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Abstract

The Journa of Finance has published an important paper entitled “ A Simple Econometric

Approach for Utility-Based Asset Pricing Model” by Brown and Gibbon (1985). The main
purpose of this paper isto extend the research of Brown and Gibbons (1985) and Karson et
al. (1995) in estimating the relative risk aversion (RRA) parameter b in utility-based asset

pricing model. First, we review the distributions of RRA parameter estimate b . Then, a

new method to the ditribution of b is derived, and a Bayesian approach for the inference
of b isproposed. Finaly, empirical results are presented by using market rate of return
and riskless rate data during the period December 1925 through December 1999.
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A. Introduction

Brown and Gibbons (1985) and Karson, Cheng, and Lee (1995) have proposed different
methods for estimating the relative risk aversion parameter. This paper first proposes a
new approach to deal with the statistical distribution of the relative risk aversion estimator
derived by Karson, Cheng, and Lee. In addition, a Bayesian statistical methodology is used
to construct the interval estimation for the relative risk aversion. Furthermore, it also
examines the statistical distribution of excess market rate of return in accordance with Box
and Cox (1964) transformation to determine whether the lognormal distribution is suitable
for the data at hand in estimating the relative risk aversion.

In section B, an exact distribution for parametric estimation of the relative risk aversion
(RRA) isexamined in detail. In section C an alternative method to the distribution of b is

explored. Section D proposed a Bayesian approach for the inference of b. Empirical

results are presented in section E. Finally, section F summarized the results of the paper.

B. A brief literaturereview of RRA Estimation

Let Ry bethe market rate of return, R; be the riskless rate of return, X=(1+Ry)/(1+R;) and
Y=logX. Furthernore, let { Ry} and { Ry}, t=1,..., T, be the observed samples. Then the
sample mean and the sample variance of excess market rate of return are

Yt
Y =logX =, (1)

Qo
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SP=tt (2)

Assuming normality for Y with mean mand variance s, Brown and Gibbons (1985)

established the following relative risk aversion (RRA),

m
b=T042, 3
s? 2 3

Following Brown and Gibbons, a natural maximum likelihood estimator for b is

~ Y
b:S_2+ (4)

N

Using asymptotic theory, Brown and Gibbons have derived the variance of JTb as:

~ _ AE{InX}]* +Var{in X}
Var{~Th} = . 5
(T8 = N r ®
Alternatively, following Karson et al. (1995), the minimum variance unbiased (MVU)
estimator of bis
b= aT-3v 1 _ (6)
(T-1S* 2

In case the normality assumption for Y is violated, the estimator b can be inconsistent, as
pointed out by Brown and Gibbons. In order to remedy this possible shortcoming, they

proposed a method of moment estimator which is the solution of
_14 b
f(b)==a (X,.- DX;" =0, (7)
Ta

with the asymptotic variance

E{[(X,- DX, 1%}
[E{(X,- DX, logX,]*

Var (+/Tb) = (8)

where b istherelativerisk aversion.
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Karson et al. (1995) have derived the exact distribution of b, which is defined in
Equation (6), as:

r+T+161 22Ts 2(b - 1/2)(b - 1/ (T - ) /(T - 3)- (T - 1)0

r=0 4 gn V2Ts (b - 1/ 2)(T- D AT - 3) 5
-¥ <R<¥s>0T>3-¥ <R<¥
(9)
where
T(b-1/2)2s2/2 _
G=— S g g (10)
T+3 o . =
_£ 2
RN r? 0
T-lﬂ e 2 g
T+1
€ ~ el -1du2
v=4b -1/2)c——
3 k34 (11)

The exact distribution presented in the above equation is expressed in terms of an infinite

sum, therefore, it is not easy to compute in practice.

C. A new method to the distribution of b

~

The exact distribution of D obtained by Karson et a. (1995) as given in Equation (9) is

not easy to compute in practice. We will next propose a new method to the distribution of

b . Wefirst note that the relative risk aversion estimator b , as defined in Equation (6),

can be rewritten as;

(T - 3)Y 1_(T-3)Vs? E_(T-s)Y/sZJri

12)
(T-1S? ih (T-DS*/s? 2 W 2

0
b=

where Y and W = (T - 1)S? /s *areindependent, and Y ~ N (i, s¥T), W~c2,.

It' s easy to show that

U

E(b)=b, (13)
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and

T-3 1, 2ne?
(T-5s2T (T-3)s?

s2=V(b)= 1, (14)

asgiveninKarson et al.

From Equation (12) we can express the distribution of Ig as
~ \¥ ~
f(b) = o f(bw)g(w)dw, (15)

(T-3m 1 :
+—, variance
SW 2

0
where f (b|w) isthe p.d.f. of norma distribution with mean

(T-93°*

e and g(w) isthe p.df.of cZ,

0
Thedistribution of b givenin Equation (15) isaone-dimensiona integral. Wewill next

consider two approximations:

f(bU)» f(bU |\L/Jv) (16)

U
where w isthe mode of cTz_l, whichis T - 3. Following Ljung and Box (1980), this

approximation will be reasonableif g(w) issymmetric and concentrated. Thiswill be the

0
casewhen T isreasonably large. Under this approximation, b isnormally distributed as

indicated in Equation (15) and with W=T- 3 and s ? :%Sz.
A better approximation is:
Oy, Ll 2 ()
f(b)»~a f(b\w ), (17)
i=1
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where w" isthei™ draw from c?_,, Gelfand and Smith (1990), Casdlla and George
(1992).

1 OL - i N -
It is noted that Ia f(b‘w") converges to 6 f (b|w)g(w)dw as L® ¥, and the

i=1

approximation is quite good for L large enough. The theory behind the approximation (17)

0
isthe fact that the expected value of the conditional density f (b|W) , when Wisarandom

variable, is
E[f (tU)|W)] =of (tU)|w)g(w)dw: f(tU)). (18).

Thus, the formulain Equation (17) mimicks Equation (18), because
w,...,w" approximate a random sample from g(w) . Alternatively, we can think of

Equation (18) as E(X) = m where m can be efficiently estimated by the sample mean

X, ,with X,,..., X being arandom sample from the distribution of X. For large

Qo5

x=2
n

i=1

_ 14~
n, X convergesto . Similarly, for largeL, Eé f(b |w") convergesto
i=1

U
of (b|w)g(w)dw, as claimed above. Thisis also called the Rao-Blackwellization and is

quite popular in Markov chain Monte Carlo method, a recent fashion in Bayesian statistics.

For more references, see Gilks et al. (1996).

0
Thedistribution of b isuseful for testing hypothesis regarding b because for any given
b , the 1008 % value can be constructed as given in Karson et al. (1995). However,
Karson et al. (1995) did not deal with theissue of the confidence interval of b under

U
asymmetric distribution of b . This can be overcome by appealing to the asymptotic normal

0
distribution of b as given below,
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U

b ~N(b,s 2),
b
where s § isgivenin (14).
b

0
One disadvantage of the asymptotic normal distribution for b isthe symmetric assumption

0 U
of thedistribution of b , although the exact distribution of b isnot symmetric. A remedy of
this problem isto consider the posterior distribution of b using a Bayesian approach,

which will lead to a natural posterior interval of b .
D. A Bayesian approach for theinference of b

In this section will consider the posterior distribution of b using a noninformative
prior distribution of m and s . Our ultimate goal isto contract a posterior
interval of b . LetY, Y, ...... Yrbei.i.d. N(ms? and Y =(Y,,Y,,.....,.;). The
likelihood function of mands?is:

—%{(T—1)52+T(m-\7)2}
S

L(ms *|Y) =(2p) ""*(s *) e ? (19)

Using the noninformative prior

1
p(ms Z)HS—Z,

and considering the transformations:

b :12+1,ands 2=g?
S 2

we have the following posterior density of b and s
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Ts 2
T s

=P(bl % Y)P(s V)
Y 2
Y 11 (T-1)S
wherebls 2,Y ~ N(— +=, ,andg =~—"—~c2,.
~ (52 2 Tsz) a 2

Thus,

P(b|Y) = ¢P(bja.Y)P(g|Y)da,

where
Yq 1 q
blg,Y ~ N +=, ,
f ((T- DS? 2'T(T- 1)52)
and
Q|Y ~CT2-1_

The first two posterior moments of b can be expressed as follows:

Y 1
E(blY)=—+=,
(b]¥) sz 2

V(bJY) = EVar(b‘s Y) +VarE(bls ,Y)

_ T-1 Voo
“Trops gops Y

1.1 2Y 2
= +

ST (T- 1)82] '

This can be compared with Var (6) givenin (17).

(20)

(21)

(22)

(23)

(24)

(25)
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Asfor thedistribution of b , the posterior distribution of b , asgiven in Equation
(21), can be approximated by

P(b]Y) »%g P(blg®Y), (26)
i=1

where g isthe ith draw of c?Z .

Thus, an approximate 1- a posterior interval (a,b) of b can be constructed from

QbP(b IY)db =1-a . 27)

It is noted that equal tail probability can be used in selecting aand b, i.e., a and b can be
selected such that both tail probabilities are % . A Dbetter result is possible if we use the
highest probability density (HPD) interval (a’,b") to insure the shortest posterior

interval. However, if the posterior distribution of b isnearly symmetric, asit isthe case

here, the construction of the HPD interval (a”,b") isnot highly recommended.

E. Empirical result

In this section, we will use actua datato demonstrate how the new methods developed in
previous sections can be used in empirical research. First, we demonstrate the advantage
of the approximate method defined in Equation (17). Then, we test the normality of the data
and propose Box-Cox transformation to check the validity of lognormality for the data. We
aso estimate the RRA values using the transformed data. Finally, we use the Bayesian

method proposed in Section D to do the interval estimate for RRA.

Instead of using nonparametric approach adopted by Brown and Gibbons, we will propose

the following Box-Cox transformation
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X"’:? ¥1 if 1 10 28)

f InX, ifl =0
to examine whether the lognormal distribution for X is suitable for the data at hand. If the
power transformation parameter | is close to zero, then the lognormal distribution for X is
reasonable. Otherwise, the Box-Cox transformed variable Y=X"’ is used in estimating the

relative risk aversion.

Thelikelihood function of m s2and| is

Lms %1 %) =(20) *(s %) Zexpl- 74 (X - m?] 0 (29)
where

L
J=Q X"

The likelihood ratio test for testing the lognormality for X within the Box-Cox family can
be based on —2log L , where L isthe likelihood ratio criterion,

sup L(ms 2,1 :O’\f)

L = (30)

sup L(ms 2, ‘\f) .

ms 2|

The null hypothesis that the lognormdlity for X isrejected at the significance level a if
- 2logL >c/(@), where cZ(@) isthe upper 100a percentile of the Chi-Square
distribution with one degree of freedom.

Before presenting the empirical results using actual data, we will first compare the
performance of the Rao-Blackwellization method given in Equation (17) with the exact
distribution given in Equation (9), by assuming T=30, s=1.5and b=1 and 1.5. Theresults
from Equation (17) are shown in Figure 1 with L=100 by first sampling 100 values from
c 5, and then obtain the approximate f (6) using Equation (17). This new method is

definitely much easier than the exact method, which will require the summation of infinite

10
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number of termsin the formula. It is clear that both sampling distributions are amost

identical to those shown in Figure 1 of Karson et al. (1995).

We next conduct the empirical study by collecting both monthly value-weighted

index and riskless rate during the period December 1925 through December 1999. Using

this set of datawe calculated X, = % for doing the empirical study. A summary of
ft

the study isgivenin Table 1.

To determine graphically whether X; or its transformation is normally distributed,
we first normalized the data and redefined the variable as z. We used time series plot,
histogram and Q-Q normal plot to show the goodness of fit to the norndlity of
untransformed, log-transformed and the Box-Cox transformed data.

Figures 2 - 4 show for the three sets of untransformed, log-transformed and the
Box-Cox transformed data for the period January 1953 to June 1967. From these plots we
see that the Box-Cox transformed data are closer to the normal distribution.

In addition to the graphical presentation of the goodness of fit to normality, we have

also conducted formal normality test using the likelihood ratio test for testing Hy: | =0 and
the K-Sstatistic. TheMLE of | is | =4.133 and the likelihood ratio test rejects the null
hypothesis Hy: | =0 at significance level a=0.05. Also K-S p-values are 0.0496 for the
lognormal transformation and 0.253 for the Box-Cox transformation. Thus, it appears that
the Box-Cox transformation is dightly better than the log transformation for the data
considered in the period.

In Figure 5, we have also plotted the sampling distribution of b and the posterior
distribution of b by equations (17) and (26), respectively. It isclear that both distributions
are quite symmetric and centered around 9.3. Also, the posterior distribution of b istighter
than the sampling distribution of b.

Comparable plots for the period July 1942 to December 1999 and the period
January 1942 to December 1999 (annual December data) are given in Figures 6 - 9 and
Figures 10 — 13, respectively. In the period July 1942 to December 1999, the MLE of | is

| = 3.705 and the likelihood ratio test rejects He: | =0 at the significance level a=0.05.

11
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Furthermore, the K-S p-values are 0.0002 and 0.584 for the log transformation and the
Box-Cox transformation, respectively. Coupled with the accompanied plots, there are very
strong evidences that the Box-Cox transformation is much better than the log transformation
for the datain the period.

For the annual December data during the period January 1942 to December 1999,

theMLEof | is I =0.0099 and the likelihood ratio test does not reject Ho: | =0 at the
significance level a=0.05. The K-S gtatistic is hot computed because the sample size

T=58 israther small. A specia note for this period isthe plot in Figure 13. The mode of

the sampling distribution of b is16.82 while the medium is 18.45, indicati ng that the

sampling distribution of b isnot symmetric. Meanwhile, the mode and medium of the

posterior distribution of b are 19.25 and 19.35, indicating that the posterior distribution is
nearly symmetric. For this data set, we also found that the length of the 95% confidence
interval for b is 23.14 while the length of the posterior interval for b is 21.08, which is
much shorter. Furthermore, the coverage probability for the Bayesian interval is 0.946
while the coverage probability for the confidence interval is 0.974 with 1-a=0.95. Thus,

the Bayesian interva is shorter and with more accurate coverage probability.

F. Summary
In this paper, we firg examine the vaidity of the lognormd distribution for the excess

market rate of return. We then derived an dternative expresson for the exact sampling
digtribution of the rlative risk aversgon estimator, which was obtained by Karson et d. (1995) in
adifferent manner. An excdlent gpproximeation derived from the new expression is much eeser
to execute in obtaining the corresponding cumulative digtribution function which isimportant in
testing hypothesis regarding the rlative risk aversion. Findly, we derived the posterior
distribution of the relative risk aversion based on noninformative prior. The posterior distribution

of the rdlative risk aversion enables us to congtruct pogterior interva for the relative risk aversion,

12
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which is shorter and with more accurate coverage probability than the corresponding confidence

interval based on the asymptotic distribution of the reative risk aversion estimator.

13
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Tablel

Empirical Results on Excess Returnswith Value-Weighted I ndexes

Period KSp-Vdue
(Observation) " LRT Log B-C Mode Median

1/53-6/67
(274) 4.133 R 0.049% 0.253

7/42-12/99
(690) 3.705 R 0.0002 0.584

1/42-12/99
December
(58) 0.0099 A 16.82 18.45

* Rfor “Regects’ and A for “ Accepts’ the null hypothesisthat | =0
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