 2, · · · ,m}. Note that G is disjoint
from

Hx ≡
m⋂
j=1

B(x, ey(j)).

Note also that Hx is open,18 and A ⊂ G ⋂
Hx = ∅. Since we have arbi-

trarily picked x ∈ Ac, we have shown that Ac is actually the union of
a collection of open sets Hx, and hence Ac is open. Thus A is closed.

(Step 3.) Suppose that (X, τ) is a compact topological space and
A ⊂ X is closed, then A is also compact.19

Let G be any open covering for A, so that G ⋃
Ac is an open covering

for X, which has a finite sub-covering Gn
⋃
Ac for X, so that the finite

collection Gn is a finite sub-covering (of G) for A.

(Step 4.) The Cartesian product R0 ≡ Πn
j=1[an, bn], where an < bn, is

referred to as a closed rectangle in <n, which is compact.

Suppose that G is an open covering for R0, which has no finite sub-
coverings, and we shall demonstrate a contradiction. By cutting each

18Recall that an open set is a union of open balls. We claim that a finite intersection
of open sets, denoted by

⋂h
j=1Gj , is again an open set, where Gj ’s are open. Indeed,

pick any x ∈
⋂h
j=1Gj , then x ∈ Gj for each j = 1, 2, · · · , h, so that there exist h open

balls {Bj ; j = 1, 2, · · · , h} with Bj = B(zj , ej) ⊂ Gj for each j = 1, 2, · · · , h such that

x ∈
⋂h
j=1Bj . Let ex be such that 0 < ex <

1
2 minhj=1[ej − d(x, zj)], we conclude that

x ∈ B(x, ex) ⊂
⋂h
j=1Bj ⊂

⋂h
j=1Gj . Since we have picked x ∈

⋂h
j=1Gj arbitrarily, we

have shown that
⋂h
j=1Gj =

⋃
x∈
⋂h

j=1
Gj
B(x, ex); that is,

⋂h
j=1Gj is a union of open balls.

Hence a finite intersection of open sets is open.
19Suppose that (X, τ) is a topological space and A ⊂ X is compact. Define the relative

topology on A as

τA ≡ {A
⋂
G : G ∈ τ}.

Then (A, τA) is a compact topological space.
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side of the rectangle R0 in half, we can break R0 into 2n smaller rectan-
gles, and one of them, say R1, must take an infinite number of elements
of G to cover. We can then switch attention to R1, and cut each side of
R1 in half, and refer to as R2 a smaller rectangle that takes an infinite
number of elements of G to cover. Continue doing this, and we would
obtain a sequence R ≡ {Rm} of smaller and smaller closed rectangles.
It is easy to construct in R a Cauchy sequence {xk} with xk ∈ Rk

for all k, which, by the fact that Rm is closed for all m, must have a
limit contained in

⋂
mRm, and we denote the limit by x∗. Now, some

element G ∈ G must contain x∗, and for some M sufficiently large, G
contains all Rm with m ≥M also; recall that the length of any side of
Rm is no greater than 2−m maxn(bn − an). This is a contradiction to
the assertion that it takes an infinite number of elements of G to cover
each Rm. We conclude that each open covering for R0 must have a
finite sub-covering for R0, proving that R0 is compact.

(Step 5.) If A ⊂ <n is closed and bounded, then A is compact.

Being bounded, A is contained in some closed rectangle R0, which by
Step 4 is compact, so that by Step 3, A, being closed, is compact also.
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Tarski’s Fixed-point Theorem

1. Definition 1: A lattice is a pair (A,≤), where A is some non-empty set
and ≤ is a partial order (i.e. a reflexive, transitive, and anti-symmetric
binary relation)20 on A such that

a, b ∈ A⇒ sup(a, b) ∈ A, inf(a, b) ∈ A.

The lattice (A,≤) is called complete, if for all E ⊂ A, supE, inf E ∈
A. In this case, supA and inf A are respectively the largest and the
smallest element of A.21 Given a lattice (A,≤), (B,≤) is a sublattice
of A if B ⊂ A and

a, b ∈ B ⇒ sup
A

(a, b), inf
A

(a, b) ∈ B.

Note that it can happen that (B,≤) is itself a lattice but not a sub-
lattice of A. For example, let A = R2 and define ≤ on A as such
that (a, b), (x, y) ∈ R2, (a, b) ≤ (x, y) if, as real numbers, a ≤ x
and b ≤ y. (There should be no ambiguity about the notation.) Let
B = {(0, 0)(0, 1), (1, 0), (2, 2)}. Then (B,≤) is a lattice. Although

sup
B

((0, 1), (1, 0)) = (2, 2) ∈ B,

note that
sup
A

((0, 1), (1, 0)) = (1, 1) ∈ Bc,

and hence (B,≤) is not a sublattice of A. Given any partially ordered
non-empty set (A,≤), we say a, b ∈ A are comparable, if either a ≤ b
or b ≤ a. For any two comparable elements a ≤ b of A, define the
interval

[a, b] = {z ∈ A : a ≤ z ≤ b}.
20The binaray relation ≤ is reflexive if for all a ∈ A, a ≤ a; it is transitive if for all

a, b, c ∈ A, a ≤ b and b ≤ c imply that a ≤ c; and it is anti-symmetric if for all a, b ∈ A,
a ≤ b and b ≤ a imply that a = b.

21Given a set A partially ordered by ≤, a ∈ A is a maximal element of A if a ≤ b for
some b ∈ A, then a = b. Minimal elements are defined analogously. An element a of A
is a largest element if a ≥ b for all b ∈ A (so that comparability is valid whenever a is
involved). Smallest elements are defined analogously. Maximal and Minimal points are
in general non-unique. A largest element is unique whenever it exists: Suppose a and
b are both largest elements of A so that a ≤ b and b ≤ a, but then they are equal by
anti-symmetry. Largest elements need not exist though.
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Example 1: For a, b ∈ R, a < b, let I[a,b] be the set of increas-
ing functions f : [a, b] → R. Then (I[a,b],≤∗) is a complete lattice
where f, g ∈ I[a,b] are such that f ≤∗ g if and only if for all x ∈ [a, b],
f(x) ≤ g(x) (in the usual order on the real line). Let C[a,b] and D[a,b]

be the sets of functions f : [a, b] → R which are respectively continu-
ous and differentiable on [a, b]. Then with the partial order ≤∗, C[a,b]

is a lattice but not a complete lattice, whereas D[a,b] is not even a lattice.

Example 2: The real open interval (0, 2) endowed with the usual or-
der on the real line is a lattice but not a complete lattice.

Example 3: Suppose (A,≤) is a lattice. Is it true that for all finite
non-empty B ⊂ A, supB ∈ A?

We claim that s ≡ sup(b1, sup(b2, · · · sup(bm−1, bm)) · · ·), which ex-
ists in A because (A,≤) is a lattice, is exactly supB in A, where
(b1, b2, · · · , bm) is any enumeration of B. To see this, note that s
is clearly an upper bound of B in A, and that the infimum of any
two upper bounds of B in A is an upper bound of B in A (prove
it!). Thus the assertion can fail only if there exists another upper
bound x of B in A with s > x. By definition, x ≥ bm−1, bm so that
x ≥ sup(bm−1, bm), which together with the fact that x ≥ bm−2 implies
that x ≥ sup(bm−2, sup(bm−1, bm)). Repeating this argument, we have
x ≥ s, a contradiction to s > x. By the same token, inf B exists in A if
B ⊂ A is non-empty. The requirement that B is non-empty is needed
because as in example 2, inf ∅ = sup(0, 2) = 2 which is not contained
in (0, 2).

Example 4: If (A,≤) is a lattice and A is finite, is (A,≤) a complete
lattice?

The answer is positive. To see this, let B ⊂ A be non-empty. Then
by example 3, inf B, supA exist in A. What if B = ∅? In this case,
inf ∅ = supA and sup ∅ = inf A. Note that by assumption A itself is
a non-empty subset of A, and hence the same conclusion follows from
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example 3.

2. If (A,≤) is a complete lattice, then sup ∅, inf ∅ ∈ A. What is sup ∅? At
first, x ∈ A is an upper bound of ∅ if for all z ∈ ∅, z ≤ x. Thus every
x ∈ A is an upper bound of ∅, and therefore the least upper bound of
∅ is simply inf A. By the same reasoning, inf ∅ = supA.

Lemma 1: ([a, b],≤) is a lattice and is complete if (A,≤) is complete.

Proof For all x, y ∈ [a, b], we have x ≤ b, y ≤ b, so that sup(x, y) ≤
b. Similarly, a ≤ inf(x, y). It follows that a ≤ inf(x, y) ≤ x, y ≤
sup(x, y) ≤ b, so that inf(x, y) ∈ [a, b] and sup(x, y) ∈ [a, b]; i.e.
([a, b],≤) is a lattice.

Next, for any B ⊂ [a, b],

x ∈ B ⇒ x ≤ b,

so that b is an upper bound of B both in [a, b] and in A. Note that
∀x ∈ B, a ≤ x ≤ supAB ≤ b, where the last inquality follows from
the fact that b is an upper bound of B, and supA(·) represents the
supremum operator on the original system (A,≤), which exists be-
cause the latter is a complete lattice. Thus supAB is an upper bound
of B in [a, b]. Let z be another upper bound of B in [a, b]. Then ap-
parently inf(z, supAB) is again an upper bound of B both in [a, b] and
in A, which implies that inf(z, supAB) = supAB. We conclude that
supAB = sup[a,b]B. Similarly we have infAB = inf [a,b]B. As B was
chosen arbitrarily, ([a, b],≤) is a complete lattice.

Definition 2: Let B,C ⊂ A. A function f : B → C is called “increas-
ing” if22

x, y ∈ B, x ≤ y ⇒ f(x) ≤ f(y).

22Let (A,≤a) and (B,≤b) be two partially ordered sets. If f : A→ B is such that

∀x, y ∈ A, x ≤a y ⇒ f(x) ≤b f(y),

then f is said to be order-preserving. If f is one-to-one, order-preserving, and is such that

∀x, y ∈ A, f(x) ≤b f(y)⇒ x ≤a y,
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Suppose that B ∩C 6= ∅, then x ∈ B ∩C is a fixpoint of f if f(x) = x.

Theorem 1: (Tarski’s fixpoint theorem) Let (A,≤) be a com-
plete lattice and f : A → A an increasing function. If P is the set of
fixpoints of f , then P is nonempty, and moreover, (P,≤) is a complete
lattice. In particular, supP, inf P ∈ P .

Proof The proof proceeds in 3 steps.
Step 1 Let u be the supremum of the set E ≡ {z ∈ A : f(z) ≥ z}. We
have

∀z ∈ E, z ≤ f(z) ≤ f(u).

Thus f(u) is an upper bound of E. By the definition of u, we have

u ≤ f(u),

which by monotonicity of f implies that f(u) ≤ f(f(u)), so that f(u) ∈
E, and therefore by the fact that u is the supremum of E,

f(u) ≤ u.

Thus u is a fixpoint of f . If p is a fixpoint of f , then p ∈ E, and
therefore p ≤ u. Thus u is the supremum of all fixpoints of f also.
This proves that P is nonempty, and supP = u ∈ P .
Step 2 Now we can mimic Step 1 and turn the spotlight to the infimum
of P . We can conclude that inf P = inf{z ∈ A : f(z) ≤ z} ∈ P .

Step 3 It remains to show that (P,≤) is a complete lattice. Let Y be
any subset of P . Lemma 1 implies that ([supY, supA],≤) is a complete
lattice. For any x ∈ Y , we have x ≤ supY , and therefore

x = f(x) ≤ f(supY ),

implying that supY ≤ f(supY ). If supY ≤ z, then supY ≤ f(supY ) ≤
f(z), and so by restricting the domain of f to [supY, supA], we obtain
an increasing function f ′ on [supY, supA] to [supY, supA]. Applying

then f is called an isomorphism.
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the above step (ii) to the lattice ([supY, supA],≤) and function f ′, we
conclude that inf P ′ ∈ P ′, where P ′ is the set of fixpoints of f ′. Now
inf P ′ is certainly a fixpoint of f , and it has to be the least fixpoint
of f which is an upper bound of Y . In other words, inf P ′ is the infi-
mum of Y in the system (P,≤). By the same reasoning there exists a
supremum of Y in the system (P,≤). As Y was chosen arbitrarily, this
shows that (P,≤) is a complete lattice.
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