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Abstract 
 
The Journal of Finance has published an important paper entitled “A Simple Econometric 
Approach for Utility-Based Asset Pricing Model” by Brown and Gibbon (1985). The main 
purpose of this paper is to extend the research of Brown and Gibbons (1985) and Karson et 
al. (1995) in estimating the relative risk aversion (RRA) parameter β  in utility-based asset 

pricing model. First, we review the distributions of RRA parameter estimate β̂ . Then, a 

new method to the distribution of β̂  is derived, and a Bayesian approach for the inference 
of β  is proposed. Finally, empirical results are presented by using market rate of return 
and riskless rate data during the period December 1925 through December 1999.  
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A. Introduction 
 

Brown and Gibbons (1985) and Karson, Cheng, and Lee (1995) have proposed different 

methods for estimating the relative risk aversion parameter. This paper first proposes a 

new approach to deal with the statistical distribution of the relative risk aversion estimator 

derived by Karson, Cheng, and Lee. In addition, a Bayesian statistical methodology is used 

to construct the interval estimation for the relative risk aversion.  Furthermore, it also 

examines the statistical distribution of excess market rate of return in accordance with Box 

and Cox (1964) transformation to determine whether the lognormal distribution is suitable 

for the data at hand in estimating the relative risk aversion.   

In section B, an exact distribution for parametric estimation of the relative risk aversion 

(RRA) is examined in detail.  In section C an alternative method to the distribution of β̂  is 

explored. Section D proposed a Bayesian approach for the inference of β.  Empirical 

results are presented in section E.  Finally, section F summarized the results of the paper.   

 

B. A brief literature review of RRA Estimation 

Let RM be the market rate of return, Rf be the riskless rate of return, X=(1+RM)/(1+Rf) and 

Y=logX.  Furthermore, let {RMt} and {Rft}, t=1,… , T, be the observed samples.  Then the 

sample mean and the sample variance of excess market rate of return are 
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Assuming normality for Y with mean µ and variance σ2, Brown and Gibbons (1985) 

established the following relative risk aversion (RRA),  
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Following Brown and Gibbons, a natural maximum likelihood estimator for β is  
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Using asymptotic theory, Brown and Gibbons have derived the variance of bT ˆ as: 
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Alternatively, following Karson et al. (1995), the minimum variance unbiased (MVU) 

estimator of β is  
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In case the normality assumption for Y is violated, the estimator b̂  can be inconsistent, as 

pointed out by Brown and Gibbons.  In order to remedy this possible shortcoming, they 

proposed a method of moment estimator which is the solution of  
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with the asymptotic variance  
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where β  is the relative risk aversion. 
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Karson et al. (1995) have derived the exact distribution of β̂ , which is defined in 

Equation (6), as: 
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The exact distribution presented in the above equation is expressed in terms of an infinite 

sum, therefore, it is not easy to compute in practice. 

 

C. A new method to the distribution of β̂  

The exact distribution of β̂  obtained by Karson et al. (1995) as given in Equation (9) is 

not easy to compute in practice. We will next propose a new method to the distribution of 

β̂ . We first note that the relative risk aversion estimator β̂ , as defined in Equation (6), 

can be rewritten as: 
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where 
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Y  and 22 /)1( σSTW −= are independent, and 
−

Y ~ N (µ, s 2/T), W~ 2
1−Tχ .  

 

It’s easy to show that  
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as given in Karson et al. 

 

 

From Equation (12) we can express the distribution of 
∧

β  as  

,)()ˆ()ˆ(
0∫
∞

= dwwgwff ββ       (15) 

where )( wf
∧

β  is the p.d.f. of normal distribution with mean 
2
1)3(

+
−
w

T
σ

µ
, variance 

22

2)3(
σTw

T −
,  and g(w) is the p.d.f. of 2

1−Tχ  

 

The distribution of 
∧

β  given in Equation (15) is a one-dimensional integral.  We will next 

consider two approximations: 
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w  is the mode of 2
1−Tχ , which is 3−T .  Following Ljung and Box (1980), this 

approximation will be reasonable if )(wg  is symmetric and concentrated.  This will be the 

case when T  is reasonably large. Under this approxima tion, 
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A better approximation is: 
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where )(iw  is the thi  draw from 2
1−Tχ , Gelfand and Smith (1990), Casella and George 

(1992). 

It is noted that ∑
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 as ∞→L , and the 

approximation is quite good for L large enough.  The theory behind the approximation (17) 

is the fact that the expected value of the conditional density )( Wf
∧

β , when W is a random 

variable, is  

)()()(])([ ∫
∧∧∧

== βββ fdwwgwfWfE .     (18).  

Thus, the formula in Equation (17) mimicks Equation (18), because 
)()1(

1 ,..., Lww approximate a random sample from )(wg . Alternatively, we can think of 

Equation (18) as µ=)(XE  where  µ  can be efficiently estimated by the sample mean 
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∫
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dwwgwf )()(β , as claimed above. This is also called the Rao-Blackwellization and is 

quite popular in Markov chain Monte Carlo method, a recent fashion in Bayesian statistics.  

For more references, see Gilks et al. (1996). 

 

The distribution of 
∧

β  is useful for testing hypothesis regarding β  because for any given 

β , the %100α  value can be constructed as given in Karson et al. (1995). However, 

Karson et al. (1995) did not deal with the issue of the confidence interval of β  under 

asymmetric distribution of 
∧

β . This can be overcome by appealing to the asymptotic normal 

distribution of 
∧

β  as given below,  
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One disadvantage of the asymptotic normal distribution for 
∧

β  is the symmetric assumption 

of the distribution of 
∧

β , although the exact distribution of 
∧

β  is not symmetric. A remedy of 

this problem is to consider the posterior distribution of β  using a Bayesian approach, 

which will lead to a natural posterior interval of β . 

 

D. A Bayesian approach for the inference of β  

 

In this section will consider the posterior distribution of β  using a noninformative 

prior distribution of µ  and 2σ . Our ultimate goal is to contract a posterior 

interval of β . Let Y1, Y2, … … YT be i.i.d. N(µ,σ2) and ),......,,(
~ 21 TYYYY = .  The 

likelihood function of µ and σ2 is:    
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 Using the noninformative prior 
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we have the following posterior density of β and σ2:  
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The first two posterior moments of β can be expressed as follows: 
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This can be compared with )ˆ(βVar  given in (17). 
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As for the distribution of β , the posterior distribution of β , as given in Equation 

(21), can be approximated by 
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where )( iθ  is the  ith draw of 2
1−Tχ . 

 

Thus, an approximate α−1  posterior interval ),( ba  of β  can be constructed from 

  ∫ −=
b

a
dYP αββ 1)|( .      (27) 

 

It is noted that equal tail probability can be used in selecting a and b, i.e., a and b can be 

selected such that both tail probabilities are 
2
α

. A better result is possible if we use the 

highest probability density (HPD) interval ),( ** ba  to insure the shortest posterior 

interval. However, if the posterior distribution of β  is nearly symmetric, as it is the case 

here, the construction of the HPD interval ),( ** ba  is not highly recommended. 

 

E. Empirical result 
 
In this section, we will use actual data to demonstrate how the new methods developed in 

previous sections can be used in empirical research. First, we demonstrate the advantage 

of the approximate method defined in Equation (17). Then, we test the normality of the data 

and propose Box-Cox transformation to check the validity of lognormality for the data. We 

also estimate the RRA values using the transformed data. Finally, we use the Bayesian 

method proposed in Section D to do the interval estimate for RRA. 

 
Instead of using nonparametric approach adopted by Brown and Gibbons, we will propose 

the following Box-Cox transformation 
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to examine whether the lognormal distribution for X is suitable for the data at hand.  If the 

power transformation parameter λ is close to zero, then the lognormal distribution for X is 

reasonable.  Otherwise, the Box-Cox transformed variable Y=X(λ) is used in estimating the 

relative risk aversion.   

 

The likelihood function of µ, σ2 and λ is  
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The likelihood ratio test for testing the lognormality for X within the Box-Cox family can 

be based on –2log Λ, where Λ is the likelihood ratio criterion, 
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The null hypothesis that the lognormality for X is rejected at the significance level α if  

)(log2 2
1 αχ>Λ− , where )(2

1 αχ  is the upper α100  percentile of the Chi-Square 

distribution with one degree of freedom. 

 

 Before presenting the empirical results using actual data, we will first compare the 

performance of the Rao-Blackwellization method given in Equation (17) with the exact 

distribution given in Equation (9), by assuming T=30, σ=1.5 and β=1 and 1.5.  The results 

from Equation (17) are shown in Figure 1 with L=100 by first sampling 100 values from 

2
29χ  and then obtain the approximate )ˆ(βf  using Equation (17). This new method is 

definitely much easier than the exact method, which will require the summation of infinite 
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number of terms in the formula. It is clear that both sampling distributions are almost 

identical to those shown in Figure 1 of Karson et al. (1995).   

 
 We next conduct the empirical study by collecting both monthly value-weighted 

index and riskless rate during the period December 1925 through December 1999.  Using 

this set of data we calculated 
ft

Mt
t R

R
X

+
+

=
1
1

 for doing the empirical study. A summary of 

the study is given in Table 1. 

 To determine graphically whether Xt or its transformation is normally distributed, 

we first normalized the data and redefined the variable as zt.  We used time series plot, 

histogram and Q-Q normal plot to show the goodness of fit to the normality of 

untransformed, log-transformed and the Box-Cox transformed data.   

 Figures 2 - 4 show for the three sets of untransformed, log-transformed and the 

Box-Cox transformed data for the period January 1953 to June 1967.  From these plots we 

see that the Box-Cox transformed data are closer to the normal distribution.  

 In addition to the graphical presentation of the goodness of fit to normality, we have 

also conducted formal normality test using the likelihood ratio test for testing H0: λ =0 and 

the K-S statistic.  The MLE of λ is 133.4ˆ =λ  and the likelihood ratio test rejects the null 

hypothesis H0: λ=0 at significance level α=0.05.  Also K-S p-values are 0.0496 for the 

lognormal transformation and 0.253 for the Box-Cox transformation. Thus, it appears that 

the Box-Cox transformation is slightly better than the log transformation for the data 

considered in the period.  

 In Figure 5, we have also plotted the sampling distribution of β̂  and the posterior 

distribution of β by equations (17) and (26), respectively.  It is clear that both distributions 

are quite symmetric and centered around 9.3.  Also, the posterior distribution of β is tighter 

than the sampling distribution of β̂ .   

 Comparable plots for the period July 1942 to December 1999 and the period 

January 1942 to December 1999 (annual December data) are given in Figures 6 - 9 and 

Figures 10 – 13, respectively.  In the period July 1942 to December 1999, the MLE of λ is 

705.3ˆ =λ and the likelihood ratio test rejects H0: λ =0 at the significance level α=0.05.  
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Furthermore, the K-S p-values are 0.0002 and 0.584 for the log transformation and the 

Box-Cox transformation, respectively.  Coupled with the accompanied plots, there are very 

strong evidences that the Box-Cox transformation is much better than the log transformation 

for the data in the period.   

 For the annual December data during the period January 1942 to December 1999, 

the MLE of λ is 0099.0ˆ =λ  and the likelihood ratio test does not reject H0: λ =0 at the 

significance level α=0.05.  The K-S statistic is not computed because the sample size 

T=58 is rather small.  A special note for this period is the plot in Figure 13.  The mode of 

the sampling distribution of β̂  is 16.82 while the medium is 18.45, indicating that the 

sampling distribution of β̂  is not symmetric.  Meanwhile, the mode and medium of the 

posterior distribution of β are 19.25 and 19.35, indicating that the posterior distribution is 

nearly symmetric.  For this data set, we also found that the length of the 95% confidence 

interval for β is 23.14 while the length of the posterior interval for β is 21.08, which is 

much shorter.  Furthermore, the coverage probability for the Bayesian interval is 0.946 

while the coverage probability for the confidence interval is 0.974 with 1-α=0.95.  Thus, 

the Bayesian interval is shorter and with more accurate coverage probability.        

 

F. Summary 
In this paper, we first examine the validity of the lognormal distribution for the excess 

market rate of return. We then derived an alternative expression for the exact sampling 

distribution of the relative risk aversion estimator, which was obtained by Karson et al. (1995) in 

a different manner. An excellent approximation derived from the new expression is much easier 

to execute in obtaining the corresponding cumulative distribution function which is important in 

testing hypothesis regarding the relative risk aversion. Finally, we derived the posterior 

distribution of the relative risk aversion based on noninformative prior. The posterior distribution 

of the relative risk aversion enables us to construct posterior interval for the relative risk aversion, 
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which is shorter and with more accurate coverage probability than the corresponding confidence 

interval based on the asymptotic distribution of the relative risk aversion estimator. 
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Table 1 

 

Empirical Results on Excess Returns with Value-Weighted Indexes 

Period KS p-Value 

(Observation) λ̂  LRT Log B-C Mode Median 

1/53-6/67       

(174) 4.133 R 0.0496 0.253   

7/42-12/99       

(690) 3.705 R 0.0002 0.584   

1/42-12/99       

December       

(58) 0.0099 A   16.82 18.45 

 

* R for “Rejects” and A for “Accepts” the null hypothesis that 0=λ  

 

 


