Jump and Volatility Risk Premiums Implied by VIX

Jin-Chuan Duan[†] & Chung-Ying Yeh[‡]

†Risk Management Institute and Dept of Finance & Accounting National U of Singapore, and Rotman School of Management, University of Toronto bizdjc@nus.edu.sg http://www.rotman.utoronto.ca/~jcduan

and

‡National Taiwan University

December 2008

うつう 山田 エー・ エー・ エー・ しょう

Jump & Volatility Risk Premiums Implied by VIX

Bac	kground.	
-----	----------	--

ump-diffusion with SV 000000 Econometric formulation... 0000000 Conclusion

The literature

- Incorporating jumps into the stochastic volatility model has long been advocated in the empirical option pricing literature; for example, Bakshi, Cao and Chen (1997), Bates (2000), Chernov and Ghysel (2000), Duffie, Pan, and Singleton (2000), Pan (2002), Eraker (2004), and Broadie, Chernov and Johannes (2006).
- Anderson, Benzoni and Lund (2002) and Eraker, Johannes and Polson (2003) concluded that allowing jumps in prices can improve the fitting for the time-series of equity returns. However, Bakshi, Cao and Chen (1997), Bates (2000), Pan (2002) and Eraker (2004) offered different and inconsistent results in terms of improvement on option pricing. There is no joint significance in the volatility and jump risk premium estimates in most cases.

ump-diffusion with SV 00000 Econometric formulation... 0000000

Implementation challenges

- Broadie, Chernov, and Johannes (2006) attributed the contradictory findings to the short sample period and/or limited option contracts used in those papers. But using options over a wide range of strike prices over a long time span in estimation will quickly create an unmanageable computational burden.
- Stochastic volatility being a latent variable contributes to the methodological challenge in testing and applications.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ump-diffusion with SV 000000 Econometric formulation... 0000000 Conclusion

Key features of the proposed approach

- Derive a new theoretical link (allowing for price jumps) between the latent volatility and the VIX index (a CBOE volatility index for the S&P500 index targeting the 30-day maturity using a model-free volatility construction).
- Use this link to devise a maximum likelihood estimation method for the stochastic volatility model with/without jumps in order to obtain the volatility and jump risk premiums among other parameters.
- This approach only uses two time series: price and VIX, and thus bypasses the numerically demanding step of valuing options. The VIX index has in effect summarized all critical information in options over the entire spectrum of strike prices.

ump-diffusion with SV 00000 Econometric formulation... 0000000

A summary of the empirical findings

- **1** Incorporating a jump risk factor is critically important.
- **2** Both the jump and volatility risks are priced.
- The popular square-root stochastic volatility process is a poor model specification irrespective of allowing for price jumps or not.

Jump-diffusion with SV $\bullet 000000$

Econometric formulation... 0000000 Conclusion

Dynamic under the physical and risk-neutral measures

A class of jump-diffusions with stochastic volatility

Under the physical probability measure P,

$$d\ln S_t = \left[r - q + \delta_S V_t - \frac{V_t}{2}\right] dt + \sqrt{V_t} dW_t + J_t dN_t - \lambda \mu_J dt$$
$$dV_t = \kappa(\theta - V_t) dt + v \frac{V_t}{t} dB_t$$

- W_t and B_t are two correlated Wiener processes with the correlation coefficient ρ .
- N_t is a Poisson process with intensity λ and independent of W_t and B_t .
- J_t is an independent normal random variable with mean μ_J and standard deviation σ_J .
- dW_t and $J_t dN_t$ have respective variances equal to dt and $\lambda(\mu_J^2 + \sigma_J^2)dt$. Thus, $V_t + \lambda(\mu_J^2 + \sigma_J^2)$ is the variance rate of the asset price process.

	Jump-diffusion with SV 0●0000	
Dynamic under the phy	sical and risk-neutral measures	

The model contains commonly used stochastic volatility models with or without jumps.

- Scott (1987) and Heston (1993): square-root volatility without price jumps, i.e., setting $\gamma = \frac{1}{2}$ and $\lambda = 0$.
- Hull and White (1987): linear volatility without price jumps, i.e., setting $\gamma = 1$, $\lambda = 0$ and $\theta = 0$. (Note: The volatility does not mean-revert because $\theta = 0$.)
- Bates (2000) and Pan (2002): square-root volatility with price jumps, i.e., setting $\gamma = 1/2$.

Background... Jump-diffusion with SV 000000

Econometric formulation... 0000000 Conclusion

Dynamic under the physical and risk-neutral measures

Risk-neutral jump-diffusions with stochastic volatility

Adopting a pricing kernel similar to that in Pan (2002), the system under the risk-neutral probability measure Q becomes,

$$d\ln S_t = \left[r - q - \frac{V_t}{2} + \lambda^* \left(\mu_J^* + 1 - e^{\mu_J^* + \frac{\sigma_J^2}{2}}\right)\right] dt + \sqrt{V_t} dW_t^* + J_t^* dN_t^* - \lambda^* \mu_J^* dt dV_t = (\kappa \theta - \kappa^* V_t) dt + v V_t^{\gamma} dB_t^*$$

where $\kappa^* = \kappa + \delta_V$ and $B_t^* = B_t + \frac{\delta_V}{v} \int_0^t V_s^{1-\gamma} ds$ with δ_V being interpreted as the volatility risk premium.

Note: It can be easily verified by applying Ito's lemma that $E_t^Q\left(\frac{dS_t}{S_t}\right) = (r-q)dt$. Thus, the expected return under measure Q indeed equals the risk-free rate minus the dividend yield.

Jump-diffusion with SV 000000

Econometric formulation... 0000000 Conclusion

Linking the latent volatility to VIX

Fact 1: The VIX portfolio of options

Consider an option portfolio:

$$\begin{split} &\Pi_{t+\tau}(K_0, t+\tau) \\ &\equiv \int_0^{K_0} \frac{P_{t+\tau}(K; t+\tau)}{K^2} dK + \int_{K_0}^{\infty} \frac{C_{t+\tau}(K; t+\tau)}{K^2} dK \\ &= \frac{S_{t+\tau} - K_0}{K_0} - \ln \frac{S_t}{K_0} - \ln \frac{S_{t+\tau}}{S_t} \end{split}$$

Thus, taking the risk-neutral expectation gives rise to

$$e^{r\tau}\Pi_t(K_0, t+\tau) = \frac{F_t(t+\tau) - K_0}{K_0} - \ln\frac{S_t}{K_0} - E_t^Q \left(\ln\frac{S_{t+\tau}}{S_t}\right)$$

where $F_t(t+\tau)$ denotes the forward price at time t with a maturity at time $t+\tau$.

Background... Jump-diffusion with SV 000000 Econometric formulation... 0000000 Conclusion

Linking the latent volatility to VIX

Fact 2: The risk-neutral expected cumulative return

$$E_t^Q \left(\ln \frac{S_{t+\tau}}{S_t} \right)$$

$$= (r-q)\tau - \frac{1}{2} \int_t^{t+\tau} E_t^Q (V_s) \, ds$$

$$+ \int_t^{t+\tau} \lambda^* E_t^Q \left(\mu_J^* + 1 - e^{\mu_J^* + \frac{\sigma_J^2}{2}} \right) ds$$

$$= \left[r - q - \lambda^* \left(e^{\mu_J^* + \frac{\sigma_J^2}{2}} - (\mu_J^* + 1) \right) \right] \tau - \frac{1}{2} \int_t^{t+\tau} E_t^Q (V_s) \, ds$$

where

$$\int_{t}^{t+\tau} E_{t}^{Q}\left(V_{s}\right) ds = \frac{\kappa\theta}{\kappa^{*}} \left(\tau - \frac{1 - e^{-\kappa^{*}\tau}}{\kappa^{*}}\right) + \frac{1 - e^{-\kappa^{*}\tau}}{\kappa^{*}} V_{t}.$$

	Jump-diffusion with SV $\circ\circ\circ\circ\circ\bullet$	
Linking the latent vola	atility to VIX	

A new theoretical link

CBOE launched the new VIX in 2003 using the following definition:

 $\operatorname{VIX}_t^2(\tau) \equiv \frac{2}{\tau} e^{r\tau} \Pi_t(F_t(t+\tau), t+\tau) + \operatorname{adjustment terms.}$

Using Facts 1 and 2 yields

$$VIX_t^2(\tau) = 2\phi^* + \frac{1}{\tau} \int_t^{t+\tau} E_t^Q(V_s) ds$$
$$= 2\phi^* + \frac{\kappa\theta}{\kappa^*} \left(\tau - \frac{1 - e^{-\kappa^*\tau}}{\kappa^*}\right) + \frac{1 - e^{-\kappa^*\tau}}{\kappa^*} V_t$$

where $\phi^* = \lambda^* \left(e^{\mu_J^* + \sigma_J^2/2} - 1 - \mu_J^* \right).$

Note: The extra term, ϕ^* , is entirely due to jumps. If the jump magnitude is small, this term is negligible.

	Jump-diffusion with SV 000000	Econometric formulation $\bullet \circ $	
Maximum likelihood	l estimation		

Parameter identification

- Similar to an observation made in Pan (2002), λ^* and μ_J^* cannot be separately identified. Pan (2002) simply assumed $\lambda^* = \lambda$. Equally acceptable is to assume $\mu_J^* = \mu_J$.
- Instead of forcing an equality on a specific pair of parameters, we use the composite parameter ϕ^* to define the jump risk premium. Specifically, the jump risk premium is regarded as $\delta_J = \phi^* \phi$, where $\phi = \lambda \left(e^{\mu_J + \sigma_J^2/2} 1 \mu_J \right)$.
- The parameters to be estimated are $\Theta = (\kappa, \theta, \lambda, \mu_J, \sigma_J, v, \rho, \gamma, \delta_S, \kappa^*, \phi^*).$

イロト 不同下 イヨト イヨト ヨー うらつ

	Jump-diffusion with SV 000000	Econometric formulation $0 \bullet 00000$	
Maximum likelihood e	stimation		

Log-likelihood function

Denote the observed data series by $X_{t_i} = (\ln S_{t_i}, \text{VIX}_{t_i})$. Let $\widehat{Y}_{t_i}(\Theta) = (\ln S_{t_i}, \widehat{V}_{t_i}(\Theta))$ where $\widehat{V}_{t_i}(\Theta)$ is the inverted value evaluated at parameter value Θ .

$$\mathcal{L}(\Theta; X_{t_1}, \cdots, X_{t_N}) = \sum_{i=1}^N \ln f\left(\widehat{Y}_{t_i}(\Theta) \middle| \widehat{Y}_{t_{i-1}}(\Theta); \Theta\right) - N \ln \left(\frac{1 - e^{-\kappa^* \tau}}{\kappa^* \tau}\right)$$

where

$$f\left(\widehat{Y}_{t_i}(\Theta)\big|\widehat{Y}_{t_{i-1}}(\Theta);\Theta\right) = \sum_{j=0}^{\infty} \frac{e^{-\lambda h_i}(\lambda h_i)^j}{j!} g\left(\mathbf{w}_{t_i}(j,\Theta);\mathbf{0},\mathbf{\Omega}_{t_i}(j,\Theta)\right),$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ つへぐ

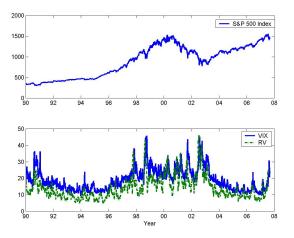
	Jump-diffusion with SV 000000	Econometric formulation $\circ \circ \bullet \circ $	
Empirical analysis			
The data			

The S&P 500 index values, the CBOE's VIX index values and the one-month LIBOR rates on daily frequency over the period from January 2, 1990 to August 31, 2007.

	S&P500 return	VIX
Mean	0.00032	18.9148
Standard deviation	0.0099	6.4125
Skewness	-0.1230	0.9981
Excess Kurtosis	3.8780	0.8217
Maximum	0.0557	45.7400
Minimum	-0.0711	9.3100

	Jump-diffusion with SV 000000	Econometric formulation $\circ \circ \circ$	
Empirical analysis			
The S&P 5	00 index, the VIX index	and the corresponding real	ized

volatility



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

kground	

ump-diffusion with SV 00000 Econometric formulation... 0000000

Empirical analysis

Table 2. MLE Results for SV models without jumps (the whole sample)

	q	κ	θ	v	ρ	γ	δ_S	κ^*	δ_V	LR
		Sa	ample j	period	: 1990	1/2	-200	7/8/31	-	
SV0	-0.0788	0.8309	0.0472	1.3873	-0.6916	0.8936	-2.0863	-10.7595	-11.5905	
	(0.0378)	(0.6342)	(0.0334)	(0.0523)	(0.0059)	(0.0116)	(2.1030)	(0.4877)	(0.6279)	
SV1	-0.1632	0.0202	0.6077	1.9993	-0.6894	1	-4.3949	-11.9671	-11.9873	43.4414
	(0.0403)	(0.5860)	(17.6066)	(0.0194)	(0.0059)		(2.0686)	(0.4143)	(0.6069)	(p < 0.01)
SV2	0.0812	5.2337	0.0265	0.3883	-0.6699	1/2	4.8969	-5.4592	-10.6928	923.7597
	(0.0258)	(0.5102)	(0.0026)	(0.0071)	(0.0064)		(2.1071)	(0.5577)	(0.6801)	(p < 0.01)

Note:

- SV0 denotes the stochastic volatility model with unconstrained γ .
- SV1 denotes the stochastic volatility model with γ = 1.
- SV2 denotes the stochastic volatility model with fixed $\gamma = 1/2$.
- The volatility risk premium δ_V is computed as κ^{*} κ.

	Jump-diffusion with SV 000000	Econometric formulation 0000000	
Empirical analysis			

Table 3. MLE Results for SV models with jumps (the whole sample)

	SV0	SVJ0	SVJ1	SVJ2		-	-	-	-
q	-0.0788	-0.0433	-0.0422	0.0039					
	(0.0378)	(0.0540)	(0.0588)	(0.0367)					
κ	0.8309	2.7245	2.7417	1.9449					
	(0.6342)	(0.9331)	(0.9349)	(0.6987)					
θ	0.0472	0.0228	0.0226	0.0472					
	(0.0334)	(0.0050)	(0.0046)	(0.0140)					
λ		54.3639	35.2252	43.9476					
		(9.7152)	(6.8539)	(6.4716)					
$\mu_J(\%)$		0.3696	0.4715	0.2825					
		(0.0619)	(0.0836)	(0.0525)					
$\sigma_J(\%)$		0.6634	0.7857	0.6284					
		(0.0410)	(0.0513)	(0.0435)					
v	1.3873	1.4524	1.8942	0.4285					
	(0.0523)	(0.0638)	(0.0193)	(0.0081)					
ρ	-0.6916	-0.7895	-0.7813	-0.7517					
	(0.0059)	(0.0082)	(0.0078)	(0.0076)					
γ	0.8936	0.9098	1	1/2					
	(0.0116)	(0.0131)							
δ_S	-2.0863	-0.1960	-0.0398	-0.1299					
	(2.1030)	(2.7461)	(2.8559)	(2.1412)					
κ^*	-10.7595	-13.4369	-14.8067	-4.2866					
	(0.4877)	(0.5411)	(0.4935)	(0.6333)					
$\phi^*(\%)$		-0.0892	-0.2322	0.2187	A)				
		(0.0393)	(0.0371)	(0.0424)	-				

Jump & Volatility Risk Premiums Implied by VIX

	Jump-diffusion with SV 000000	Econometric formulation $\circ \circ \circ \circ \circ \circ \circ \bullet$	
Empirical analysis			

	SV0	SVJ0	SVJ1	SVJ2
δ_V	-11.5905	-16.1614	-17.5484	-6.2315
	(0.6279)	(1.0231)	(0.9801)	(0.9555)
$\delta_{I}(\%)$		-0.2464	-0.3806	0.1142
		(0.0637)	(0.0613)	(0.0522)
Log-Lik	37313.0192	38899.5289	38893.5489	38463.1233

Note:

- The reported estimates for μ_J, σ_J, ϕ^* and δ_J have been multiplied by 100.
- SVJ0 denotes the stochastic volatility model with jumps and an unconstrained γ .
- SVJ1 denotes the stochastic volatility model with jumps and $\gamma = 1$.
- SVJ2 denotes the stochastic volatility model with jumps and γ = 1/2.

•
$$\delta_V$$
 and δ_J are computed by $\kappa^* - \kappa$ and $\phi^* - \lambda (e^{\mu_J + \sigma_J^2/2} - 1 - \mu_J)$.

Bac	kground	
	Reround	

ump-diffusion with SV

Econometric formulation... 0000000

Conclusions

- **1** Incorporating a jump risk factor is critically important.
- **2** Both the jump and volatility risks are priced.
- The popular square-root stochastic volatility process is a poor model specification irrespective of allowing for price jumps or not.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで