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Abstract

This paper analyses the portfolio problem of an investor who wants to
maximize the expected exponential utility of his terminal wealth both in a
complete and an incomplete financial market. The investor must cope with
a set of stochastic investment opportunities and two sets of background
risks. If the market is complete we are able to find an exact solution.
Instead, if the market is incomplete, we suggest an approximated general
solution. Contrary to other exact solutions obtained in the literature, all
our results are obtained without specifying any particular functional form
for the stochastic variables involved in the problem.
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1 Introduction
This work analyses the issue of optimal portfolio policy in a multi-period model
where investors maximize the expected utility of their terminal wealth facing,
in particular, some risks outside the financial market that we will refer to as
”background risks”. Furthermore, our work offers a contribution to the invest-
ment problem in the rather general case where the value of assets depends on
the stochastic behaviour of a set of state variables.
The vector of state variables contains all the stochastic variables directly

affecting the asset prices but indirectly affecting the investors’ wealth. For a
review of all variables which can affect the asset prices readers are referred to
Campbell (2000) who offers a survey of the most important contributions in this
field.
Besides these state variables, we consider two sets of stochastic processes,

called in the paper ”background variables”. One set of background variables
affects the level of investor’s wealth (and we will call it level background risk)
while the other set affects the growth rate of investor’s wealth (and we will
call it ratio background risk). In the first set we can find variables such as the
investor’s wages (see for instance Franke, Peterson, and Stapleton, 2001), while
in the second set we can find variables such as the inflation rate or the exchange
rate (in the case of foreign investments).
This characteristic makes our model quite general because it can be applied,

for example, to pension funds (see for instance Blake, 1998, Blake, Cairns, and
Dowd, 1998, and Boulier, Huang, and Taillard, 2001) or to insurance companies
(see Young and Zariphopoulou, 2000). A lot of attempts have been made in the
literature for introducing the background risk in the optimal portfolio problem
(see the works above mentioned) but often the authors make a lot of strong
assumptions in order to reach a framework which can be handled. In this work,
the presence of the ratio background risk can solve some of the problem which
are generally faced in this type of models. In particular, we do not use the most
common approximation for measuring the wealth growth rate net of the ratio
background risk, but we use the exact formula. This allows us to solve some
technicalities which make the problem very difficult to solve when the usual
approximation is considered.
In this paper we follow the traditional route to use the stochastic dynamic

programming technique (Merton, 1969, 1971) leading to the Hamilton-Jacobi-
Bellman (HJB) equation.1 For the method called ”martingale approach” the
reader is referred to Cox and Huang (1989, 1991), and Lioui and Poncet (2000).
We just underline that in this work we are able to reach the same qualitative
results as Lioui and Poncet even if they do not consider any background risk.
In our framework, we find that the optimal portfolio is formed by three

components: (i) a preference free component minimizing the investor’s wealth
diffusion variance and immunizing the investor’s portfolio against the back-
ground risks, (ii) a speculative part proportional to both the Sharpe ratio of

1Øksendal (2000) and Björk (1998) offer a complete derivation of the HJB equation.
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investor’s portfolio and the inverse of the Arrow-Pratt risk aversion index, and
(iii) a component depending on the derivatives of the value function (indirect
utility function) with respect to all the state and background variables. The
last component is the only one depending on the investor’s time horizon.
In order to find the explicit solution for the value function, it is necessary to

solve the HJB equation. Unfortunately, solving this highly non-linear PDE is
the most difficult task of the stochastic optimal control approach. In fact, some
algebraic solutions can only be obtained in very special cases. In particular, we
refer to the works of Kim and Omberg (1996), Wachter (1998), Boulier, Huang,
and Taillard (2001), and Deelstra, Grasselli, and Koehl (2001).
In the present work we show that if the financial market is complete, then

we can find an exact solution to our optimal portfolio problem with background
risk. This result can be obtained thanks to the insertion of the ratio background
risk affecting the growth rate of investor’s wealth (namely the inflation risk). In
fact, if this kind of risk exists, then the riskless asset is no more ”riskless”. In
particular, if the investor wants to maximize the expected value of his terminal
real wealth, then for him no riskless asset exists because the nominal riskless
asset does not cover the portfolio against the inflation risk. Furthermore, we
outline that, contrary to the exact solutions above mentioned, we do not spec-
ify any particular functional form for the behaviour of the stochastic variables
involved in the problem and we reach, in this way, a very general solution indeed.
If the completeness hypothesis does not hold, then we propose a general ap-

proximated solution to the HJB equation. In particular, our work concentrates
on the hypothesis that the value function has a suitable form under which the
Feynman-Kac theorem can be applied to the HJB equation. Thus, even if in an
incomplete market our solution is exact only under particular conditions that
must hold on the value function, we find that it stays valid as an approximated
solution under conditions which are not very restrictive.
We underline that the exact solutions presented in Kim and Omberg (1996),

Boulier, Huang, and Taillard (2001), and Deelstra, Grasselli, and Koehl (2001),
consider only one state variable and do not take into account any background
risk. Instead, our model is able to determine both an exact and an approximated
solution when there exists a set of generic state and background variables. Thus,
our framework seems to be very general and able to be applied to many partic-
ular cases.
Through this work we consider agents trading continuously in a friction-

less, arbitrage-free market until time H, which is the horizon of the economy.
Furthermore, we analyse both a complete and an incomplete market structure.
The paper is structured as follows. Section 2 details the general economic

framework and exposes the stochastic differential equations describing the be-
haviour of asset prices, state variables and background variables. In Section 3
the optimal portfolio composition is computed. This section presents our main
results: an exact solution of the problem if the financial market is complete, and
an approximated solution when the market is not complete. Section 4 concludes.
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2 The economy
In this paper we consider an economy where the behaviour of asset prices is
described by stochastic differential equations. Furthermore, the volatility and
drift coefficients of these equations depend on a set of state variables which are
represented by diffusion processes.
Before specifying the market structure, here we recall the fundamental re-

sults about the market arbitrage and completeness. We define as {S (t,ω)}t∈[t0,H]
a market where there are n risky assets and one riskless asset (G) whose nominal
prices follow the stochastic differential equations:

dG (t,ω) = r (t,ω)Gdt,

G (t0) = G0,

dS (t,ω)
n×1

= µ (t,ω)
n×1

dt+Σ0 (t,ω)
n×k

dW
k×1

,

S (t0) = S0,

where dW is the differential of a k−dimensional Wiener process, r (t,ω) is the
instantaneous riskless interest rate, ω ∈ Θ and Θ is the set from which we define
the σ−algebra through which the Wiener processes are measured. Hereafter,
the prime denotes transposition. We say that the market {S (t,ω)}t∈[t0,H] is
normalized if G (t,ω) ≡ 1. This hypothesis means that the riskless asset is the
numeraire of the economy. Any market can always be normalized by putting
S (t,ω) = G (t,ω)−1 S (t,ω).
We present the main results concerning completeness and arbitrage in this

kind of market (for the proofs of the two following theorems see Øksendal, 2000).

Theorem 1 A market {S (t,ω)}t∈[t0,H] is arbitrage free if and only if there
exists a k−dimensional vector ξ (t,ω) such that:

Σ (t,ω)
0
ξ (t,ω) = µ (t,ω)− r (t,ω)S (t,ω) ,

and such that:
E
h
e
1
2

R H
t0
kξ(t,ω)k2dti

<∞.

Theorem 2 A market {S (t,ω)}t∈[t0,H] is complete if and only if there exists a
unique k−dimensional vector ξ (t,ω) such that:

Σ (t,ω)
0
ξ (t,ω) = µ (t,ω)− r (t,ω)S (t,ω) ,

and such that:
E
h
e
1
2

R H
t0
kξ(t,ω)k2dti

<∞.

4



If on the market there are less assets than risk sources (n < k), then the
market cannot be complete even if it is arbitrage free. In this work we assume
that n ≤ k and that the rank of matrix Σ is maximum (i.e. it equals n). We
will analyse both cases in which the market is incomplete (n < k) and complete
(n = k).

2.1 The market structure

We suppose that asset prices are affected by a set of stochastic state variables.
For a review of all variables which can affect the asset prices readers are referred
to Campbell (2000) who offers a survey of the most important contributions in
this field.
In this paper we suppose that these risk sources follow the stochastic differ-

ential equation:

dX
s×1

= f (X, t)
s×1

dt+ g (X, t)0
s×k

dW
k×1

, (1)

X (t0) = X0,

where s is the number of state variables and dW is the differential of a k−dimensional
Wiener process whose components are independent.2

Given these variables we can write the process describing the behaviour of
asset prices like the following stochastic differential equation:

dS
n×1

= µ (t,X, S)
n×1

dt+Σ (t,X, S)
0

n×k
dW
k×1

, (2)

S (t0) = S0,

where the set of risk sources is the same we have used for the state variables.
This hypothesis is not restrictive because thanks to the matrices g and Σ we
can model a lot of different situations.
On the financial market there exists a riskless asset whose price (G) follows

the differential equation:

dG = r (X, t)Gdt,

G (t0) = G0,

where r (X, t) is the nominal risk-free interest rate which is supposed to depend
on the state variables X.

2This condition can be imposed without loss of generality because a set of independent
Wiener processes can always be transformed into a set of correlated Wiener processes thanks
to the Cholesky decomposition.
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2.2 The background risk

We suppose that the investor is subjected to the so called background risks
which can be identified with two different sets of several economic variables
(L ∈ Rl×1 and P ∈ Rp×1). In particular, we suppose that the first set of
background variables affects the wealth level, while the second set affects the
growth rate of investor’s wealth. In other words, if R is the investor’s wealth,
then the influence of L and P on the dynamic behaviour of dR is given by dL
and R

Pp
i=1

dPi
Pi
respectively (for more details about this distinction see the next

paragraph).
Hereafter, we will refer to L as the level background risk and to P as the ratio

background risk. Both sets of variables can be represented as diffusion processes
according to the following differential equations:

dL
l×1

= µL (X,L, S, t)
l×1

dt+ Λ (X,L, S, t)0
l×k

dW
k×1

, (3)

L (t0) = L0,

dP
p×1

= IP
p×p

"
µπ (X,P, S, t)

p×1
dt+Π (X,P, S, t)0

p×k
dW
k×1

#
, (4)

P (t0) = P0,

where dW is the same set of risk sources we have for both asset prices and state
variables, and IP ∈ Rp×p is a diagonal matrix containing the elements of vector
P .
We underline that the processes representing the background risks can be

specified in order to consider a lot of economic problems. The following list is
just an example of the variables which can be found into vectors L and P :

1. the inflation rate (in vector P ): on the financial market we always consider
nominal prices, but we should also take into account the inflation risk. If
we put in the vector P the stochastic process describing the behaviour of
consumption prices, then we can consider the problem of maximizing the
investor’s real wealth (see Cox, Ingersoll, and Ross, 1985);

2. the process of wages (in vector L): we suppose to increase the investor’s
wealth thanks to his salary or a percentage of it (for an application see
Franke, Peterson, and Stapleton, 2001). This case is useful for studying
the optimal portfolio composition in the case of pension funds where the
investor must contribute a percentage of his salary to the fund (for a so-
lution with deterministic salaries see Boulier, Huang, and Taillard, 2000);

3. in the case of an insurer, the vector L can contain the present value
of indemnities insurer must pay to policy holders (see Young and Za-
riphopoulou, 2000);

4. for a private investor the vector L could contain the present value of his
liabilities;
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5. if an investor holds an internationally diversified portfolio, then the vector
P can contain the exchange rate affecting the wealth growth rate in the
same way inflation does.

2.3 The investor’s wealth

After what we have presented in the previous subsections, the market structure
can be represented in the following way:

dX
s×1

= f (t,X)
s×1

dt+ g (t,X)
0

s×k
dW
k×1

,

dS
n×1

= µ (t,X, S)
n×1

dt+Σ (t,X, S)0
n×k

dW
k×1

,

dG = Gr (t,X) dt,
dL
l×1

= µL (t, L, S,X)
l×1

dt+ Λ (t, L, S,X)
0

l×k
dW
k×1

,

dP
p×1

= IP
p×p

"
µπ (X,P, S, t)

p×1
dt+Π (X,P, S, t)

0
p×k

dW
k×1

#
.

(5)

If we indicate with θ (t) ∈ Rn×1 and θG (t) ∈ R the number of stocks bought
(or sold) and the quantity of riskless asset bought (or sold) respectively, then
the investor’s budget constraint can be represented as:

Rm = θ (t)0 S + θG (t)G+ u (t)
0 L, (6)

where u (t) ∈ Rl×1 is the vector containing the parameters indicating in which
proportion the elements of vector L affect the wealth level. For instance, we
could suppose that one element of L is the wage process. In this case, if the
investor signs a contract with a pension fund for a ”definition contribution plan”,
then he must attribute to the fund a percentage of his wage. Thus, the vector
u (t) will contain an element indicating which is the percentage of investor’s
salary which must be paid into the fund.
After differentiating the budget constraint (6) we obtain:

dRm = θ (t)
0
dS + θG (t) dG+ u (t)

0
dL.

Nevertheless, even if the amount of money which can be invested is given by
the constraint (6), we suppose investor wants to maximize the expected utility
of his terminal wealth also considering that there exist some risks (for instance
inflation and foreign exchange risks) affecting the growth rate of his wealth even
if they do not affect the amount of money which can be invested.
Let us consider an investor having a nominal wealth equal to Rm. Even if

he must invest the amount Rm, he wants to maximize the terminal utility of
his real wealth (R), whose growth rate can be approximated by the difference
between the growth rate of nominal wealth and the growth rate of consumption
prices. Nevertheless, here we do not use this approximation and we study the
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exact behaviour of investor’s real wealth. If we indicate with φm the ”nominal”
return on investor’s wealth, with φ the ”real” return and with π the inflation
rate, then the following equation must hold:

Rφ = Rm (φm − π) ,

which means that the return on the real wealth must equate the return on the
nominal wealth reduced by the loss due to the increase in the price level. By
definition it must be true that:

φ ≡ dR
R
, φm ≡

dRm
Rm

, π ≡ dp
p
,

and so, we can write:

dR = dRm −Rm dp
p
.

When we have a vector P ∈ Rp×1 of risks behaving like inflation, and when
these risks affect the investor’s wealth through the elements of a vector v (t) ∈
Rp×1, then we can write the previous equation in the following way:

dR = dRm +Rmv (t)
0 I−1P dP,

where for the inflation rate, the corresponding element of v (t) should be equal
to −1. Hereafter, we will not indicate the dependence of vectors θ, θG, v, and
u of time.
Finally, if we substitute for the differentials in the market structure (5) and

for the value of Rm given in (6) we can write:

dR =
¡
θ0 (µ+ Sv0µπ) + θG (Gr +Gv

0µπ) + u
0 (µL + Lv

0µπ)
¢
dt+

+
¡
θ0 (Σ0 + Sv0Π0) + θGGv

0Π0 + u0 (Λ0 + Lv0Π0)
¢
dW.

We underline that in the model where inflation is not considered, the control
variable θG does not appear in the diffusion term of the wealth differential
equation because the riskless asset does not contain any diffusion term. Instead,
in this case, also the riskless asset is affected by the inflation diffusion term
because all returns are considered in real terms.
For the sake of simplicity, we prefer to consider the following variable change:

w
(n+1)×1

=

·
θ
θG

¸
,

M
(n+1)×1

=

·
µ+ Sv0µπ
Gr +Gv0µπ

¸
,

Γ0
(n+1)×k

=

·
Σ0 + Sv0Π0

Gv0Π0

¸
,

and, thus, we can write the wealth differential equation as:

dR = (w0M + u0 (µL + Lv
0µπ)) dt+ (w

0Γ0 + u0 (Λ0 + Lv0Π0)) dW. (7)
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With respect to the usual approach, in this differential equation we lack the
term containing the wealth level.3 This characteristic comes from the following
consideration: the investor is not interested in the level of his ”nominal” wealth
Rm, and furthermore, he cannot invest his ”real” wealth R because this is just
a fictitious index (only nominal wealth can be actually invested). We recall
that inflation is the opportunity cost of investing in financial (and not real)
assets. Thus, in this work, we show how to choose the optimal investment on
the financial market by considering also the investment opportunity in the real
market.

3 The optimal portfolio
Under the market structure (5) and the evolution of investor’s wealth given in
Equation (7), the optimization problem for an investor maximizing the expected
utility of his terminal wealth, can be written as follows:
max
w
Et0 [K (R (H))]

d

·
z
R

¸
=

·
µz

w0M + u0 (µL + Lv0µπ)

¸
dt+

·
Ω0

w0Γ0 + u0 (Λ0 + Lv0Π0)

¸
dW,

z (t0) = z0, R (t0) = R0, ∀t0 ≤ t ≤ H,
(8)

where:

z
(s+n+1+l+p)×1

≡ £
X 0 S0 G L0 P 0

¤0
,

µz
(s+n+1+l+p)×1

≡ £
f 0 µ0 Gr µ0L µ0πIP

¤0
,

Ω
k×(s+n+1+l+p)

≡ £
g Σ 0 Λ ΠIP

¤
,

and K (R) is an increasing and concave function, while H is the investor’s time
horizon. The vector z contains all the state variables but the wealth. Hereafter,
we indicate with 0 a vector of suitable dimension containing only zeros.
We can write Problem (8) without considering the positivity constraint on

wealth (R (t) ≥ 0, ∀t ∈ [t0,H]) because Cox and Huang (1989) show that
the rules derived without any constraint are asymptotically valid as wealth
becomes large. Because we consider the case of an institutioinal investor, then
the hypothesis of a large amount of wealth is not unlikely.

3Without any background risk and under market structure (5), the wealth differential
equation should be written as follows:

dR =
¡
Rr + θ0 (µ− rS)¢ dt+ θ0Σ0dW.
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From Problem (8) we have the following Hamiltonian:

H = µ0zJz + JR (w
0M + u0 (µL + Lv

0µπ)) +
1

2
tr (Ω0ΩJzz) + (9)

+(w0Γ0 + u0 (Λ0 + Lv0Π0))ΩJzR +
1

2
JRR (w

0Γ0Γw+

+u0 (Λ0 + Lv0Π0) (Λ+ΠvL0)u+ 2w0Γ0 (Λ+ΠvL0)u) ,

where J (R, z, t) is the value function solving the Hamilton-Jacobi-Bellman par-
tial differential equation (see Section 3.1), verifying:

J (R, z, t) = sup
w
Et [K (R (H))] ,

and the subscripts on J indicate the partial derivatives.
The system of first order conditions on H is:4

∂H
∂w

= JRM + Γ0ΩJzR + JRR (Γ0Γw + Γ0 (Λ+ΠvL0)u) = 0,

from which we obtain the optimal portfolio composition:

w∗ = − (Γ0Γ)−1 Γ0 (Λ+ΠvL0)u| {z }
w∗
(1)

− JR
JRR

(Γ0Γ)−1M| {z }
w∗
(2)

− 1

JRR
(Γ0Γ)−1 Γ0ΩJzR| {z }

w∗
(3)

. (10)

For having a unique solution to the optimal portfolio problem we have to
guarantee that the matrix Γ0Γ ∈ R(n+1)×(n+1) is invertible. This condition is
satisfied if Γ0 ∈ R(n+1)×k has rank equal to n+1 and n+1 ≤ k. Actually, due to
the ratio background risk, the riskless asset becomes a risky asset, acquiring the
diffusion term of the ratio background variables. Thus, the completeness must
be defined on n+ 1 assets and no more on n assets. During the following work
we will define a complete market as the market where the matrix Γ is invertible
(that is to say it is a square (n+ 1)× (n+ 1) matrix and its rank is maximum).
Thus, we can state the following result:

Proposition 3 Under market structure (5), the portfolio composition maximiz-
ing the investor’s terminal wealth (thus solving problem (8)) is formed by three
components: (i) a preference free part (w∗(1)) depending only on the diffusion
terms of assets and background variables, (ii) a part (w∗(2)) proportional to both
the portfolio Sharpe ratio and the inverse of Arrow-Pratt risk aversion index,
and (iii) a part (w∗(3)) depending on the state variable parameters.

4The second order conditions hold if the Hessian matrix of H:
∂H

∂w0∂w
= JRRΓ

0Γ,

is negative definite. Because Γ0Γ is a quadratic form it is always positive definite and so the
second order conditions are satisfied if and only if JRR < 0 that is if the value function is
concave in R. The reader is referred to Stockey and Lucas (1989) for the assumptions that
must hold on the function K (R) for having a strictly concave value function.
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The preference free portfolio component has an important characteristic: it
minimizes the wealth diffusion variance. In fact, from Equation (7) we can see
that the variance of the diffusion part of investor’s wealth is given by:

w0Γ0Γw + u0 (Λ0 + Lv0Π0) (Λ+ΠvL0)u+ 2w0Γ0 (Λ+ΠvL0)u,

from which we immediately see that:5

Proposition 4 The preference-free component (w∗(1)) of optimal portfolio (solv-
ing problem (8)) minimizes the wealth diffusion variance.

For the second part, we just outline that w∗(2) increases if the risk premium
increases and decreases if the risk aversion or the asset variance increase. From
this point of view, we can argue that this component of the optimal portfolio
has just a speculative role.
The third part w∗(3) is the only optimal portfolio component explicitly de-

pending on the diffusion terms of the state variables. Thus, while w∗(1) covers
the investor from the risk ”outside” the financial market (the so called back-
ground risk), w∗(3) covers the investor also from the risk ”inside” the financial
market. We will investigate the precise role of this component after computing
the functional form of the value function.

3.1 The value function

For studying the exact role of the portfolio components we have called w∗(2) and
w∗(3) (see Equation (10)), we need to compute the value function J (R, z, t). By
substituting the optimal value of w into the Hamiltonian (9) we have:

H∗ = µ0zJz − JRu0 (Λ0 + Lv0Π0)Γ (Γ0Γ)−1M + JRu
0 (µL + Lv

0µπ) +

−1
2

J2R
JRR

M 0 (Γ0Γ)−1M − JR
JRR

M 0 (Γ0Γ)−1 Γ0ΩJzR +
1

2
tr (Ω0ΩJzz) +

+u0 (Λ0 + Lv0Π0)
³
I − Γ (Γ0Γ)−1 Γ0

´
ΩJzR +

−1
2

1

JRR
J 0zRΩ

0Γ (Γ0Γ)−1 Γ0ΩJzR +

+
1

2
JRRu

0 (Λ0 + Lv0Π0)
³
I − Γ (Γ0Γ)−1 Γ0

´
(Λ+ΠvL0)u.

5We underline that the second derivative of this term with respect to w is:

2Γ0Γ,

which is always positive definite because Γ0Γ is a quadratic form.
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From this equation we can formulate the PDE whose solution is the value
function. This PDE is called the Hamilton-Jacobi-Bellman equation (hereafter
HJB) and it can be written as follows:½

Jt +H∗ = 0,
J (H,R, z) = K (R (H)) ,

(11)

One of the most common way to solve this kind of PDE is to try a sepa-
rability condition. In the literature (since Merton, 1969, 1971), a separability
by bnbproduct is generally found. Here, we suppose that the value function
J (z,R, t) is separable by product in wealth and in the other state variables
according to the following form: J (z,R, t) = U (R) eh(z,t). After substituting
this functional form into the HJB equation (11) and dividing by J we obtain:

0 = ht + µ
0
zhz −

UR
U
u0 (Λ0 + Lv0Π0)Γ (Γ0Γ)−1M +

UR
U
u0 (µL + Lv

0µπ) +(12)

−1
2

U2R
URRU

M 0 (Γ0Γ)−1M − U2R
URRU

M 0 (Γ0Γ)−1 Γ0Ωhz +

+
1

2
tr (Ω0Ω (hzz + hzh0z)) +

UR
U
u0 (Λ0 + Lv0Π0)

³
I − Γ (Γ0Γ)−1 Γ0

´
Ωhz +

−1
2

U2R
URRU

h0zΩ
0Γ (Γ0Γ)−1 Γ0Ωhz +

+
1

2

URR
U
u0 (Λ0 + Lv0Π0)

³
I − Γ (Γ0Γ)−1 Γ0

´
(Λ+ΠvL0)u.

The model is consistent if and only if all the ratios containing functions of
R must be constant with respect to R. The only function satisfying all these
conditions is the exponential function of the form U (R) = αeγ+βR. Accordingly,
the boundary condition can be written in the following way: U (R) eh(z,H) =
K (R (H)). Nevertheless, because of the separability condition, we can also
write: U (R) = K (R) and the boundary condition becomes: h (z,H) = 0.
Thus, we can write:

Proposition 5 Under market structure (5) the value function is separable by
product in wealth and in the other state variables if and only if the investor
maximizes an exponential utility function of the form K (R) = αeγ+βR.

We just underline that we want the value function to be increasing and
concave in wealth. This means that the parameters α and β must be such that:
α,β < 0, while γ ∈ R.
If we substitute for the function U (R) = αeγ+βR into Equation (12) we

obtain:(
ht + a (z, t)

0 hz + b (z, t) + 1
2 tr (Ω

0Ωhzz) + 1
2h

0
zΩ

0
³
I − Γ (Γ0Γ)−1 Γ0

´
Ωhz = 0,

h (z,H) = 0.
(13)
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where:

a (z, t)
0 ≡ µ0z −M 0 (Γ0Γ)−1 Γ0Ω+ βu0 (Λ0 + Lv0Π0)

³
I − Γ (Γ0Γ)−1 Γ0

´
Ω,

b (z, t) ≡ βu0 (µL + Lv
0µπ)− βu0 (Λ0 + Lv0Π0)Γ (Γ0Γ)−1M − 1

2
M 0 (Γ0Γ)−1M +

+
1

2
β2u0 (Λ0 + Lv0Π0)

³
I − Γ (Γ0Γ)−1 Γ0

´
(Λ+ΠvL0)u.

By using the exponential utility function and the separability condition, we
can write the optimal portfolio composition in the following way:

w∗ = − (Γ0Γ)−1 Γ0 (Λ+ΠvL0)u− 1
β
(Γ0Γ)−1M − 1

β
(Γ0Γ)−1 Γ0Ωhz,

and, for finding a close form solution we have to solve the HJB equation in order
to find the form of function h (z, t). In the following subsections we study how
to solve Equation (13) in both a complete and an incomplete market.

3.2 The case of a complete market: an exact solution

Because of the insertion of the so called ratio background risk, the first defini-
tion of a complete market, given on the matrix Σ of the diffusion terms of the
risky assets, must be restate by using the matrix Γ. Actually, under a ratio
background risk the riskless asset looses its lack of risk and it acquires the dif-
fusion term of the background variable. Thus, the completeness of the market
must be specified on n+1 assets and we can say that the market is complete if
the matrix Γ can be inverted.
If Γ−1 does exist, then the term

³
I − Γ (Γ0Γ)−1 Γ0

´
in Equation (13) vanishes

and we obtain a partial differential equation which can be solved thanks to the
Feynman-Kac theorem.6 Thus, we can state:

Proposition 6 Under market structure (5), if the market is complete for n+1
risky assets, then the portfolio composition maximizing the investor’s terminal
exponential utility function (K (R) = αeγ+βR) is as follows:

w∗ = −Γ−1 (Λ+ΠvL0)u− 1
β
(Γ0Γ)−1M − 1

β
Γ−1Ω

Z H

t

∂

∂z
Et [b (Zs, s)] ds,

where:

dZs = a (Zs, t) ds+Ω (Zs, s)
0 dW,

Zt = z,

a (z, t)0 ≡ µ0z −M 0Γ−1Ω,

b (z, t) ≡ βu0 (µL + Lv
0µπ)− βu0 (Λ0 + Lv0Π0)Γ0−1M − 1

2
M 0 (Γ0Γ)−1M.

6For a complete exposition of the Feynman-Kac theorem the reader is referred to Duffie
(1996), Björk (1998) and Øksendal (2000).
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We can see that the only component of optimal portfolio explicitly depending
on the investor’s horizon H is the third one which hedges the portfolio against
the state variable risks and, in particular, against the background risks.
For finding an exact solution, we must consider that state variables follow-

ing a modified stochastic process with respect to the original one. Nevertheless,
since the diffusion term Ω has not changed, then we can use the Girsanov the-
orem7 for finding a suitable probability measure in order to switch from one
process to the other.
This result is important because it shows the possibility to obtain an exact

close form solution in the case where all the risks affecting the portfolio compo-
sition can be represented by diffusion processes. We underline that Proposition
6 is obtained without specifying any functional form for the coefficients of the
stochastic processes implied in the solution. In fact, the exact solution already
found in the literature by Kim and Omberg (1996), Wachter (1998), Boulier,
Huang, and Taillard (2001), and Deelstra, Grasselli, and Koehl (2001) can be
obtained under the hypothesis that there exists only one state variable following
a Vasicek (1977) process or a Cox, Ingersoll, and Ross (1985) process.

3.3 The case of an incomplete market: an approximated
solution

Unfortunately, if the market is not complete and we cannot inverse the matrix
Γ, then we are not able to apply the Feynman-Kac theorem to Equation (13)
because of the term containing hzh0z. In order to apply the theorem, we should
have only the term hzz. If we impose hz to be zero, then also hzz must be zero
and a solution to (13) can be found only if the term b (z, t) is independent of z.
This is a too particular case for being interesting.
We could choose a kind of functional form for h (z, t) such that:

1

2
h0zΩ

0
³
I − Γ (Γ0Γ)−1 Γ0

´
Ωhz = h,

and also in this case we could apply the Feynman-Kac theorem. Nevertheless,

if Ω0
³
I − Γ (Γ0Γ)−1 Γ0

´
Ω does not depend on z then this function must be a

quadratic polynomial of the form:

h (z, t) =
1

2
B (t)

0
Ω0
³
I − Γ (Γ0Γ)−1 Γ0

´
ΩB (t) +B (t)

0
z +

+
1

2
z0
³
Ω0
³
I − Γ (Γ0Γ)−1 Γ0

´
Ω
´−1

z,

where only B (t) can be arbitrarily chosen. Nevertheless, we do not want to

impose such a restrictive condition. If Ω0
³
I − Γ (Γ0Γ)−1 Γ0

´
Ω actually depends

7For a complete exposition of the Girsanov theorem the reader is referred to Karatzas and
Shreve (1998), and Øksendal (2000).
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on z then h (z, t) must be an integral function in z which is very difficult to
manage.
Instead, we prefer to search for a function satisfying hzz = hzh

0
z. After

solving this differential equation, we find that h (z, t) must have the following
form:

h (z, t) = A (t)− ln ¡B (t)0 z +D (t)¢ , (14)

where A (t) ,D (t) ∈ R, and B (t) ∈ R(s+n+1+l+p)×1 such that B (t)0 z+D (t) >
0. In this case, in fact, we have:

hzz =
B (t)B (t)

0£
B (t)

0
z +D (t)

¤2 = hzh0z.
Thus, if the function h (z, t) has the form (14), then the HJB equation can

be simplified as follows:(
ht + a (z, t)

0 hz + b (z, t) + 1
2 tr

h
Ω0
³
2I − Γ (Γ0Γ)−1 Γ0

´
Ωhzz

i
= 0,

h (H, z) = 0.

For applying the Feynman-Kac theorem, we have to find two real numbers
x1 and x2 such that:³

x1I − x2Γ (Γ0Γ)−1 Γ0
´2
= 2I − Γ (Γ0Γ)−1 Γ0,

from which, because I − Γ (Γ0Γ)−1 Γ0 is a symmetric, idempotent matrix, we
easily obtain x1 =

√
2 and x2 =

√
2± 1. Thus, by putting:

eΩ0 ≡ Ω0 h√2I − ³√2± 1´Γ (Γ0Γ)−1 Γ0i0 ,
we can write the HJB equation in the following way:(

ht + a (z, t)
0
hz + b (z, t) +

1
2 tr

³eΩ0eΩhzz´ = 0,
h (H, z) = 0.

Now, we are able to apply the Feynman-Kac theorem, and the solution of
the HJB equation is given by:

h (z, t) =

Z H

t

Et [b (Zs, s)] ds,

where the variables Zs follow:

dZs = a (Zs, t) ds+ eΩ (Zs, s)0 dW,
Zt = z.

Thus, our result, can be summarized as follows:
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Proposition 7 Under market structure (5), if the market is incomplete, then
the portfolio composition maximizing the investor’s terminal exponential utility
function (K (R) = αeγ+βR) is given by:

w∗ = − (Γ0Γ)−1 Γ0 (Λ+ΠvL0)u− 1
β
(Γ0Γ)−1M +

− 1
β
(Γ0Γ)−1 Γ0Ω

Z H

t

∂

∂z
Et [b (Zs, s)] ds,

if and only if there exist functions A (t) ,D (t) ∈ R, and B (t) ∈ R(s+n+1+l+p)×1
such that: Z H

t

Et [b (Zs, s)] ds = A (t)− ln
¡
B (t)

0
z +D (t)

¢
,

where:

dZs = a (Zs, t) ds+ eΩ (Zs, s)0 dW,
Zt = z,

a (z, t)
0 ≡ µ0z −M 0 (Γ0Γ)−1 Γ0Ω+ βu0 (Λ0 + Lv0Π0)

³
I − Γ (Γ0Γ)−1 Γ0

´
Ω,

b (z, t) ≡ βu0 (µL + Lv
0µπ)− βu0 (Λ0 + Lv0Π0)Γ (Γ0Γ)−1M − 1

2
M 0 (Γ0Γ)−1M +

+
1

2
β2u0 (Λ0 + Lv0Π0)

³
I − Γ (Γ0Γ)−1 Γ0

´
(Λ+ΠvL0)u,

eΩ0 ≡ Ω0
h√
2I −

³√
2± 1

´
Γ (Γ0Γ)−1 Γ0

i0
.

The closed form solution for the portfolio allocation problem obtained in
Proposition 7 is valid if and only if the function h (z, t) has the form (14). If the
function h (z, t) cannot be written in this way, then our previous result cannot
be applied.
Nevertheless, we can state that the result obtained in Proposition 7 is still

valid as an approximation of the true result. If we develop in Taylor series the
function h (z, t) around a given value of z (let us say z0), then we obtain:

h (z, t) = A (t)− ln ¡B (t)0 z0 +D (t)¢− B (t)
0
(z − z0)

B (t)
0
z0 +D (t)

+ (15)

+
(z − z0)0B (t)0B (t) (z − z0)

2
¡
B (t)

0
z0 +D (t)

¢2 +O
³
kz − z0k3

´
.

Thus, if the function h (z, t) can be expressed in the form (15), that is to
say as a polynomial in z, then our result can approximate the exact solution.
We underline that Kim and Omberg (1996) find, for an incomplete market, an
exact solution where the function h (z, t) is a second degree polynomial in z.
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3.4 The third component of optimal portfolio

As we have already underlined, the third part of optimal portfolio is the only one
depending on the investor’s horizon. Thus, if we want to consider an investor
with an infinite time horizon, then we must verify that the integral in Proposition
6 converges.
From our previous propositions it can be seen that if all parameters of our

problem do not depend on state or background variables but depend only on
time, then the derivative term ∂

∂zEt [b (Zs, s)] vanishes (because
∂

∂Zs
b (Zs, s) =

0).
Thus, we can state:

Proposition 8 If the coefficients of the stochastic processes in the market struc-
ture (5) depend only on time, then the third component of the optimal portfolio
(w∗(3)) vanishes.

In the work by Lioui and Poncet (2000) it is shown that, if the market is
complete, then the third component of the optimal portfolio is formed only by
two parts, even though the number of state variables is arbitrarily large. In
particular, the first part is associated with the interest rate risk and the second
one with the market price of risk. Even if Lioui and Poncet use the martingale
approach, here we underline that we obtain the same qualitative result.
Because the authors do not introduce any background variable,8 then we

have to put in our framework u = 0. Under this hypothesis we can see from
Proposition 6 that the function h (z, t) is formed only by one term and, more
precisely, we have:

b (z, t) ≡ −1
2
M 0 (Γ0Γ)−1M,

but for understanding its meaning better we must recall the form of matricesM
and Γ. Because matrix (Γ0Γ)−1 does not explicitly contain the nominal riskless
interest rate r, then we can just write a generic matrix:

b (z, t) ≡ −1
2

·
µ+ Sv0µπ
Gr +Gv0µπ

¸0 " X
n×n x

n×1
x0
1×n

y

#·
µ+ Sv0µπ
Gr +Gv0µπ

¸
,

from which we can write:

b (z, t) ≡ −1
2
(Gr +Gv0µπ)

2
y − (Gr +Gv0µπ)x0 (µ+ Sv0µπ) +

−1
2
(µ0 + µ0πvS

0)X (µ+ Sv0µπ) .
8We outline that they define an investor who is endowed with a portfolio of discount bonds

that he chooses not to trade until his investment horizon (H). This hypothesis allows the
authors to have a non-zero first portfolio component w∗

(1)
.

17



Accordingly, in our framework, we are not able to disentangle the two risks
linked to the interest rate r and to the market price of risk. Furthermore, if
we try to distinguish the terms in r, then we find a second degree polynomial
in r. This is due to the insertion of the ratio background risk. In fact, here
the riskless asset becomes like the other risky assets, and the risk linked to the
interest rate r becomes a component of the market price of risk. Nevertheless,
the qualitative result after Lioui and Poncet is preserved.
By comparing the approximated and the exact solutions presented in Propo-

sitions 7 and 6 respectively, we can see that the approximation hzh0z = hzz
implies that a positive definite matrix is added to the original term containing
hzz. In fact, the HJB equation has been written as follows:

ht + a (z, t)
0
hz + b (z, t) +

1

2
tr [Ω0Ωhzz] +

+
1

2
h0z
³
Ω0
³
I − Γ (Γ0Γ)−1 Γ0

´
Ω
´
hz = 0.

Accordingly, after putting hzh0z = hzz, the matrix Ω0
³
I − Γ (Γ0Γ)−1 Γ0

´
Ω

is added to the matrix Ω0Ω. We underline that the coefficient of hzz is the
diffusion term of the stochastic process according to which the variables z must
behave under the Feynman-Kac theorem. Since the first matrix is positive
semi-definite, this means that we are going to add some risks to the original
ones and so, in the approximated solution we have presented in Proposition 7,
the optimal portfolio third component always overestimates the exact solution.
Thus, we can conclude:

Corollary 9 The approximated solution for the third optimal portfolio compo-
nent (w∗(3)) presented in Proposition 7 systematically overestimates the exact
solution.

The future work will concentrate on the measure of this overestimation.
We have already seen that the error is negligible if the value function can be
written as an exponential of a polynomial in the state variables. Actually, in
order to offer a good approximation even in the other cases, we need some more
considerations.

4 Conclusion
In this paper we have analysed the asset allocation problem for an investor
maximizing the expected value of his terminal exponential utility function. The
investor faces an economic environment with stochastic investment opportuni-
ties and both a complete and an incomplete financial market are considered.
Furthermore, he must cope with two sets of background risks: one called level
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background risk and affecting the level of his wealth (as salaries), the other one
called ratio background risk and affecting the wealth growth rate (as inflation).
The optimal portfolio is formed by three components: (i) a preference free

part depending only on the diffusion terms of assets and background variables,
(ii) a part proportional to both the portfolio Sharpe ratio and the inverse of
Arrow-Pratt risk aversion index, and (iii) a part depending on all the state
variable parameters.
We show that the preference-free component minimizes the diffusion variance

of investor’s wealth.
For understanding the role of the third component it is necessary to ex-

plicitly compute the value function solving the dynamic stochastic optimization
problem. With respect to the most common approach used in the literature,
the insertion of the ratio background risk allows us to find an exact solution
for the optimal portfolio problem when the financial market is complete. Fur-
thermore, when the market is incomplete, we suggest a method for finding an
approximated solution.
We underline that all our results, contrary to the exact solutions found in

the literature, are obtained without specifying any particular functional form
for the stochastic variables involved in the problem. Thus, the solutions we are
able to find are very general and can be applied to several economic problems.
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