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1. INTRODUCTION 

The volatility of asset returns is a key input for both risk management and the pricing of 

derivatives. 1  Since volatility, unlike returns, is a latent measure of asset price dynamics, 

determining the ways for describing volatility has become an issue of crucial importance in the 

study of modern financial management.  

Amongst the diverse stream of volatility modeling methods, the autoregressive conditional 

heteroskedasticity (ARCH) type models have emerged as the most popular, and probably, most 

successful. Following the initial introduction of the first ARCH model in Engle (1982), 

modifications were soon proposed by Bollerslev (1986) and Taylor (1986), who simultaneously, but 

independently, proposed a ‘generalized ARCH’ (GARCH) model to substantially improve the 

practicability of the model implementation. Thereafter, numerous extended models were soon 

introduced, and indeed, were shown to be plausible.2  

All of these studies demonstrate that throughout the development of volatility modeling, a 

growing range of factors has been brought into consideration. However, as the model becomes more 

sophisticated, it also becomes increasingly complex, leading to a corresponding increase in the 

difficulty of model implementation. It is therefore natural to question whether the more complicated 

 
1 The seminal work of Black and Scholes (1973) led to the development of ‘option pricing theory’, which was 
subsequently followed by an array of option pricing models including:  the stochastic volatility (SV) model of Heston 
(1993), the GARCH model of Duan (1995), the long-memory GARCH model of Taylor (2000), the SV-jump model of 
Bates (1996), the GARCH-jump model of Duan et al. (2005), and the SV double-jump model of Duffie et al. (2000). 
Irrespective of the ways in which the frameworks are modified, the volatility of the underlying asset returns continues to 
play an extremely important role in deciding both option prices and hedging portfolios. 
2 These models include the ‘asymmetric news impact’ (short-memory) models, such as EGARCH (Nelson, 1991) and 
GJR-GARCH (Glosten et al., 1993), the ‘long-memory’ models, including FIGARCH and FIEGARCH (Bollerslev and 
Mikkelsen, 1996), and the ‘GARCH-jump’ models as proposed by Maheu and McCurdy (2004) and Duan et al. (2005, 
2006). 
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model performs any better for a particular purpose, and if so, whether such an improved 

performance can be globally valid for different financial markets.  

To the best of our knowledge, and in light of the extremely comprehensive review of the 

literature on volatility forecasting undertaken by Poon and Granger (2003), the above questions have 

yet to be clearly answered. Thus, the primary objective of this study is to attempt fill this gap in the 

literature by comparing the performance of short-memory, long-memory, and jump models, in terms 

of several purposes including model fitting, volatility forecasting, 3  and value at risk (VaR) 

prediction. 4  This study is expected to provide important implications and guidance for the 

implementation of volatility models in both practical and academic fields. 

In this study we develop a ‘nested volatility’ model based upon the EGARCH framework. The 

model incorporates short-memory (EGARCH), long-memory (FIEGARCH), and jump 

(EGARCH-jump) dynamics to support an investigation into the performance of various models, in 

terms of model fitting, volatility forecasting, and VaR prediction, for the stock market indices of 

eight relatively large national markets. Since the specification of jumps or long memory essentially 

makes the unconditional distribution of financial asset returns skewed and leptokurtic, then 

alternatively we also include the skewed-t EGARCH model (Hansen, 1994), with the stylized facts 

being directly modeled in the stochastic innovation of a short-memory model. 

 
3 In addition to the use of historical asset returns, some studies have also taken exogenous information, such as ‘intraday 
returns’, ‘news arrival counts’, and ‘implied option volatility’, as a means of supporting the accurate forecasting of 
volatility. These studies have reported obvious improvements, with ‘implied option volatility’ proving to be superior. 
Nevertheless, the focus of this study is necessarily placed upon endogenous forecasting models. 
4 Following the recent occurrence of several financial scandals in many well-known corporations, such as Enron and 
LTCM, monitoring the level of operational or investment risk has become an extremely serious task for those with the 
responsibility for risk management.  
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Our empirical results show that the inclusion of jumps in GARCH-type model specifications can 

substantially raise performance, in terms of model fitting, volatility forecasting, and VaR prediction, 

with the single exception of volatility forecasting for some indices. However, since the computation 

load of this model is much greater than those of the other models, if a less-expensive model is 

preferred, then ‘second-best’ choices are available for any one of the various purposes. We can, for 

example, employ the skewed-t model for both volatility model fitting and VaR prediction and use the 

long-memory model for volatility forecasting. It is also worth noting that the FIEGARCH model has 

relatively satisfactory performance with regard to U.S. stock market returns only, which suggests 

that the long-memory pattern captured by the fractionally-integrated volatility model may not be a 

global stylized fact. We leave further investigation of this issue for future research. 

The remainder of this paper is organized as follows. Section 2 provides details of the volatility 

models employed in the empirical analysis. Section 3 presents the measures used to evaluate the 

performance of the alternative models, followed in Section 4 by a presentation of the data used for 

the empirical analysis. Section 5 presents the empirical analysis and a discussion of the results. 

Finally, Section 6 presents the conclusions drawn from this study. 

2. THE EMPIRICAL MODELS 

According to Taylor (2005) the GARCH-extension long-memory model cannot be recommended, 

because the returns process has an infinite variance for all positive values of the fractional 

integration parameter, d. However, with regard to the EGARCH-extension model, the logarithm of 



conditional variance is covariance stationary for d<0.5. Therefore, to have a fair comparison among 

models, the analysis in this study is based upon the EGARCH framework of Nelson (1991). 

The EGARCH model of Nelson (1991), the FIEGARCH model of Bollerslev and Mikkelsen 

(1996), and the EGARCH-jump model modified from that of Maheu and McCurdy (2004), which 

respectively incorporate short-memory, long-memory, and jump dynamics in the volatility of asset 

returns, can all be nested in a model. By imposing constraints upon certain parameters, we are able 

to analyze the three different models within a nested framework. 

The specifications of the variance and the distribution of asset returns are conditional on the 

information set It-1, which is comprised of previous returns {rt-i, i≥1}. The returns process rt is 

defined by: 
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Here, μt is the conditional mean, and ε1,t and ε2,t are two stochastic innovations. The first component 

is a normally-distributed mean-zero innovation, while the second is specified as a compound 

Poisson process, which is the sum of nt jumps. The arrival intensity is λt and jump size Yt,k  is 

normally distributed with mean θ and volatility δ. The jump innovation ε2,t, adjusted by E[Jt | It-1] = 

θ λt, is also conditionally mean zero and contemporaneously independent of ε1,t .5

                                                 
5  Another alternative specification is to follow Duan et al. (2005). More specifically, 
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To capture the time-varying jump effect upon volatility, the arrival intensity of jumps is 

assumed to follow a time-varying process: 

110 −− ++= ttt γξρλλλ .                           (2) 

The current jump intensity depends on both its previous value and the intensity residual. The 

intensity residual is defined as: 

∑
∞

=
−−−−−−− −==−≡

0
1111111 )|(]|[

j
ttttttt IjnjPInE λλξ ,             (3) 

where  is the ex-post inference on n)|( 11 −− = tt IjnP t-1, given the information set at time t-1, and 

 is the ex-post expected number of jumps occurring from t-2 to t-1. These will be 

defined later in this section, along with their likelihood function. A sufficient condition for λ

]|[ 11 −− tt InE

t to be 

positive for all t >1 is:  λ0 
> 0, ρ ≥ γ and γ ≥ 0.6

According to the specification in Equation (1), the conditional variance of returns is therefore 

the sum of two components: 

)|()|()|( 1,21,11 −−− +== ttttttt IVarIVarIrVarh εε .              (4) 

The first component, ),|( 1,1,1 −= ttt IVarh ε  is specified as a generalized EGARCH process which 

incorporates short-memory, long-memory, and jump dynamics: 
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6 According to our numerical experiment, the infinity in the summation of equation (3) is proxied by 50 in our empirical 
implementation, which is large enough to make the summation converge. This proxy is also applied to the computation 
using equation (8).  



),|])(||[(])|[()(
and  )()1()1()1()log(

111111,1

1
1

,1

CzInEzInEzg
zgLLLh

tttjtttjaat

t
d

t

−+++=

+−−+=

−−−−−−−

−
−−

αααα
ψφω

         (5) 

where L is a lag factor, 111 / −−− = ttt hz ε  with  εt-1 = ε1,t-1 + ε2,t-1, and C is the conditional expected 

value of |zt-1|.7 In a similar fashion to the method proposed by Nelson (1991), this model allows for 

the asymmetric impact of good news and bad news, which is respectively controlled by α and αα. In 

addition, as in Maheu and McCurdy (2004), we allow for the asymmetric feedback effects from past 

jumps, versus normal innovations, by adding αj and ααj. 

Given the jump dynamics as specified above, the second component of conditional variance h2,t  is 

equal to 
tλδθ )( 22 + , which changes over time, since λt is time-variant. As the arrival of jumps follows 

a Poisson process, the conditional density of nt is: 

 ,...2,1,0    ,
!

)exp(
)|( 1 =

−
== − j

j
IjnP

j
tt

tt
λλ

.                 (6) 

Conditional on j jumps occurring at time t, the conditional density of returns is: 
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Therefore, the conditional density of returns for every observation is given as: 
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Given the information set at time t , which was used for the computation in Equation (3), the 
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7 Following Bollerslev and Mikkelsen (1996), this study approximates E(|zt|) by the sample means of the absolute 
standardized residuals.   



ex-post inference on  nt  is then constructed as: 
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We utilize the maximum likelihood estimate (MLE) to estimate the parameters by maximizing the 

log likelihood function .∑
=

−

T

t
tt Irf

1
1 ))|(log( 8 Alternative sub-models are obtained as follows when 

we impose constraints upon certain parameters. 

The Short-Memory Model (EGARCH): λt = d = 0 

The conditional variance is thus equal to: 

1, 1, 1 1 2log( ) log( ) (log( ) ) ( ) ( )t t t th h h g z g ztω φ ω ψ− −= = + − + + − .          (10) 

The Long-Memory Model (FIEGARCH): λt = 0 

The conditional variance is thus given as: 

  ,        (11) 1, 1, 1 2
1

log( ) log( ) (log( ) ) ( ) ( )
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where b1 = d + φ , bi = αi – φ αi-1 for i ≥ 2 and α1 = d, 1/)1( −×−−= ii aidia  for i ≥ 2. Following 

Bollerslev and Mikkelsen (1996) and Taylor (2005), we set N = 1000.9

The Model with Jump Dynamics (EGARCH-jump): d = 0 

The two components of conditional variance are: 

                                                 
8 Following the advice of Maheu and McCurdy (2004), we set the starting value of λt as being equal to its unconditional 
value, λ1 = λ0/(1 – ρ), and ξ1 = 0 for the estimation of the parameters. 
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9 In theory, n = ∞. However, in the empirical implementation, we need to truncate at a specific number, which is a trade-off 
between sufficient memory length and data availability. 
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It is already well documented that the distributions of financial asset returns are usually skewed 

and leptokurtic. While adding a jump component in the residual of the return process or specifying 

a long memory for the conditional volatility process essentially makes the unconditional 

distribution of asset returns skewed and fat-tailed, directly modeling the stochastic innovation as a 

more flexible distribution also provides a possible solution. Hansen (1994) proposed a skewed-t 

distribution for the GARCH model, in which the stochastic innovation is characterized by a 

skewness parameter κ and a kurtosis parameter η. The conditional variance process of a skewed-t 

EGARCH model is the same as that of the normal short-memory EGARCH model. Therefore, we 

need to estimate only two additional parameters. 

The Short-Memory Model with a Flexible Distribution (EGARCH-skewed-t) 

The conditional density is given as: 
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3. MEASURES OF MODEL PERFORMANCE 
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In order to compare the performance of the various models, we analyze them from three different 

aspects:  model fitting, volatility forecasting, and VaR prediction. 

3.1 Model Fitting 

Since not all models are nested, then with regard to model fitting we use both the conventional 

likelihood ratio test and the Akaike information criteria (AIC) to compare the performance of the 

alternative volatility models. 

The likelihood ratio, determined by two distributions f1 and f2 with respective dimensions of 

parameters p1 and p2 ,  is given as: 

2
12 12

 ~ )(2 ppLLFLLFLR −−= χ  for p2 > p1,            (14) 

where LLF1 and LLF2 are the log likelihood functions, and the likelihood ratio follows an  χ 2 

distribution with a degree of freedom of p2 
–  p1. 

The Akaike information criterion is defined as: 

),/(2)/(2 TkTLLFAIC +−=                      (15) 

where k and T are the respective number of parameters and number of observations. The best model 

fitting is provided by the model with the smallest value of AIC.10

3.2 Volatility Forecasting 
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10 Since we use the first 1,000 observations to filter the first conditional variance for the FIEGARCH model, the 
parameters are estimated by maximizing the likelihood function for a sub-period which excludes the first 1,000 
observations. This estimation procedure is applied to all of the models in order to ensure a consistent standard of 
comparison.  



While employing the likelihood-based tests for the evaluation of the in-sample performance of the 

models, the out-of-sample performance is evaluated by analyzing the precision of the volatility 

forecasting. 

Without intraday returns, the natural volatility target is ‘next squared excess returns’, yt+1 = (rt+1 

–  μt+1)2 .11 As the long-term forecasts hardly have satisfactory precision and require simulated 

samples to calculate the expectations of exp[g(zt+i)], we focus on the one-step-ahead prediction in 

this study. The one-step-ahead realized variance is forecasted by the conditional variance, ht+1 = 

h1,t+1 + h2,t+1, which naturally has a closed-form solution for the alternative conditional models.  

For the out-of-sample evaluation of the volatility forecasting performance for the various 

models, we leave the last 100 observations as the out-of-sample period, recursively calculate 

volatility forecasting performance, and then compute their mean squared forecasting error (MSE), 

which is defined as: 

100
2

1 1
1

1 (
100 t t

i
MSE h y+ +

=

= −∑ )

                                                

.                       (16) 

The model with the smallest MSE will be the best model for volatility forecasting. 

3.3 Value-at Risk (VaR) Prediction 

VaR prediction is a means to evaluate the model performance in tail-density fitting,12 and it is 

generally defined as the excess loss, given a probability, over a certain period. Since the VaR 

 
11 For high-frequency returns, μt is usually very close to zero and can be ignored by assuming μt = 0.  
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12 As the out-of-sample VaR prediction requires a simulated sample, we focus on the in-sample prediction in this study. 



method has been widely used as the primary tool for managing market risk, it also seems of interest 

to analyze the performance of the different models in the prediction of the next period’s VaR.  

The VaR forecast, conditional on information which is available at time t , is defined as 

tttt hFVaR |1|1 )( ++ = α  with ( )F α  being the distribution function assumed by the alternative 

models, such that 1 1|Pr( )t t tr VaR α+ +< = .13 Therefore, given the variance forecast ht+1|t  and the 

distribution assumption, it is natural to obtain the percentile βt+1 at which the realized return rt+1 is 

positioned. We use the violation rate as the criterion for evaluating the VaR prediction performance of 

the various models, with the violation rate R  being defined as: 

1

1
1

1
1

1

1
1
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0  if 
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t
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t
t

t

R V
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β α
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∑
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Here, T is the number of observations in each sample. 

A likelihood ratio test (Stulz, 2003) can be employed to test for the null hypothesis that a model 

is able to provide correct information for the next period’s VaR prediction. If the true probability of 

exceedance is α, then the probability of observing n exceedances out of N is given by the binomial 

distributions as nNn −− )1( αα .  

The following likelihood ratio (LR) statistic asymptotically follows a chi-square distribution 

with one degree of freedom. 

                                                 
13 Since the conditional mean for high-frequency returns is usually equal to zero, αε =< ++ )Pr( |11 ttt VaR  is almost 
equivalent to α=< ++ )Pr( |11 ttt VaRr .  
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)])1(ln())1([ln(2 nNnnNn RRLR −− −−−= αα .            (18) 

If the test fails to reject the null hypotheses, then in terms of inferring the next period’s VaR, the 

distribution assumption for the data should be regarded as fairly reasonable. However, in practice a 

preferred model for predicting VaR should have a violation rate which is no greater than the 

threshold. Therefore, not only should a preferred model for predicting VaR pass the above test, but 

it should also have a violation rate which is no greater than the threshold.  

4. DATA 

The empirical investigation in this study is carried out on the stock market indices of eight relatively 

large markets (the U.S., Japan, the UK, Germany, France, Canada, Italy, and Spain). We obtain the 

daily values of the stock market price indices for each country from Datastream.14 The sample 

period is from July 1990 to June 2005 and excludes holidays. There are, on average, about 3,785 

observations.  

Table 1 shows the summary statistics of the returns, defined by changes in the logarithms of 

these indices.  

<Table 1 is inserted here> 

As suggested in many of the prior studies, most of the index return series are negatively skewed, 

leptokurtic, and non-normally distributed, and some have a high first-lag autocorrelation coefficient. 
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14 The Datastream price indices offer broad coverage of the markets, in terms of market capitalization of at least 75% to 
80% for each market. According to Bartram et al. (2006), it does not matter whether price indices or return indices are used, 
since the time series of the daily dividends do not vary much.   
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The exception is Japanese stock index returns, which exhibit positive skewness. In order to capture 

the potential influence of a higher first-order autocorrelation in some of the index returns, we 

specify the conditional mean as a moving average MA(1) process for our empirical implementation.  

The autocorrelations of the absolute returns, as illustrated in Figure 1, allow us to undertake a 

preliminary check of the persistence pattern of return volatility for each index, and indeed it seems 

that all stock return volatilities exhibit long memory. We use the modified rescaled range (R/S) 

statistic, proposed by Lo (1991), to run a further test for the existence of long memory,15 and find 

that, for all index returns, the null hypothesis (of short memory in volatility) is rejected at the 1% 

significance level.16 However, it is clear that the autocorrelations for both the U.S. and Canada 

decay more slowly and smoothly, as compared to those of the remaining countries that decay much 

faster. Therefore, the long-memory model may achieve different degrees of success for the stock 

returns of different countries. 

<Figure 1 is inserted here> 

5. EMPIRICAL RESULTS 

5.1 Parameter Estimation and Model Fitting 

We use the MLE method to estimate the parameters of all models for the stock index returns across 

countries. Table 2 presents the results for the U.S. and Japanese stock market indices.17  

 
15 The Appendix provides details of the long-memory test. 
16 The R/S statistics are U.S. (5.57); Japan (2.34); UK (4.72); France (4.35); Germany (5.23); Canada (5.40); Italy 
(3.53); and Spain (3.65). 
17 The patterns of estimates for all other indices are very similar. Their results are available upon request.  
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<Table 2 is inserted here> 

For the short-memory EGARCH model, the parameter estimates exhibit two conventional 

stylized facts, volatility clustering and news impact asymmetry, since φ is close to 1 and αa is 

significantly negative. The sign and significance of the moving average term ψ in the conditional 

variance process are not consistent across each of the countries.18  

In line with the results of our earlier long-memory tests on absolute returns, each series of stock 

index returns fit a long-memory FIEGARCH model. Similar to the findings of Bollerslev and 

Mikkelsen (1996) and Taylor (2000), the fractional integration parameter d estimated from the time 

series data is usually higher than 0.5 and is significant. The only one exception is Japanese returns, 

where d is equal to 0.4674. 

The estimated results of the EGARCH-jump model are generally consistent with those of 

Maheu and McCurdy (2004). The inclusion of jump dynamics in asset returns substantially 

increases the level of the likelihood function for all countries (44.66-91.66), although the signs and 

significance of the parameters controlling the impact of jumps on volatility, αaj
 and αj 

, are not 

consistent across countries. Furthermore, the inclusion of the impact of jumps in the conditional 

variance process lowers the impact from the previous residual, αj
 and α, resulting in the symmetry 

of this impact being ambiguous.  

We also confirm that for all country returns, the means of the jump sizes are negative, with 

most of them being significant. This implies a negative conditional correlation between jump 
 

18 This term is usually ignored in the specification of a GARCH-type model. 
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innovations and squared return innovations; i.e., large negative returns cause an immediate increase 

in variance, which Maheu and McCurdy (2004) referred to as the ‘contemporaneous leverage effect’. 

This leverage effect is time variant due to the time-varying correlation, which is determined by the 

time-varying jump arrival intensity. The importance, in volatility modeling, of this time-varying 

jump arrival intensity is highlighted by the strong significance of parameters, ρ and γ. 

As opposed to improving the specification of the conditional variance, we directly specify the 

return innovation as a skewed-t distribution, which is close to the true distribution. The estimates 

show that, in addition to volatility clustering and news impact asymmetry, the distribution of the 

return innovation across countries is both negatively skewed (κ < 0) and leptokurtic (η << ∞), which is 

consistent with the stylized fact of equity returns. The likelihood function is also remarkably greater 

than that of the EGARCH model. Although the increases are lower than those of the EGARCH-jump 

model, the largest increase (for stock returns in Canada) is as high as 73.39. 

In order to statistically test model fitting performance, we utilize the AIC and the LR ratio test 

based on the EGARCH model. Table 3 presents the statistics.  

<Table 3 is inserted here> 

The test results are perfectly consistent across all indices for the EGARCH-jump model, with the 

AIC being the smallest and the LR statistic being the highest. This indicates that the inclusion of jump 

dynamics in returns dramatically improves the model fitting. Interestingly, although volatility shows a 

long-memory pattern, the FIEGARCH model does not necessarily result in any significant improvement 
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in model fitting. As shown by either the LR ratio or the AIC, the improvement in model fitting in the 

FIEGARCH model is clearly seen for U.S. stock market returns only.19 However, it should be noted that, 

with only two additional parameters, the EGARCH-skewed-t model also provides obvious 

improvements to model fitting. Since the computation load is considerably higher for the 

EGARCH-jump model, then if we need a less expensive model for model fitting, the 

EGARCH-skewed-t model could prove to be an ideal alternative. 

5.2 Volatility Forecasting 

Since forecasts over a long horizon are unlikely to be satisfactory and require simulated samples, 

we measure the volatility forecasting performance of the various models by comparing their mean 

squared errors of the one-day-ahead forecasts. The forecast improvement - defined as the difference 

between the mean squared error of the EGARCH model and that of the evaluated model (as a 

percentage of the mean squared error of the EGARCH model) - is also provided to indicate the 

extent to which the evaluated model improves the precision of volatility forecasting, based on the 

EGARCH model’s forecasting. Table 4 offers the results for the stock market index returns across 

countries. 

<Table 4 is inserted here> 

The EGARCH-jump model and the FIEGARCH model show the best global performance. The 

 
19 In theory, the FIEGARCH model is nested with the EGARCH model. However, when implementing a FIEGARCH 
model, we have to truncate the memory at a specific time point since it is impossible to calibrate with infinitely lagged 
information. As a result, these two models may no longer be nested. 
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EGARCH-jump model has the lowest volatility forecasting error for Germany, Canada, and Italy stock 

returns, whilst the FIEGARCH model outperforms all other models for U.S., Japan, UK, and Spain stock 

returns. On average, the performance of the FIEGARCH model is probably better than that of the 

EGARCH-jump model, since the performance of the latter is more volatile. In terms of individual 

countries, the most dramatic reduction in forecasting errors for U.S. stock market returns was 

provided by these two models, with an improvement in excess of 15%.  

Although the EGARCH-skewed-t model demonstrates very good performance in terms of model 

fitting, it does not necessarily provide any improvement to volatility forecasting. This could be due to 

the instability of the true skewness and kurtosis of the stochastic innovations. 

In summary, when forecasting volatility over a short horizon, such as 1 day, the model that 

performs better is the one which incorporates longer historical information. However, the jump factor 

also plays a crucial role in the prediction of volatility, but with a higher variation. Interestingly, these 

two types of models performed almost equally well for U.S. stock market returns. 

5.3 VaR Prediction 

The VaR prediction performance of the various models is initially examined using LR tests. We then 

compare the percentage of cases where violations are no greater than the corresponding significance 

levels of those cases where the null hypothesis (of the correct prediction of next-period VaR) is not 

rejected by the LR tests. This is essentially because, in practice, a preferred model for VaR 

prediction should have a violation rate which is no greater than the threshold. Table 5 reports the 
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violation rates and the probability values of the LR statistics at the 1% and 5% significance levels.20

<Table 5 is inserted here> 

Almost all of the models pass the LR tests for all country stock market returns at the 5% 

significance level. Half of the test statistics for the FIEGARCH model and virtually all of the test 

statistics for the EGARCH model reject the null hypothesis of accurate prediction of VaR at the 1% 

significance level. Of the violation levels in the EGARCH and FIEGARCH models, most of those 

occurring at the 5% significance level are greater than 5%, although all of the violations passed the 

LR tests. This finding is generally consistent with the stylized fact of the fat-tailed distribution of 

index returns. 

Both the EGARCH-jump model and the EGARCH-skewed-t model pass the LR tests for all 

countries and at all significance levels. Since the LR tests indicate that both the EGARCH-jump 

model and the EGARCH-skewed-t model are able to accurately predict VaR, it is necessary to 

further verify whether they are practically acceptable. We find that, for the EGARCH-jump model, 

87.5% of all violation rates are lower than the corresponding significance levels, while for the 

EGARCH-skewed-t model, only 62.5% of the violation rates are lower than the corresponding 

significance levels. Although these two models perform equally well in the statistical tests, the 

EGARCH-jump model outperforms the EGARCH-skewed-t model when the practical application 

of the model is considered, given that the violation rate is required to be no larger than the threshold. 

 
20 Given the large sample size for every time series, in the computation of the LR statistic for the 10% significance level, 
our study suffers from ln(a→0)=-∞. Therefore, the LR statistic = 2(-∞+∞) is unavailable.  
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6. CONCLUSIONS 

Irrespective of the ways in which the approaches to derivatives pricing and risk management are 

developed or modified, volatility will continue to play a key role. With the specifications of 

GARCH-type models becoming more realistic, there is a corresponding increase in the complexity 

of the models. Therefore, it is natural to question whether a more complicated model can actually 

perform any better on a global scale, in terms of different markets and purposes.  

In this paper we have developed a generalized EGARCH model that incorporates 

short-memory, long-memory, and jump dynamics, as a means of evaluating the performance of 

alternative volatility models including the EGARCH, FIEGARCH, EGARCH-jump, and 

EGARCH-skewed-t models, in terms of model fitting, volatility forecasting, and VaR prediction. 

As compared to the simple EGARCH model, the EGARCH-jump model demonstrates 

significant improvement, outperforming all other models in all aspects, with the single exception of 

volatility forecasting for some indices. However, the computation load substantially increases by 

the inclusion of jump dynamics. If less expensive volatility models are preferred and we can tolerate 

a performance which is slightly less satisfactory, then alternatives may include the use of the 

EGARCH-skewed-t model for model fitting and VaR prediction, and the FIEGARCH model for 

volatility forecasting, since these models also demonstrate fairly good performance for these 

specific purposes. 

It is also worth noting that since the relative satisfactory performance of the FIEGARCH model 
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is demonstrated for U.S. stock market returns only, this suggests that the long-memory pattern 

captured by the fractionally-integrated volatility model may not be a globally stylized fact. Our 

results should provide important implications and guidance for the implementation of volatility 

models in both practical and academic fields. 
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The figure comprises the autocorrelations of the absolute returns of the stock market indices across countries for up to 1,000 lags.
Note: 
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Figure 1:  Autocorrelations of absolute returns 
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Table 1:  Summary statistics 

 
 U.S. Japan UK France Germany Canada Italy Spain 

Mean 0.0004 -0.0001 0.0004 0.0004 0.0002 0.0005 0.0003 0.0005 
Max. 0.0537 0.0940 0.0543 0.0618 0.0555 0.0486 0.0692 0.0635 
Min. -0.0702 -0.0652 -0.0536 -0.0735 -0.0929 -0.0724 -0.0778 -0.0820 
Std. Dev. 0.0103 0.0125 0.0095 0.0119 0.0116 0.0081 0.0130 0.0118 
Skewness -0.1174 0.1286 -0.1610 -0.1704 -0.4059 -0.6501 -0.1766 -0.2904 
Kurtosis 6.9729 6.4026 6.2652 6.1110 7.3296 9.8360 5.6733 6.4823 
Jarque-Bera 2484.06 1807.19 1701.35 1551.23 3703.90 7632.50 1149.43 1982.77 

ACF 1 0.023 0.103 0.039 0.046 0.052 0.112 0.067 0.060 
 2 -0.028 -0.055 -0.020 -0.016 -0.006 -0.006 0.023 -0.028 
 3 -0.034 -0.026 -0.053 -0.045 -0.008 0.014 -0.014 -0.019 
 4 0.007 0.005 0.033 0.014 0.031 -0.041 0.045 0.014 
 5 -0.047 -0.022 -0.022 -0.037 -0.017 -0.013 -0.015 -0.013 
Total No. of Obs. 3,764 3,730 3,793 3,801 3,802 3,783 3,794 3,818 

 
Notes:   
The table provides the summary statistics for the stock index returns across countries. The Jarque-Bera statistics are used for the normality test. 
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Table 2:  Parameter estimates 
 

 ω φ ψ d αa αaj α αj λ0 ρ γ θ(η) δ(κ) LLF 

Panel A:  U.S.              

EGARCH 
-9.72 

(-43.10) 
0.9818 

(187.71) 
-0.1757 
(-0.96) 

  – 
 

-0.1326
(-3.46) 

  – 
0.1243 
(4.13) 

  –   –   –   –   –   – 8936.63 

FIEGARCH 
-9.94 

(-36.03) 
0.9967 
(2386) 

-0.1245 
(-1.75) 

0.5336 
(9.60) 

-0.1561
(-5.80) 

  – 
0.1049 
(5.32) 

  –   –   –   –   –   – 8958.79 

EGARCH-Jump 
-10.66 

(-68.94) 
0.7148 
(13.08) 

0.0086 
(4.66) 

  – 
-0.1280
(-3.48) 

-0.0962 
(-8.80) 

-0.1936 
(-2.28) 

-0.0535 
(-3.90) 

0.0389 
(6.00) 

0.9892 
(396.99) 

0.9391 
(6.71) 

-0.0011 
(-6.58) 

0.0043 
(17.93) 

8984.37 

EGARCH-Skewed t -9.80 
(-46.85) 

0.9833 
(242.73) 

-0.1264 
(-1.08) 

  – 
-0.1241
(-5.13) 

  – 
0.1205 
(6.64) 

  –   –   –   – 
10.8815

(4.36) 
-0.0776 
(-3.51) 

8968.05 

Panel B: Ja  pan              

EGARCH 
-9.24 

(-64.91) 
0.9744 

(131.71) 
-0.0247 
(-3.02) 

  – 
-0.0706
(-4.37) 

  – 
0.1721 
(8.16) 

  –   –   –   –   –   – 8400.35 

FIEGARCH 
-10.05 
(-8.58) 

0.8537 
(4.91) 

-0.5140 
(-2.20) 

0.4674 
(2.18) 

-0.0859
(-4.21) 

  – 
0.1876 
(5.30) 

  –   –   –   –   –   – 8402.64 

EGARCH-Jump 
-10.01 

(-51.75) 
0.9823 

(237.68) 
0.0061 
(3.44) 

  – 
-0.1134
(-5.88) 

0.0473 
(3.84) 

0.0298 
(2.75) 

0.1293 
(2.74) 

0.0108 
(3.39) 

0.9406 
(39.89) 

0.2404 
(3.62) 

-0.0010 
(-1.64) 

0.0140 
(9.59) 

8453.26 

EGARCH-Skewed t -9.27 
(-60.88) 

0.9803 
(165.11) 

-0.0844 
(-3.67) 

  – 
-0.0762
(-5.06) 

  – 
0.1590 
(7.20) 

  –   –   –   – 
8.4622 
(6.48) 

-0.0112 
(-3.52) 

8438.54 

Note: 
The panels present the parameter estimates, t-statistics, and log-likelihood functions of the alternative models for the stock market index returns across countries. 
The generalized model is specified as follows, with only the estimates of the variance parameters being reported:  
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Table 3:  Tests for model fitting by model type 

 
Model Type 

Tests for Model Fit 

EGARCH FIEGARCH EGARCH 
-Jump 

EGARCH 
-Skewed t 

Panel A: U.S.     
AIC -6.4614 -6.4767 -6.4909 -6.4827 
LR test based on EGARCH  44.32 95.48 62.84 

Panel B: Japan     
AIC -6.1490 -6.1499 -6.1826 -6.1755 
LR test based on EGARCH  4.58 105.82 76.38 

Panel C: UK     
AIC -6.7300 -6.7305 -6.7629 -6.7438 
LR test based on EGARCH  3.34 105.86 42.58 

Panel D: France     
AIC -6.2116 -6.2124 -6.2385 -6.2238 
LR test based on EGARCH  4.08 89.32 38.20 

Panel E: Germany     
AIC -6.3047 -6.3053 -6. 3414 -6.3231 
LR test based on EGARCH  3.56 116.78 55.58 

Panel F: Canada     
AIC -6.8889 -6.8937 -6.9497 -6.9402 
LR test based on EGARCH  15.50 183.32 146.78 

Panel G: Italy     
AIC -6.1072 -6.1121 -6.1505 -6.1301 
LR test based on EGARCH  15.68 134.94 68.04 

Panel H: Spain     
AIC -6.2555 -6.2563 -6.2982 -6.2852 
LR test based on EGARCH  4.26 134.18 87.54 

 
Notes:  
The panels show the AIC and LR test statistics of the alternative models for the stock market index returns across 
countries. The LR test statistics are computed with respect to the log-likelihood functions of the EGARCH models. 
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Table 4:  Mean squared errors for volatility forecasting by model type 

 
Model Type Volatility Forecast 

Period EGARCH FIEGARCH EGARCH-Jump EGARCH-Skewed t

Panel A: U.S. (1E-6)        

 0.0038 0.0031 (18.42) 0.0032 (16.05) 0.0037  (2.63) 

Panel B: Japan (1E-6)        

 0.0209 0.0206 (1.44) 0.0213 (-1.91) 0.0208  (0.48) 

Panel C: UK (1E-7)        

 0.0141 0.0136 (3.55) 0.0152 (-0.78) 0.0142  (-0.71) 

Panel D: France (1E-7)        

 0.0466 0.0470 (-0.86) 0.0514 (-10.30) 0.0462  (0.86) 

Panel E: Germany (1E-7)        

 0.0349 0.0341 (2.29) 0.0320 (8.31) 0.0345  (1.15) 

Panel F: Canada (1E-7)        

 0.0222 0.0213 (4.05) 0.0208 (6.31) 0.0215  (3.15) 

Panel G: Italy (1E-6)        

 0.0096 0.0098 (-2.08) 0.0095 (1.04) 0.0099  (-3.13) 

Panel H: Spain (1E-7)        

 0.0533 0.0520 (2.44) 0.0576 (-8.07) 0.0529  (0.75) 
 
Notes: 
The table presents the mean squared errors of volatility forecasting for the stock market index returns across 
countries based upon the various models. The forecasting error is defined as the square of the difference between 
realized and forecasted volatility. Figures in parentheses refer to the percentage of forecast improvement based on 
the EGARCH model and are defined as the difference between the mean squared error of the EGARCH model and 
that of the evaluated model (as a percentage of the mean squared of the EGARCH model).  
 



Table 5:  Tests for VaR prediction 

 
Model Type and Statistics 

EGARCH FIEGARCH EGARCH  
-Jump 

EGARCH   
-Skewed t 

Volatility Forecast 
Period 

1% 5% 1% 5% 1% 5% 1% 5% 
Panel A: U.S.         

Share of Total (%) 1.48 5.46 1.37 5.50 0.94 4.88 1.05 5.25 
LR - p value 0.02 0.27 0.06 0.23 0.75 0.77 0.79 0.55 

Panel B: Japan         
Share of Total (%) 1.32 4.69 1.32 4.58 0.84 5.05 0.88 4.84 
LR - p value 0.11 0.45 0.11 0.30 0.58 0.87 0.51 0.69 

Panel C: UK         
Share of Total (%) 1.36 5.55 1.32 5.73 0.86 4.62 0.75 5.16 
LR - p value 0.07 0.19 0.10 0.08 0.44 0.34 0.16 0.70 

Panel D: France         
Share of Total (%) 1.61 5.11 1.46 5.03 0.75 4.43 1.07 4.71 
LR - p value 0.00 0.79 0.02 0.93 0.16 0.15 0.70 0.48 

Panel E: Germany         
Share of Total (%) 1.36 5.42 1.36 5.42 0.96 4.93 0.89 4.89 
LR - p value 0.07 0.30 0.07 0.30 0.84 0.85 0.55 0.78 

Panel F: Canada         
Share of Total (%) 1.62 4.96 1.55 5.03 0.93 4.49 1.01 4.81 
LR - p value 0.00 0.92 0.00 0.94 0.72 0.21 0.97 0.65 

Panel G: Italy         
Share of Total (%) 1.43 5.51 1.18 5.37 1.00 5.37 0.93 5.33 
LR - p value 0.03 0.22 0.34 0.37 0.99 0.37 0.70 0.42 

Panel H: Spain         
Share of Total (%) 1.49 4.79 1.31 4.79 0.99 4.54 0.99 4.76 
LR - p value 0.01 0.60 0.11 0.60 0.97 0.25 0.97 0.54 

 
Notes: 
The table presents the violation numbers, percentages, and the probability value of the LR test statistics under 
different significance levels for the various models for the stock market index returns across countries. If the true 
probability of exceedance is α, then the probability of observing n exceedances out of N is given by the binomial 
distributions, as:  .nNn −− )1( αα  The following LR statistic follows a chi-square distribution with one degree of 
freedom. 

)])1(ln())1([ln(2 nNnnNn RRLR −− −−−= αα , 
where R denotes the real violation rate. 
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Appendix 
 

Let yi be the absolute returns. The modified rescaled range statistic (R/S) proposed by 

Lo (1991) is: 
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Giraitis et al. (2003) extended the R/S statistic to test for long memory in volatility. 

Under the short-memory null hypothesis, Giraitis et al. (2003) demonstrated that: 

)(),( 0
10 ττ BrangeqTQ d
≤≤⎯→⎯ , 

where range( f ) = max( f ) – min( f ) and B0(τ) is a standard Brownian bridge.  

In this paper the R/S statistics are computed with q = q*, where q* is chosen by the 

data-dependent formula of Andrews (1991). 
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