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Abstract

A method for computing forward-looking market risk premium is developed in this
paper. We first derive a theoretical expression that links forward-looking risk premium
to investors’ risk aversion and cumulative return’s forward-looking volatility, skewness
and kurtosis. In addition, investor’s risk aversion is theoretically linked to volatility
spread defined as the gap between the risk-neutral volatility deduced from option data
and the physical return volatility exhibited by return data. The volatility spread
formula serves as the basis for using the GMM method to estimate investor’s risk
aversion. We adopt the GARCH model for the physical return process, and estimate
the model using the S&P500 daily index returns and then deduce the corresponding
cumulative return’s forward-looking variance, skewness and kurtosis. The forward-
looking risk premiums are estimated monthly over the sample period of 2001-2009
and found to be all positive. The forward-looking risk premium was higher during
volatile market periods (such as September 2001 and October 2008) and lower when
the market was calm. Furthermore, two asset pricing tests are conducted. First,
change in forward-looking risk premiums is negatively related to the S&P500 holding
period return, reflecting that an increase in discount rate reduces current stock price.
Second, market illiquidity positively affects forward-looking risk premium, indicating
that forward-looking risk premium contains an illiquidity risk premium component.
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1 Introduction

Risk premium is the most important concept in finance, and its modeling has been a core of
the modern finance theory. Risk premium is often used in financial research and applications,
such as determining market efficiency, setting asset allocation (the decision to allocate assets
between stocks and bonds), applying the Capital Asset Pricing Model (CAPM) to determine
cost of capital, and forecasting growth of investment portfolios, among others.

Risk premium is obviously a forward-looking concept. In essence, it is compensation
for holding an asset that will yield an uncertain return. In practice, however, the most
commonly used method for estimating risk premium is average historical realized excess
returns (Welch, 2000; Damodaran, 2008). The literature indicates that realized excess return
and expected risk premium are fundamentally different (Elton, 1999; Arnott and Bernstein,
2002). Conceptually, using historical realized excess return relies on the belief that noises
will cancel out in the long run. Thus, using historical risk premium is subject to tradeoff
between reflecting recent market condition and estimation accuracy. Basically, the longer
the estimation time period, the more statistically accurate the result becomes. But a longer
time period also results in a higher likelihood of a regime shift in the estimation period so
that the risk premium estimate becomes distorted by earlier regime(s).

Merton (1980) argued that historical risk premium fails to account for the effect of changes
in the level of market risk. Simply put, when one moves into a volatile phase, forward-
looking risk premium should become higher. But historical average of excess returns cannot
be expected to reflect changing market conditions even if such a rise in market volatility is
transient. Empirically, stock market can produce negative risk premium even for an estima-
tion period longer than 10 years (e.g., from 1973 to 1984). Backward-looking is therefore a
non-trivial problem facing the use of historical risk premium.

In order to get a sense on the magnitude of forward-looking risk premium, several stud-
ies surveyed academics, investors or business managers to get their views on risk premium
(Welch, 2000; Graham and Harvey, 2007; Fernandez, 2009a). Welch (2000) surveyed 226
financial economists in 1997 and reported their forecast of long-term mean equity risk pre-
mium of 6% to 7%. Respondents claimed to revise their forecasts downwards when stock
market rises. Graham and Harvey (2007) analyzed the results of surveys on Chief Finan-
cial Officers (CFO) and found a positive relation between market volatility and CFOs’ risk
premium expectations. Fernandez (2009a) surveyed professors and obtained an average risk
premium of 6.3% in the USA. Although survey approaches may provide reasonable estimates
of forward-looking risk premium, they are subject to limitations such as: 1) surveys are time
consuming and thus cannot be updated frequently enough; 2) survey approaches usually
prescribe a very long prediction horizon and not available for different horizons of interest;
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and 3) surveys are expressions of subjective opinions and face unknown sample selection
bias.

In this paper, we propose a practical method to compute forward-looking market risk
premium that is based on combining estimated investor’s risk aversion with cumulative
return’s physical moments (variance, skewness and kurtosis) on a forward-looking basis.
Assuming a particular form of stochastic discount factor, our method uses the volatility
spread formula (risk-neutral return volatility minus physical return volatility) developed
in Bakshi and Madan (2006) to estimate investor’s risk aversion. The volatility spread is
expressed in terms of the cumulative return’s physical skewness and kurtosis, and the risk
aversion parameter is estimated by applying the GMM estimation method to the volatility
spread relationship. Instead of using the return time series realized over the period covered
by options’ maturity to estimate physical return moments as in Bakshi and Madan (2006),
we deduce forward-looking physical return moments from the GARCH model estimated
with daily returns. The GARCH model offers a practical way of reflecting prevailing market
condition and provides us with forward-looking physical return moments for any horizon of
interest.1 An important part of our method is the forward-looking risk premium formula
that links risk premium to forward-looking physical volatility, skewness and kurtosis. With
a risk aversion parameter estimate in place, we can combine it with forward-looking physical
moments to produce our estimate of forward-looking risk premium for any horizon of interest.

Option prices have previously been used in the literature to estimate risk premium.
Bhar, Chiarella and Runggaldier (2004) adopted a parametric system by assuming the Black-
Scholes model and imposing the risk premium as the product of volatility and a latent variable
following a mean-reverting process. The Kalman filter was then run on the parametric
system to obtain the smoothed estimate of the latent variable. Since the Black-Scholes
option pricing formula is independent of the asset risk premium, options in their study can
only marginally help in pinning down risk premium through the information generated from
the mean returns on options over time. In a more recent paper, Santa-Clara and Yan (2010)
used a different parametric model and derived the risk premium as a function of two latent
variables (volatility and jump intensity). Their implementation avoids filtering by assuming
two option prices are observed without error at any time point so as to enable them to back
out the two latent variables for different points of time. In contrast to these methods, our
approach relies on a generic moment expansion which does not need any parametric option
pricing model. In our empirical analysis, we utilize the result developed in the model-free
risk-neutral literature to extract risk-neutral volatility from option portfolios without having
to deal with individual options.

1To understand this point, assume that the daily return time series is governed by the GARCH(1,1)
model. The historical volatility based on, say 90 daily returns, will be different from the 90-day return
volatility implied by the GARCH model on a forward-looking basis.
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Our estimates of forward-looking risk premium (annualized), based on the S&P500 re-
turn and option data and being repeatedly estimated on a monthly basis, range from 1.6%
(June 2005) to 539.3% (Oct 2008) with higher premiums during extreme market periods.
This result is consistent with the common belief that investors require higher compensation
for taking higher risk, and thus risk premium should be high when market is uncertain.
In contrast, the estimates of risk premium using historical excess returns, the CAPM and
the Fama-French three-factor model (Fama and French, 1996) are unable to adequately re-
flect market conditions. It is worth noting that forward-looking risk premiums are positive
throughout the entire sample period, whereas the risk premium estimated from other meth-
ods (historical average excess returns, the CAPM and the Fama-French three-factor model)
are often negative.

Similarly, the Fama and French (2002) approach to estimating equity risk premium using
fundamentals (dividend and earnings growth rates) can be quite volatile. Our empirical
analysis shows that it can yield substantially negative risk premiums during bad times. Since
all asset pricing theories suggest that market risk premium should be positive if investors are
risk averse, negative risk premiums are rather difficult to interpret and can create difficulties
in applications. In summary, comparing different risk premium measures suggests that
forward-looking risk premium is a more reasonable way of gauging the appropriate level
of compensation for bearing risk in a fast-moving equity market.

Asset pricing theories suggest numerous implications for market risk premium. Two
specific implications are tested in this paper using forward-looking risk premium. The first
one is the relationship between change in risk premiums and change in current stock prices.
Using forward-looking risk premium, we confirm the theoretical relationship that an increase
in discount rate (risk premium) decreases current stock price while controlling for expected
future cash flows. Second, we show that forward-looking risk premium is positively related
to illiquidity, i.e., the presence of an illiquidity premium. The relationship is not simply a
manifestation of the liquidity-volatility relationship.

The remainder of the paper is organized as follows. Section 2 presents the theory of
forward-looking risk premium. Section 3 presents the econometrics for estimating investors’
risk aversion and for deducing cumulative return’s variance, skewness and kurtosis from the
GARCH model. Section 4 describes the data, the estimates of forward-looking risk premium,
and the comparisons with other risk premium measures. Section 5 presents the analysis of
two asset pricing implications of forward-looking risk premium, and Section 6 concludes.
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2 The Theory of Forward-Looking Risk Premium

In this section, we first show that the risk-free interest rate can be expressed by the risk
neutral moments of the market portfolio. Then, we derive the expression of forward-looking
market risk premium under the standard assumption of stochastic discount factor that can
be justified by a power utility. It is a common practice in the asset pricing literature to
derive an asset pricing model by combining a particular form of stochastic discount factor
with lognormal asset returns (Hansen and Singleton, 1983; Grossman and Shiller, 1981;
Campbell and Cochrane, 2000). Instead of assuming lognormal asset returns, we allow for
higher moments in the derivation of market risk premium in order to reflect the well-known
empirical regularities.

Denote the market portfolio’s value by St and its cumulative return over the time period
t to t + τ (continuously compounded) by Rt(τ) = ln(St+τ/St). At time t, Rt(τ) is a random
return to be realized later at time t + τ . Let rt(τ) and δt(τ) denote the continuously com-
pounded risk-free interest rate and dividend yield of the market portfolio over the period
from t to t + τ , respectively. In order to characterize the distributions implied by return
and option data, we need to specify two probability measures. Let µPt(τ), σPt(τ), θPt(τ) and
κPt(τ) be the mean, standard deviation, skewness and kurtosis of market portfolio under
the physical measure P . The use of t and τ is to make it clear that these moments can be
time-varying and depend on the length of the period over which cumulative return is defined.
Their equivalents under the risk-neutral measure Q are denoted with the subscript Q.

We first derive an approximate relationship for the equilibrium risk-free interest rate
using the devise of risk-neutral measure Q, knowing that the expected asset return inclusive
of cash dividends should equal the risk-free interest rate when the expectation is performed
with the risk-neutral measure. By a simple expansion argument (see Appendix A for details),
we have the following result:

rt(τ) ≈ δt(τ) + µQt(τ) +
1

2
σ2

Qt(τ) +
1

6
θQt(τ)σ3

Qt(τ) +
1

24
σ4

Qt(τ)[κQt(τ))− 3]. (1)

In the above, the risk-free interest rate is expressed as a function of risk-neutral moments,
and the approximate relationship is generic in the sense that it does not depend on the form
of the stochastic discount factor.

To obtain a useful expression for the physical market risk premium, we later need to
express the risk-free rate in terms of physical return moments. Our derivations are based on
the following assumption.

Assumption 1. The stochastic discount factor over time t to t + τ is e−γRt(τ), and the
moment generating function of Rt(τ) exists under either measure P and Q.2

2Note that the stochastic discount factor as in Assumption 1 can be deduced from the power utility
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Under the above assumption, Bakshi and Madan (2006) derived an expression for volatil-
ity spread:

σ2
Qt(τ)− σ2

Pt(τ)

σ2
Pt(τ)

≈ −γσPt(τ)θPt(τ) +
γ2

2
σ2

Pt(τ)[κPt(τ)− 3]. (2)

Similar to their study, the above expression also serves as the basis for our empirical estima-
tion of the risk aversion parameter γ.

One can similarly derive analytical expressions for risk-neutral expected return, variance,
skewness, kurtosis in terms of physical return moments. Substitute these expressions for
risk-neutral moments into the risk-free rate equation in (1), the following new expression for
market risk premium can be derived.

Proposition 1 Under Assumption 1, the τ -period market risk premium can be expressed as
a function of investors’ risk aversion, physical return variance, skewness and kurtosis:

µPt(τ) + δt(τ)− rt(τ) ≈
(

γ − 1

2

)
σ2

Pt(τ)− 3γ2 − 3γ + 1

6
σ3

Pt(τ)θPt(τ)

+
4γ3 − 6γ2 + 4γ − 1

24
σ4

Pt(τ)[κPt(τ)− 3]. (3)

Proof: See Appendix B.

Suppose that there is no physical return skewness or excess kurtosis; that is, θPt(τ) = 0
and κPt(τ) = 3. The above result implies that risk premium for the market portfolio is
µPt(τ) + δt(τ)− rt(τ) =

(
γ − 1

2

)
σ2

Pt(τ), a well-known result under lognormality. The equity
premium expression in equation (3) makes it easier to understand the role played by return
skewness and kurtosis. It suggests that the presence of skewness and excess kurtosis will alter
risk premium. One can show that 3γ2−3γ +1 is always positive. That implies that negative
skewness will increase risk premium. The importance of negative skewness in pricing assets
has been previously documented in, for example, Kraus and Litzenberger (1976) and Harvey
and Siddique (2000). Similarly, one can show that 4γ3 − 6γ2 + 4γ − 1 > 0 when γ > 1

2
.

Therefore, when investors’ risk aversion exceeds one-half, leptokurtosis (fat tails) will also
increase risk premium.

If we can find a practical way to estimate γ and physical return moments for different
horizons of interest on a forward-looking basis, equation (3) will provide a way of generating
forward-looking market risk premiums for different horizons of interest. Indeed, that is what
we will be doing next.

function: U(W ) = W 1−γ/(1−γ) when the economic agent maximizes the expected utility of the end-of-the-
period wealth.
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3 Econometric Formulation

Similar to Bakshi and Madan (2006), we use the volatility spread equation in (2) to estimate
γ. Let It be some set of instruments whose values are known at time t. A GMM estimation
can be performed using the following orthogonality condition:

E

{
σ2

Qt(τ)− σ2
Pt(τ)

σ2
Pt(τ)

+ γσPt(τ)θPt(τ)− γ2

2
σ2

Pt(τ)[κPt(τ)− 3]

∣∣∣∣ It

}
= 0 (4)

In order to implement the above expression, we need a time series of risk-neutral return
variance and three time series of physical return moments (variance, skewness and kurtosis).

A model-free risk-neutral return variance σ2
Qt(τ) can be computed by forming appropriate

portfolios of broad-based market index options. Such an approach was established in Britten-
Jones and Neuberger (2000), Carr and Madan (2001), and Jiang and Tian (2005). The theory
linking risk-neutral return variance to an option portfolio is presented in Appendix C. Its
exact empirical implementation will be elaborated in the next section.

In this paper, physical return variance, skewness, and kurtosis are obtained using the
GARCH model. Our approach differs from the ex-post sample moments approach of Bakshi
and Madan (2006). Recall that our objective is to come up with forward-looking physical
risk premium. Using a popular GARCH model with the feature of asymmetric volatility
response (i.e., leverage effect), we are able to deduce forward-looking higher return moments
for various horizons of interest through a combination of analytical formulas and bootstrap
sampling.

We adopt the nonlinear asymmetric GARCH(1,1) model of Engle and Ng (1993), here-
after NGARCH(1,1), for the market portfolio’s return dynamic under the physical probability
P :

ln
St+1

St

= µ + σt+1εt+1 for t = 0, 1, · · · (5)

where

σ2
t+1 = β0 + β1σ

2
t + β2σ

2
t (εt − η)2 (6)

and εt+1 are i.i.d. random variables with EP (εt+1) = 0 and EP (ε2
t+1) = 1. Note that we

need to impose the restrictions: β0 > 0, β1 ≥ 0, β2 ≥ 0 to ensure conditional variances
staying positive. Parameter η reflects the so-called leverage effect. When η > 0, a negative
return shock generates a larger future volatility than does a positive shock of the same
magnitude. According to Duan (1997), the NGARCH(1,1) model is strictly stationary if
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β1 + β2(1 + η2) ≤ 1. When β1 + β2(1 + η2) < 1, the NGARCH(1,1) model will have a finite
stationary variance and hence it is also variance-stationary.

Because we need to allow for skewness and fat-tails, we do not commit to a particular
conditional distribution. The parameters in the NGARCH(1,1) model are estimated by the
quasi-maximum likelihood method. For both the estimation and the forward-looking risk
premium applications, we need to know physical return moments for multi-period horizons,
say, 20 trading days (corresponding to 28 calender days). It is possible to derive a simple
formula for the conditional variance of τ -period cumulative return. The derivation of the
following formula is given in Appendix D:

σ2
Pt(τ) =

1− λτ

1− λ
σ2

t+1 +
(τ − 1)β0

1− λ
− λ(1− λτ−1)β0

(1− λ)2
(7)

where λ = β1 + β2(1 + η2).

However, conditional skewness and kurtosis of the cumulative return under the GARCH
model do not lead to workable analytical formulas. Thus, we resort to bootstrapping as a
way of obtaining these required quantities. Basically, we use the data set available at time t
to obtain an estimated NGARCH(1,1) model. The model is then applied to the data set to
generate a time series of standardized residuals (mean 0 and variance 1, but not necessarily
normally distributed). When simulating the NGARCH(1,1) model to obtain cumulative
returns, we start from σt+1 and randomly sample from the set of standardized residuals to
move the system forward to time t + τ . The smooth stratified bootstrap method as in Pitt
(2002) is applied to sampling from the standardized residuals. After sampling many times,
conditional skewness and kurtosis of the cumulative return of interest can be approximated
by their sample equivalents.

4 Empirical Analysis

4.1 Data

The S&P500 index returns and option prices are used in the empirical study. The S&P500
index values, their option prices, and the risk-free interest rates over the period of January
1996 to October 2009 are taken from OptionMetrics. Monthly sampling frequency is imple-
mented, and τ in our estimation implementation equals 28 calender days. At each option
expiration date, we move backwards 28 calender days and refer to this point as the obser-
vation date. This procedure gives us non-overlapping call and put options with a maturity
of 28 calender days. The corresponding 28-day risk-free rate is obtained by interpolating
zero-rate curve.

8



Risk-neutral variance of the 28-calendar day cumulative return is calculated for each
observation date using the prices of the S&P500 index options with the remaining maturity
of 28 calendar days. The formula used to calculate risk-neutral variance is shown in Appendix
C. We follow CBOE to set Kt (determining at time t which calls and puts are considered
out-of-the-money in the algorithm) as the first available strike price below the forward index
level where the forward index level is determined by the call-put pair with the smallest price
differential. Numerical integration is performed over the available strike prices. As argued
in Jiang and Tian (2005), the discretization error is unlikely to have material impact on the
calculation of risk-neutral variance.

The NGARCH(1,1) model is used to compute the 28-calender day conditional physical
variance, skewness and kurtosis. The daily S&P500 closing index values over the five years
immediately before each observation date are used in the quasi-maximum likelihood estima-
tion of the NGARCH(1,1) model to obtain the parameter estimates for µ, β0, β1, β2, and η. In
addition, the conditional physical next trading day return variance, i.e., σ2

t+1, corresponding
to the observation date is obtained as a by-product of the estimation. For each observation
date, we then calculate the 28-calender day conditional variance analytically using equation
(7). Because the GARCH parameters are obtained on the trading-day basis, we apply the
actual number of trading days in the next 28-calendar period. The conditional 28-calendar
day skewness and kurtosis are obtained by smoothed bootstrap simulations using the pool of
5-year worth of standardized residuals corresponding to the observation date in an attempt
to preserve skewness and kurtosis in the data. A bootstrapped sample size of 100,000 is
used to advance the system one trading day at a time until reaching the 28-calendar day
maturity. Again, the actual number of trading days in the next 28 calendar days is used in
simulation. We then compute the averages of simulated cumulative return raised to various
powers that are need for obtaining their sample equivalents.

Table 1 presents the summary statistics for risk-neutral volatility and physical forward-
looking volatility, skewness and kurtosis. Qualitatively consistent with the prior findings
in the literature, risk-neutral volatility has a higher mean value vis-a-vis physical forward-
looking volatility. Also revealed by the summary statistics, the 28-calendar day forward-
looking returns are negative skewed (θP (τ) < 0) and leptokurtic (κP (τ) > 3).

Figure 1 plots the 28-calender day risk-neutral volatility versus physical forward-looking
volatility. The curve representing risk-neutral volatility generally lies above the one for phys-
ical forward-looking volatility, especially for the period of 1996-1999. The average volatility
spread between risk-neutral volatility and physical forward-looking volatility over the whole
sample period is 3.9%. The average volatility spread for the period from January 1996 to De-
cember 1999 is 7.2% and for the period from January 2000 to October 2009 is 2.6%. Although
we compute physical return volatility differently, our results are qualitatively consistent with
the literature that has documented volatility spread (Bakshi and Madan, 2006; Christensen
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and Prabhala, 1998). Figure 2 plots the 28-calender day physical forward-looking skewness
and kurtosis computed from the NGARCH(1,1) model. Panel A shows that returns are
generally negative skewed, and negative skewness is more pronounced from 1998 to 2003,
and again from 2007 to 2009. Panel B shows that returns are more leptokurtic from 1998 to
2003, and again from 2007 to 2009.

4.2 Investors’ Risk Aversion

To obtain the most recent risk aversion over different estimation periods, we use a 5-year
moving window of data (updated monthly) to estimate γ. Specifically, γ is estimated for
every observation date (one per month) using the 5-year data prior to and including the
observation date to generate 60 monthly volatility spreads for the GMM estimation. The
GMM method adopted here is the one with the Newey-West adjusted covariance matrix.
Three sets of instruments are used and they are same as Bakshi and Madan (2006). Set
1 contains a constant plus σ2

Q,t−1(τ). Set 2 contains a constant, σ2
Q,t−1(τ), and σ2

Q,t−2(τ).
Finally, Set 3 contains a constant, σ2

Q,t−1(τ), σ2
Q,t−2(τ), and σ2

Q,t−3(τ). The results from the
three sets are qualitatively similar. Therefore, we only report in Table 2 those from using
Set 3.

Although we have 166 monthly results for all return moments of interest as shown in
Table 1, we can only conduct the GMM estimation and test on a moving-window basis for
106 times, because the first test needs return moments for five years (60 months). None of
the 106 rolling tests of the model is rejected, based on testing the over-identifying restrictions
at the 5% significance level. The estimated γ’s are all significant with the mean being 4.25,
and the smallest t-statistic equals 2.62. The estimated γ’s range from 1.8 to 7.1. These
estimates for risk aversion seem intuitively sensible and are comparable to the ones obtained
in some previous studies such as Bliss and Panigirtzoglou (2004), which reported a risk
aversion estimate of 4.08 (power utility) or 6.33 (exponential utility) using the risk-neutral
and physical density functions of the S&P500 return and option data.

For comparison, we also estimate γ by applying the approach of using ex-post sample
moments as in Bakshi and Madan (2006) to our data. The results show that the volatility
spread model still passes the test on the overidentifying restrictions, but the estimated γ is
around 93, a unreasonably large risk aversion parameter value. In contrast, the full sample γ
estimated using forward-looking physical moments is 4.4. The cause for the huge difference
in the parameter estimate can be attributed to the fact that the sample moments based
on ex-post realized returns are available only at the end of the period of interest which are
incompatible with the spirit of the theoretical relationship. Consequently, it forces the risk
aversion parameter to accommodate the gap between forward-looking risk-neutral volatility
and ex-post physical volatility, and causes a distorted estimate of risk aversion. Another
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possible reason is that the use of a relatively small sample of returns (daily returns over
one month) may have under-estimated the magnitude of higher return moments (Jackwerth
and Rubinstein, 1996), and the under-estimated skewness and kurtosis in turn need a much
larger risk aversion in order to match the volatility spread.

4.3 Forward-Looking Risk Premium

Using the risk aversion estimate along with physical forward-looking variance, skewness and
kurtosis, we can compute forward-looking risk premium for each observation date. Table
3 presents the results. The estimated forward-looking risk premiums (annualized) are all
positive and vary from 1.6% (June 2005) to 539% (October 2008). Furthermore, the results
reveal very high risk premium during the internet bubble bursting period (2001 to early 2003)
and the sub-prime mortgage crisis (late 2007 to 2009). There are several particularly large
risk premiums during these two periods. In September 2001, the 9-11 terrorist attack resulted
in the closure of NYSE from September 11 to 17, and during the first re-opening day, the
S&P500 index fell 4.9% and the Dow Jones Industry Average fell 7.1%, which was the single
biggest day drop over our sample period. Therefore, it is not surprising that the forward-
looking risk premium for that month reaches 17.4% (=2.088/12). In July 2002, WorldCom,
which was the second largest long distance phone company, filed for bankruptcy. It was the
largest bankruptcy up to that time, and investors’ confidence was severely shattered.3 Our
estimated forward-looking risk premium is 14% (=1.672/12) for that month.

More recently, January 2008 was an especially volatile month for stock markets around
the world for fears of the sub-prime mortgage crisis.4 Two months later, Bear Stearns
collapsed and was merged with JPMorgan Chase in a distress sale. The sub-prime mort-
gage crisis reached its peak in September and October of 2008. Several major institutions
(e.g., Lehman Brothers and Merrill Lynch) were either failed or acquired with government
assistance. Interestingly, our forward-looking risk premium hit its highest point of 45%
(=5.393/12) in October 2008 and its second highest point of 29.5% (=3.545/12) in November
2008. In summary, these aforementioned events are coupled with extremely high forward-
looking risk premiums that could not possibly be captured by any backward-looking risk
premium measure.

To further explore the relationship between forward-looking risk premiums and economic
conditions, we plot in Figure 3 the time series of monthly forward-looking risk premiums
along with the NBER recessions (the shaded area).5 Along with recessions, we also indicate
in the plot the internet bubble bursting period and the sub-prime mortgage crisis period.

3The Economist, July 23, on WorldCom.
4BBC News: http://news.bbc.co.uk/2/hi/business/7199552.stm
5Obtained from http://wwwdev.nber.org/cycles/cyclesmain.html
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This figure shows that during a recession or a crisis period, the forward-looking risk premiums
are usually higher. This result is consistent with the common belief that during bad times,
investors usually demand higher returns.

The forward-looking risk premium estimation can be extended to longer horizons by set-
ting a larger τ using the physical forward-looking return variance, skewness and kurtosis
specific to the horizon. Since physical forward-looking skewness and kurtosis need to be
computed with a bootstrapping method, we need to address the simulation errors arising
from simulating over a longer horizon. Since the estimated GARCH model has a vary high
volatility persistence, simulation noises cannot be attenuated very quickly, which causes
simulated skewness and kurtosis to exhibit larger swings when the horizon is initially length-
ened up to some point. Nevertheless, the pattern of forward-looking skewness (or kurtosis)
as a function of horizon clearly presents itself, and a spline smoothing can be applied to
obtain the smoothed values for forward-looking skewness (or kurtosis). Figure 4 presents
these smoothed higher moments along with the smoothed forward-looking risk premiums
for different horizons up to one year (252 trading days). These plots are presented for two
specific time points: a relatively volatile time (September 2001) and a relatively quiet time
(September 2003). The smoothing is done by a cubic polynomial spline with one knot at
125 trading days using the least-square estimation on 252 data points.

It is evident from the plots in Figure 4 that the forward-looking risk premium term
structure can have various shapes. Its pattern has a great deal to do with the term structures
of physical forward-looking skewness and kurtosis. Basically, the physical return distribution
becomes more negatively skewed and with fatter tails as the horizon is lengthened. This has
the effect of increasing forward-looking risk premium. Once the horizon passes a certain
point, the behavior of skewness and kurtosis begin to reverse. As expected, the volatility
behaves in a typical mean-reverting manner. But the behavior of skewness and kurtosis are
more complex. This interesting feature of the GARCH model is not generally understood
and rarely explored in the literature. In essence, cumulative return moves further away
from normality due to stochastic mixture effect of the time-varying volatility. But once the
horizon is long enough, the effect of the Central Limit Theorem will kick in and moves the
cumulative return back towards normality.

4.4 Comparison with Other Measures of Risk Premium

The prior literature points out that expected risk premium and realized risk premium are
fundamentally different concepts, and confusions arise for not properly distinguishing the
two concepts (Elton, 1999; Arnott and Bernstein, 2002; Fernandez, 2009a,b). Perhaps due
to the lack of a better alternative, many measures of expected risk premium continue to rely
on some form of ex-post market risk premium as an input to obtain the estimate for expected
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risk premium. In this section, we present five measures of risk premium, and compare them
to forward-looking risk premium.

4.4.1 Historical Measures

Historical average of realized excess returns is the most commonly used estimate of ex-
pected risk premium. In this section, two measures using average historical excess return (3
years and 5 years) are considered. In addition, two measures using average historical cross-
sectionally estimated risk premium (applying the Fama-Macbeth (1973) regression for the
CAPM and the Fama-French three-factor model (Fama and French, 1996)) are constructed.
When risk premiums are computed by the Fama-Macbeth method, we measure returns over
regular calender months so as to be consistent with the standard practice.

Table 4 presents the S&P500 risk premium based on historical average of daily excess
returns over three years (Panel A) and over five years (Panel B). For each observation
date, we estimate its historical risk premium by averaging daily excess returns over three or
five years immediately before the observation date. The numbers reported in this table are
annualized but not in percentage. Panel A shows that the three-year historical risk premiums
are mostly negative for the period of 2001-2004. Similarly, Panel B shows that the five-year
historical risk premiums are mostly negative for the period of 2002-2005. In contrast, the
forward-looking risk premiums reported in Table 3 are all positive.

Table 5 presents the S&P500 historical risk premiums estimated from the CAPM and
the Fama-French three-factor model by applying the Fama-Macbeth two-stage estimation
approach.6 In the first stage, for every stock and for each month, we use the monthly
returns from the preceding five-year period to estimate beta(s) from a time series regression
of stock returns on factor returns. In the second stage and for each month, we regress stock
returns cross-sectionally against their betas to determine the monthly risk premium for each
factor. After obtaining monthly risk premium(s), we estimate the beta(s) for the S&P500
index (against the CRSP value-weighted index and the factor portfolios when appropriate).
The S&P500 index’s beta(s) time the corresponding factor risk premium(s) gives rise to the
S&P500 index monthly risk premium. Repeat it for each month in the five-year estimation
period. The risk premiums reported in the table are the five-year average of the monthly
risk premiums. The estimation is performed for both the CAPM (Panel A) and the Fama-
French three-factor model (Panel B). Table 5 shows that the estimated risk premiums from
both asset pricing models are often negative. For the CAPM, the risk premiums are mostly
negative in 2002-2005, whereas for the Fama-French three-factor model, the risk premiums
are generally negative in 2001-2005.

6Monthly stock returns are taken from CRSP. The Fama-French three factors are obtained from Kenneth
R. French’s website, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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The correlation coefficients reported in Table 6 shows that the five-year historical risk
premium is not significantly correlated with the forward-looking risk premium. However,
the three-year historical risk premium is negative correlated (-0.25) with the forward-looking
risk premium. A shorter time span such as three years makes the historical risk premium
more reflective of recent returns. In a down market, the historical risk premium becomes
negative, but the bad news pushes up the forward-looking risk premium to result in a negative
correlation. The correlation between the risk premiums from the CAPM and the Fama-
French three-factor model are strongly positive (0.75). Moreover, both risk premiums are
positively correlated with the five-year historical risk premium (0.43 for the CAPM and 0.71
for the Fama-French three-factor model). In contrast, neither of the two risk premiums
from applying the Fama-Macbeth estimation approach is significantly correlated with the
forward-looking risk premium (-0.15 for the CAPM and -0.04 for the Fama-French three-
factor model). The message from the empirical analysis is clear; that is, forward-looking
premium differs from historical risk premium (or premiums deduced from the CAPM and
the Fama-French three-factor model) not just in concept but also in reality.

Earlier in Figure 3, we examined forward-looking risk premiums in relation to the NBER
recessions and other crisis periods. To better appreciate how the historical risk premium and
the one from the Fama-French three-factor model behave over different market conditions,
we add them to the same graph. It is evident from Figure 3 that these two risk premium
measures are hardly reflective of the NBER recessions or crises, a behavior that sharply
differs from that of forward-looking risk premium.

4.4.2 Fama and French (2002) Equity Premium

Fama and French (2002) estimated expected stock returns using average dividend yield plus
the average rate of capital gain estimated by dividend and earnings growth rate. Their ap-
proach provide us an alternative measure of expected risk premium, which can be compared
with forward-looking risk premium. By their approach, the real S&P500 risk premium based
on earnings growth is

RXYt = Dt/Pt−1 + GYt − Ft (8)

and based on dividend growth is

RXDt = Dt/Pt−1 + GDt − Ft (9)

where Dt/Pt−1 is the real dividend yield; GYt and GDt are the estimates of real capital
gains using realized earnings and dividend growths, respectively; and Ft is the real risk-free
interest rate. We obtain quarterly S&P500 earnings and dividends from Compustat and
estimate the real risk premiums quarterly from 2001 to 2008.
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Quarterly estimates for the real risk premium are reported in Table 7. Panel A presents
the estimates based on earnings growth whereas Panel B reports the estimates based on
dividend growth. During bad times, both realized earnings and dividend drop substantially,
so the estimated capital gain yield is substantially negative, which in turns causes the risk
premium to be negative. This effect is more pronounced for the estimates based on realized
earnings than the ones based on dividends. This is true because realized earnings can be
negative, but realized dividends are bounded below by zero. For example, at the peak of
the sub-prime mortgage crisis in the fourth quarter of 2008, the real risk premium estimate
was -274%. The annual average real risk premiums were negative for 2001, 2007 and 2008
when the estimates are based on earnings growth. The annual average real risk premiums
were negative in year 2001 and 2008 when estimation is based on dividend growth. In order
to obtain a positive average risk premium using the Fama and French (2002) approach, a
much longer window will be needed, but then it will have the same drawback as historical
risk premium.

To compare the Fama and French (2002) quarterly risk premium measure with the
forward-looking risk premium, we re-estimate the quarterly physical forward-looking mo-
ments (variance, skewness and kurtosis) at each quarter end. τ is set to be the number
of calender days in the forward-looking quarter, but the actual number of trading days in
the quarter are applied to estimate forward-looking moments. Then, we calculate quarterly
forward-looking risk premium using the most recent estimate of γ available at the quar-
ter end. The Spearman correlation coefficients among the forward-looking risk premium at
quarter t− 1 for quarter t (i.e., FLRPt−1(τ)), the quarterly risk premium based on earnings
growth (RXYt) and that based on dividend growth (RXDt) are presented in Panel C of
Table 7. None of them is significantly correlated with the other, which implies that the
risk premium based on the Fama and French (2002) method and the forward-looking risk
premium are basically two distinctly different risk premium measures. The Fama and French
(2002) risk premium is in essence an ex-post fundamental measure of risk premium, whereas
the forward-looking risk premium is an ex-ante measure of risk compensation demanded by
investors.

5 Asset Pricing Implications of Forward-Looking Risk

Premium

5.1 Change in Forward-Looking Risk Premium and Excess Hold-
ing Period Return

A common approach to asset valuation is to set price equal to the present value of its
expected future cash flows discounted by the cost of capital (the risk-free interest rate plus a
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risk premium). An increase in price is therefore related either to an increase of the expected
future cash flows or a decrease in the risk premium (assuming the same risk-free rate). French,
Schwert and Stambaugh (1987) tested this idea indirectly by assuming that the change in risk
premium is positively related to the unexpected change in stock market volatility. Without
controlling for the cash flow effect, they found that an unexpected change in market volatility
negatively affects the stock’s holding period return.

In this section, we test the holding period return implication directly with respect to the
change in the forward looking risk premium while controlling for the change in the expected
earnings. Our empirical model for this analysis is:

Rmt −Rft = α + β1∆FLRPt(τ) + β2∆EPSe
t + εt (10)

Where Rmt is the quarterly holding period return (from quarter t− 1 to t) for the S&P500
index; Rft is the 3-month Treasury bill return from quarter t − 1 to t; ∆FLRPt(τ) is
defined as the change in the forward-looking risk premium from quarter t − 1 to t (i.e.,
FLRPt(τ)−FLRPt−1(τ)). Similar to Section 4.4.2, quarterly forward-looking risk premiums
are constructed for each quarter end. ∆EPSe

t is the expected change in earnings per share
for the S&P500 index. Two proxies are used for EPSe

t : the actual EPS data from Compustat
and the analysts’ forecast from I/B/E/S.

Our prediction on the regression coefficients is: β1 < 0 and β2 > 0, corresponding to
an increase in expected risk premium decreases current stock price (holding period return),
and an increase in expected future earnings per share increases current stock price. The
results reported in Table 8 are consistent with the predictions. Model (1) in Table 8 uses
realized EPS as a proxy for expected EPS where Model (2) uses the mean of analysts’ EPS
forecasts for next quarter as expected EPS. Both tests give us consistent results. The coef-
ficients for ∆FLRPt are significantly negative (-0.031 and -0.059) and the ones for ∆EPSe

t

are significantly positive (0.029 and 0.032). The constant term is insignificant in either
case. The regression results confirm the theoretical prediction that an increase in discount
rate (forward-looking risk premium) negatively affects current stock price (holding period
return) while controlling for expected change in future cash flows (change in EPS). A similar
conclusion holds when the median of analysts’ EPS forecasts instead of the mean is used.

5.2 Liquidity and the Forward-Looking Risk Premium

Illiquidity is commonly perceived as a risk. Equity investors will require a larger risk premium
if they may face a large discount on future asset value or have to pay a higher transaction
cost to liquidate their positions. Many studies have examined the relationship between stock
return and liquidity cross-sectionally, and recognized the existence of liquidity risk (Pastor
and Stambaugh, 2003; Acharya and Pedersen, 2005). Amihud (2002) analyzed annual data
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from 1964 to 1996, and reported a positive relationship between expected market illiquidity
and excess returns. His finding serves as direct evidence that illiquidity premium is reflected
in excess return. He also found a negative relationship between unexpected illiquidity and
contemporaneous excess return. This negative relationship suggests that stock price falls
when illiquidity unexpectedly rises, and can be used as indirect evidence that illiquidity
affects expected stock returns, assuming firm’s profitability is unaffected by market illiquidity.

In this section, we first show that the positive relationship between expected market
illiquidity and excess return disappears from the monthly data between 2001 and 2008.
However, illiquidity risk premium is still contained in forward-looking risk premium.

Similar to Amihud (2002), monthly market illiquidity denoted by MILLIQm is estimated
as the average of |Ridm|/V OLDidm across all NYSE stocks and over all days in the month,
where |Ridm| is the absolute return of stock i on day d of month m, and V OLDidm is
the corresponding daily trading volume. The monthly unexpected liquidity denoted by
MILLIQU

m is the residual from applying the AR(1) model to MILLIQm. Using monthly
data from January 2001 to December 2008, we replicate the Amihud (2002) regression:

RMt −Rft = g0 + g1 ln(MILLIQt−1) + g2 ln(MILLIQU
t ) + g3JANDUMt + wt (11)

where RMt − Rft is the excess stock return for month t and JANDUMt is the dummy
variable for January. The regression results are reported in Table 9. Amihud and Hurvich
(2004) pointed out that the predictive regression such as equation (11) produces biased
estimates, but the bias can be corrected by adjusting the coefficient of the AR(1) model
for illiquidity and also adjusting the standard error for g1. We apply their adjustment and
report the t-values computed from the adjusted standard errors.7 Consistent with Amihud
(2002), the monthly unexpected illiquidity negatively affects excess stock returns. However,
the lagged illiquidity does not positively affect excess returns. As a robustness check, we
re-run the regression using the full monthly sample from 1964 to 2008, the coefficient of
ln(MILLIQt−1) is 0.003 with a t-value equal to 1.65. The results suggest that the lagged
illiquidity (as a measure of expected illiquidity) marginally exhibits a positive relationship
with excess return, but shows no significant relationship for the more recent period.

The lack of a significant relationship between expected illiquidity and excess return may
be indicative of the poor quality of excess return as a proxy for risk premium. Therefore,
we use forward-looking risk premium to test whether risk premium is related to expected
illiquidity. To be compatible with the monthly horizon used in the liquidity measure, we
re-calculate the monthly forward-looking risk premium at each month end using the most

7Similar results are obtained if we apply the adjustment procedure as in Amihud (2002).
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recent γ available at the time.8 We run the regression:

FLRPt−1(τ) = β0 + β1 ln(MILLIQt−1) + β2JANDUMt + εt (12)

where FLRPt−1(τ) is the forward-looking risk premium for the next month (month t) at
the end of month t− 1. The Newey-West adjusted standard errors are used to calculate the
t-values. The regression results reported in Table 9 show that from 2001 to 2008, the lagged
illiquidity (as a measure of expected illiquidity) does not positively affect realized excess
return, but it does positively influence forward-looking risk premium.

The prior literature suggests that illiquidity and volatility are positively related (Gross-
man and Miller, 1988; Deuskar, 2006; Kang and Yeo, 2008). The positive correlation be-
tween illiquidity and forward-looking volatility is confirmed in Table 9. To check whether
the positive relationship between forward-looking risk premium and illiquidity is merely an
manifestation of the illiquidity-volatility relationship, we take the component, (γ−1)σ2

Pt(τ),
out of the forward-looking risk premium estimate and re-run the regression in equation (12).
The results in Table 9 show that illiquidity still positively affects the forward-looking risk
premium after taking out the variance component. Because forward-looking risk premium
comprises forward-looking variance, skewness and kurtosis, our results suggest that illiquid-
ity risk premium partly reflects forward-looking skewness and kurtosis. We thus examine
the relationship between illiquidity and forward-looking skewness (or kurtosis) and report
the results in the last two columns of Table 9. The results show that illiquidity negatively
(positively) affects skewness (kurtosis). The relationship between illiquidity and skewness
(or kurtosis) are consistent with the intuition that when liquidity dries up, investors face
higher uncertainty and may particularly worry about a large drop in stock price (negative
skewness) or extreme moves in price (fat tails). In summary, illiquidity risk premium is re-
flected in forward-looking risk premium, and the relationship is not merely a manifestation
of the illiquidity-volatility relationship.

6 Conclusion

We propose a practical model for estimating forward-looking risk premium. First, a forward-
looking risk premium formula is developed. Then, the components of this formula – physical
forward-looking volatility, skewness and kurtosis, and investors’ risk aversion – are estimated.
The GARCH model is used to deduce forward-looking physical volatility, skewness and
kurtosis needed for the implementation. Investors’ risk aversion is estimated by a volatility
spread formula that links the gap between risk-neutral volatility and forward-looking physical
volatility to forward-looking skewness and kurtosis.

8Using the original forward-looking risk premium for 28 calendar days (in section 4.3) does not change
our conclusion.
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Our empirical analysis uses the S&P500 index return and option data. The estimates
for investors’ risk aversion are sensible with values in the range from 1.8 to 7.1. The es-
timated forward-looking risk premium are consistently positive. In sharp contrast, other
commonly used risk premium measures, such as historical average excess return, estimates
using the CAPM and the Fama-French three-factor model, and the Fama-French (2002) fun-
damental estimate, are often empirically negative. Obviously, negative risk premiums are
theoretically questionable, intuitively unappealing and practically unusable. Furthermore,
forward-looking risk premium is higher during the crisis period and lower during the boom
time, exhibiting a desirable feature that is in keeping with economic intuition.

Two asset pricing implications related to forward-looking risk premium are also examined
in this paper. The change in forward-looking risk premium negatively affects current stock
price, and expected illiquidity positively affects forward-looking risk premium. Both are
consistent with financial theory and economic intuition. Given the prominent role played by
risk premium in finance, our proposed estimation method for forward-looking risk premium
can have wide-ranging implications in financial research and practice.
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Appendix A. Derivation of Equation (1)

First expand

eRt(τ)−µQt(τ) = 1 + Rt(τ)− µQt(τ) +
(Rt(τ)− µQt(τ))2

2
+
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6

+
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24
+ O

[
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]
.

Taking expectation with respect to measure Q and recognizing EQ
t
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eRt(τ)

)
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turn give rise to
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Therefore, the equilibrium risk-free interest rate can be written as

rt(τ) = δt(τ) + µQt(τ) + ln

(
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1

2
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Qt(τ) +
1

6
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1

6
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1
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Qt(τ)[κQt(τ)− 3] + o
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]
.

The second equality comes from a second-order Taylor expansion of the logarithmic function
around 1. The term o

[
σ4

Qt(τ)
]

can be ignored because the typical estimate suggests that
σQt(τ) on an annualized basis is less than 1. Applying to the monthly or quarterly cumulative
return, it would be even smaller.

Appendix B. Derivation of Equation (3)

Our derivations for the following equations are essentially same as Bakshi and Madan (2006)
except for two subtle points. First, our approximation ignores terms with an order higher
than σ4

Qt(τ) whereas their approach drops terms with an order of γ3 or higher. Since the
estimated risk-aversion coefficient is typically large (Bakshi and Madan (2006)’s own estimate
for γ is around 17), it is questionable to ignore terms in the order of γ3 or higher. However,
the volatility for an equity index such as S&P 500 is typically below 20% per annum, which
makes its 5-th or higher power indeed negligible. Second, Bakshi and Madan (2006) assumed
that the physical first moment equals zero, which turns out to be not needed.

Instead of dealing with the moment generating function of Rt(τ) directly, it is analytically
more convenient to compute that for R∗

t (τ) = Rt(τ)− µPt(τ). We have

Ct(λ) ≡ EP
t

(
eλR∗t (τ)

)
= 1 +

λ2

2
σ2

Pt(τ) +
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6
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Pt(τ) +
λ4
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Pt(τ) + o
[
λ4σ4

Pt(τ)
]
.
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This in turn allows one to express the moment generating function of R∗
t (τ) under measure

Q using Ct(·) as follows:
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The above results immediately give rise to the risk neutral expected return, variance,
skewness and kurtosis as follows:
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t (τ))3]− 3σ2
Qt(τ)[µQt(τ)− µPt(τ)]− [µQt(τ)− µPt(τ)]3

= σ3
Pt(τ)θPt(τ)− γσ4

Pt[κPt(τ)− 3] + o
[
σ4

Pt(τ)
]
. (15)

κQt(τ)σ4
Qt(τ) = EQ

t

[
(R∗

t (τ))4]− 4θQtσ
3
Qt(τ)[µQt(τ)− µPt(τ)]

−6σ2
Qt(τ)[µQt(τ)− µPt(τ)]2 − [µQt(τ)− µPt(τ)]4

= κPt(τ)σ4
Pt(τ) + o

[
σ4

Pt(τ)
]
. (16)

Note that equation (14) can be rewritten as a volatility spread as in equation (2).

Substitute equations (13)-(16) to the risk-free interest rate equation (1), we can express
the equilibrium risk-free interest rate in terms of physical moments:

rt(τ) ≈ δt(τ) + µPt(τ)−
(

γ − 1

2

)
σ2

Pt(τ) +
3γ2 − 3γ + 1

6
σ3

Pt(τ)θPt(τ)

−4γ3 − 6γ2 + 4γ − 1

24
σ4

Pt(τ)[κPt(τ)− 3].

Consequently, the equity risk premium can be expressed as

µPt(τ) + δt(τ)− rt(τ) ≈
(

γ − 1

2

)
σ2

Pt(τ)− 3γ2 − 3γ + 1

6
σ3

Pt(τ)θPt(τ)

+
4γ3 − 6γ2 + 4γ − 1

24
σ4

Pt(τ)[κPt(τ)− 3].

Remark: Ignoring terms with an order of γ3 or higher as in Bakshi and Madan (2006) does
not affect the volatility spread equation, but it alters the equation for the risk-neutral first
moment. Were γ small, the term γ3

6
σ4

Pt(τ)[κPt(τ) − 3] in (13) could be grouped into O(γ3)

and ignored. Interestingly, all O(γ3) except for γ3

6
σ4

Pt(τ)[κPt(τ) − 3] are in an order higher
than σ4

Pt(τ), and are thus in agreement with our approach.
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Appendix C. Risk-Neutral Variance as an Option Portfolio

A continuous twice-differentiable function payoff function f(S) can be represented in a in-
tegral form as follows (see Carr and Madan (2001) and Bakshi and Madan (2006)):

f(S) = f(S̄) + (S − S̄)fS(S̄) +

∫ ∞

S̄

fSS(k)(S − k)+dk +

∫ S̄

0

fSS(k)(k − S)+dk

where fS(·) and fSS(·) are the first and second derivatives, respectively. Expand f(St+τ )
around Kt, a point close to the forward price Ft(τ) = Ste

(rt(τ)−δt(τ))τ .

Apply the risk-neutral measure at time t to yield

EQ
t [f(St+τ )] = f(Kt) + (EQ

t [St+τ ]−Kt)fS(Kt) +

∫ ∞

Kt

fSS(k)EQ
t

[
(St+τ − k)+

]
dk

+

∫ Kt

0

fSS(k)EQ
t

[
(k − St+τ )

+
]
dk

= f(Kt) +
[
St(τ)e(rt(τ)−δt(τ))τ −Kt

]
fS(Kt) + ert(τ)τ

∫ ∞

Kt

fSS(k)C(k; St, τ)dk

+ert(τ)τ

∫ Kt

0

fSS(k)P (k; St, τ)dk

where C(k; St, τ) and P (k; St, τ) are the time-t European call and put option prices with
strike price k and maturity τ .

Define w1(k) ≡ 1
k2 , w2(k; St) ≡

2
[
1−ln

(
k
St

)]

k2 . The following expressions can be easily
derived:

EQ
t [Rt(τ)] = ln

(
Kt

St

)
+

Ft(τ)−Kt

Kt

− ert(τ)τ

∫ ∞

Kt

w1(k)C(k; St, τ)dk

−ert(τ)τ

∫ Kt

0

w1(k)P (k; St, τ)dk

EQ
t

[
R2

t (τ)
]

=

[
ln

(
Kt

St

)]2

+ 2

(
Ft(τ)−Kt

Kt

)
ln

(
Kt

St

)

+ert(τ)τ

∫ ∞

Kt

w2(k; St)C(k; St, τ)dk + ert(τ)τ

∫ Kt

0

w2(k; St)P (k; St, τ)dk

They then give rise to the risk-neutral variance as a portfolio of options by noting that

σ2
Qt(τ) = EQ

t [R2
t (τ)]−

(
EQ

t [Rt(τ)]
)2

.
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Appendix D. Cumulative Return Moments under NGARCH(1,1)

Under the NGARCH(1,1) model in equations (5)-(6), the conditional variance of the cumu-
lative return over τ -days can be derived as follows:

σ2
Pt(τ) = EP

t

[
ln

(
St+τ

St

)
− EP

t

(
ln

(
St+τ

St

))]2

= EP
t

[
τ∑

i=1

ln

(
St+i

St+i−1

)
− EP

t

(
τ∑

i=1

ln

(
St+i

St+i−1

))]2

= EP
t

[
µτ +

τ∑
i=1

σt+iεt+i − EP
t

(
µτ +

τ∑
i=1

σt+iεt+i

)]2

= EP
t

[
τ∑

i=1

σt+iεt+i

]2

=
τ∑

i=1

EP
t

(
σ2

t+i

)

It is clear that σ2
Pt(1) = σ2

t+1. When τ ≥ 2, then,

σ2
Pt(τ) = σ2

t+1 +
τ−1∑
i=1

EP
t

[
β0 + β1σ

2
t+i + β2σ

2
t+i(εt+i − η)2

]

= σ2
t+1 +

τ−1∑
i=1

{
β0 +

[
β1 + β2(1 + η2)

]
EP

t

(
σ2

t+i

)}
(17)

Let λ = β1 + β2(1 + η2). Recursively apply conditional expectation to equation (6) to
yield

EP
t

(
σ2

t+i

)
=

β0

1− λ
+ λi−1

(
σ2

t+1 −
β0

1− λ

)
.
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Plugging the above result into equation (17) gives rise to

σ2
Pt(τ) = σ2

t+1 +
τ−1∑
i=1

[
β0 + λEP

t

(
σ2

t+i

)]

= σ2
t+1 +

τ−1∑
i=1

[
β0

1− λ
+ λi

(
σ2

t+1 −
β0

1− λ

)]

=

(
τ−1∑
i=0

λi

)
σ2

t+1 +

(
τ−1∑
i=1

(1− λi)

)
β0

1− λ

=
1− λτ

1− λ
σ2

t+1 +
(τ − 1)β0

1− λ
− λ(1− λτ−1)β0

(1− λ)2

Note that the above formula also applies in the case of τ = 1.
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Table 1: Summary statistics of return moments 
This table shows the summary statistics for the 28-calender day risk-neutral volatility (σQ) and
physical forward-looking volatility (σP), skewness (θP) and kurtosis (κP). The sample period is from
January 1996 to October 2009. All volatilities are expressed in annualized percentage terms. Risk-
neutral volatility (σQ) is calculated using S&P500 index option prices. Physical forward-looking
volatility (σP) is calculated analytically using the NGARCH(1,1) model estimated to a 5-year moving
window of the S&P500 index returns. Physical forward-looking skewness (θP) and kurtosis (κP) are
computed by smoothed bootstrap simulations. τ equals 28 calendar days.  
          

  σQ(τ) σP(τ) θP(τ) κP(τ)
# of months 166 166 166 166
Mean 22.00 18.10 -1.05 6.44
Standard Deviation 10.17 10.12 0.39 2.46
Minimum 9.95 7.48 -1.92 3.58
Maximum 84.29 82.46 -0.25 15.89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 29

Table 2: Investors' risk aversion estimates 
This table reports the GMM estimation results based on the following orthogonality condition: 
 
 
 
 
For every month, we use five-year data preceding the month to estimate the risk aversion (γ). The instruments are constant 
and the risk-neutral variances being lagged one, two and three periods. The t-statistics for γ, denoted by t(γ),  the J statistics 
for model over-identification (J-stat) and J-stat's p-value (Model-p) are provided.  
                     

End Month γ t(γ) J-stat Model-p End Month γ t(γ) J-stat Model-p
Jan-01 4.94 3.17 6.46 0.09 Jun-05 2.24 4.78 3.09 0.38
Feb-01 4.86 3.09 5.97 0.11 Jul-05 2.27 4.90 3.05 0.38
Mar-01 5.15 3.45 4.62 0.20 Aug-05 2.42 5.30 2.87 0.41
Apr-01 5.09 3.61 4.37 0.22 Sep-05 2.41 5.16 2.93 0.40

May-01 5.12 3.58 4.20 0.24 Oct-05 2.51 5.40 2.92 0.40
Jun-01 5.39 3.89 3.55 0.31 Nov-05 2.66 5.65 2.87 0.41
Jul-01 5.45 4.22 3.17 0.37 Dec-05 2.85 6.14 2.58 0.46

Aug-01 5.47 4.35 3.03 0.39 Jan-06 3.09 6.00 2.37 0.50
Sep-01 5.86 4.69 1.89 0.60 Feb-06 3.14 5.70 2.56 0.47
Oct-01 6.95 5.97 1.25 0.74 Mar-06 3.31 6.06 2.49 0.48

Nov-01 7.10 6.36 1.33 0.72 Apr-06 3.80 6.17 1.74 0.63
Dec-01 6.96 6.13 1.38 0.71 May-06 3.90 6.29 1.55 0.67
Jan-02 6.58 6.03 1.66 0.65 Jun-06 3.84 6.16 1.73 0.63
Feb-02 6.44 6.07 1.45 0.69 Jul-06 4.18 5.91 1.44 0.70
Mar-02 6.31 6.09 1.39 0.71 Aug-06 3.84 6.28 1.91 0.59
Apr-02 6.23 5.95 1.86 0.60 Sep-06 4.03 5.80 1.82 0.61

May-02 6.18 6.12 1.81 0.61 Oct-06 3.99 5.25 1.64 0.65
Jun-02 5.91 5.70 1.67 0.64 Nov-06 3.82 5.27 0.77 0.86
Jul-02 5.21 4.90 1.40 0.70 Dec-06 3.96 5.21 1.67 0.64

Aug-02 5.21 5.28 1.48 0.69 Jan-07 4.28 6.90 1.36 0.71
Sep-02 5.39 5.28 1.15 0.77 Feb-07 4.49 8.13 1.69 0.64
Oct-02 5.01 7.04 1.60 0.66 Mar-07 4.60 8.70 1.70 0.64

Nov-02 5.76 6.85 1.26 0.74 Apr-07 4.71 9.35 1.66 0.65
Dec-02 4.54 6.21 1.56 0.67 May-07 4.95 10.00 1.67 0.64
Jan-03 4.34 6.64 2.35 0.50 Jun-07 4.81 9.74 2.36 0.50
Feb-03 4.35 6.93 2.09 0.55 Jul-07 6.19 12.91 0.58 0.90
Mar-03 4.34 6.93 2.34 0.51 Aug-07 5.46 10.46 2.42 0.49
Apr-03 4.27 7.04 2.57 0.46 Sep-07 6.38 18.71 2.13 0.55

May-03 4.16 6.92 2.95 0.40 Oct-07 6.38 7.90 2.44 0.49
Jun-03 4.01 6.68 3.37 0.34 Nov-07 5.60 9.02 2.53 0.47
Jul-03 4.01 6.15 3.65 0.30 Dec-07 5.67 7.75 2.99 0.39

Aug-03 3.87 6.56 3.59 0.31 Jan-08 6.19 9.24 2.81 0.42
Sep-03 3.76 6.01 4.19 0.24 Feb-08 5.61 5.05 3.00 0.39
Oct-03 3.93 5.92 3.14 0.37 Mar-08 6.20 5.78 3.73 0.29

Nov-03 3.65 6.01 2.19 0.53 Apr-08 4.16 3.57 2.88 0.41
Dec-03 3.53 5.61 2.30 0.51 May-08 4.58 4.82 2.31 0.51
Jan-04 3.22 5.65 2.79 0.42 Jun-08 4.66 5.67 2.04 0.56
Feb-04 3.40 5.20 2.22 0.53 Jul-08 4.81 6.40 1.82 0.61
Mar-04 3.17 5.48 2.05 0.56 Aug-08 5.18 7.17 2.23 0.53
Apr-04 2.96 5.23 2.33 0.51 Sep-08 4.77 6.31 1.96 0.58

May-04 3.01 5.20 2.04 0.57 Oct-08 3.96 5.40 3.14 0.37
Jun-04 2.80 5.25 2.33 0.51 Nov-08 3.49 5.69 3.49 0.32
Jul-04 2.73 5.12 2.23 0.53 Dec-08 3.47 3.24 3.27 0.35

Aug-04 2.71 5.09 2.23 0.53 Jan-09 3.33 3.02 3.15 0.37
Sep-04 2.43 5.06 2.71 0.44 Feb-09 2.98 2.62 3.57 0.31
Oct-04 2.29 4.72 3.58 0.31 Mar-09 2.99 2.84 3.71 0.29

Nov-04 2.61 4.98 2.40 0.49 Apr-09 3.35 3.19 3.24 0.36
Dec-04 2.50 5.11 1.81 0.61 May-09 3.61 3.42 3.09 0.38
Jan-05 1.84 3.58 2.94 0.40 Jun-09 3.85 3.70 2.80 0.42
Feb-05 1.94 4.22 3.25 0.35 Jul-09 4.18 3.74 2.59 0.46
Mar-05 1.94 4.02 3.17 0.37 Aug-09 4.67 3.64 2.44 0.49
Apr-05 1.85 3.44 3.47 0.32 Sep-09 5.07 3.41 2.43 0.49

May-05 2.05 4.21 3.31 0.35 Oct-09 5.12 3.40 2.42 0.49
      Average 4.25 5.77 2.52 0.49
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Table 3: S&P500 forward-looking risk premium estimate 

This table reports monthly forward-looking risk premium estimates based on the S&P500 index values and options
from January 2001 to October 2009. The numbers reported are annualized but not in percentage. Note that one
month is 28 days from the observation date in the month to the subsequent option maturity date (every third Friday
of the month).  For example, Jan 2001 is from January 19, 2001 to February 16, 2001. The numbers in bold are the
particularly large risk premiums.  
              

  Average Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
2001 0.423 0.205 0.263 0.669 0.213 0.136 0.259 0.236 0.150 2.088 0.366 0.236 0.252
2002 0.452 0.331 0.312 0.260 0.281 0.310 0.569 1.672 0.288 0.691 0.308 0.187 0.212
2003 0.143 0.352 0.220 0.122 0.150 0.131 0.122 0.138 0.111 0.092 0.121 0.097 0.056 
2004 0.052 0.047 0.070 0.093 0.061 0.069 0.045 0.068 0.049 0.029 0.046 0.030 0.022 
2005 0.025 0.029 0.018 0.026 0.036 0.023 0.016 0.018 0.025 0.028 0.042 0.021 0.017
2006 0.038 0.038 0.026 0.024 0.031 0.055 0.070 0.086 0.039 0.032 0.022 0.018 0.020
2007 0.109 0.023 0.024 0.062 0.039 0.036 0.081 0.100 0.167 0.157 0.177 0.270 0.168 
2008 1.011 0.481 0.186 0.426 0.103 0.107 0.187 0.208 0.134 0.430 5.393 3.545 0.934 
2009 0.244 0.627 0.649 0.334 0.154 0.209 0.132 0.078 0.081 0.057 0.122     
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Table 4: S&P500 historical risk premium estimates 

This table reports historical risk premium estimates using the S&P500 index returns from January 2001 to October 
2009. Panel A reports the historical risk premium estimated by averaging excess returns over 3 years, and Panel B
reports historical risk premium estimated by averaging excess returns over 5 years. Note that one month is 28 days
from the observation date in the month to the subsequent option maturity date (every third Friday of the month).
For example, Jan 2001 is from January 19, 2001 to February 16, 2001. The numbers reported are annualized but not
in percentage.  
              
Panel A: 3-year historical risk premium          

  Average Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
2001 -0.018 0.048 0.037 -0.020 -0.033 -0.005 -0.021 -0.019 0.004 -0.014 -0.060 -0.065 -0.073
2002 -0.136 -0.072 -0.084 -0.088 -0.101 -0.105 -0.134 -0.153 -0.169 -0.160 -0.195 -0.187 -0.188
2003 -0.153 -0.179 -0.195 -0.221 -0.191 -0.172 -0.158 -0.152 -0.158 -0.128 -0.114 -0.094 -0.079
2004 -0.015 -0.067 -0.030 -0.007 -0.036 -0.046 -0.026 -0.021 -0.007 0.029 0.011 0.008 0.018
2005 0.074 0.029 0.022 0.025 0.031 0.040 0.074 0.113 0.104 0.134 0.101 0.096 0.112 
2006 0.093 0.135 0.142 0.128 0.110 0.096 0.072 0.074 0.069 0.070 0.072 0.077 0.064 
2007 0.068 0.059 0.062 0.056 0.069 0.080 0.082 0.093 0.067 0.071 0.079 0.050 0.043
2008 -0.024 0.038 0.013 0.015 0.026 0.027 0.016 -0.016 -0.011 -0.013 -0.088 -0.140 -0.151
2009 -0.136 -0.148 -0.169 -0.211 -0.172 -0.130 -0.116 -0.122 -0.101 -0.097 -0.094     

              
Panel B: 5-year historical risk premium          

  Average Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
2001 0.071 0.104 0.104 0.082 0.073 0.082 0.086 0.082 0.072 0.052 0.034 0.037 0.039 
2002 -0.015 0.034 0.023 0.040 0.026 0.003 -0.013 -0.037 -0.043 -0.052 -0.061 -0.051 -0.045
2003 -0.058 -0.056 -0.079 -0.089 -0.080 -0.065 -0.063 -0.053 -0.035 -0.027 -0.042 -0.048 -0.055
2004 -0.054 -0.045 -0.045 -0.051 -0.056 -0.054 -0.060 -0.053 -0.061 -0.049 -0.057 -0.059 -0.055
2005 -0.044 -0.049 -0.044 -0.057 -0.054 -0.054 -0.052 -0.049 -0.050 -0.037 -0.039 -0.029 -0.017
2006 0.014 -0.018 0.001 0.014 0.002 0.000 0.001 0.005 0.021 0.039 0.036 0.033 0.035 
2007 0.074 0.043 0.041 0.037 0.051 0.064 0.087 0.102 0.089 0.106 0.099 0.087 0.084
2008 0.030 0.092 0.083 0.070 0.062 0.058 0.050 0.036 0.030 0.023 -0.025 -0.052 -0.066
2009 -0.058 -0.069 -0.079 -0.101 -0.076 -0.061 -0.054 -0.048 -0.036 -0.030 -0.028     
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Table 5: S&P500 Fama-Mecbeth risk premium estimates 

This table reports the S&P500 risk premiums calculated from the CAPM (Panel A) and the Fama-French three-
factor model (Panel B) by applying the Fama-Macbeth estimation method. Every risk premium is estimated using
monthly returns in the five-year period immediately before the month in question. The numbers reported are 
annualized but not in percent. 
              
Panel A: CAPM             

  Average Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
2001 0.013 0.004 0.041 0.023 0.012 0.018 0.016 0.017 0.011 0.001 -0.010 0.008 0.016 
2002 -0.001 0.019 0.017 0.010 0.017 0.009 -0.002 -0.010 -0.016 -0.017 -0.028 -0.014 0.010 
2003 0.022 0.004 0.005 0.000 0.002 0.008 0.027 0.029 0.037 0.047 0.039 0.038 0.034 
2004 0.015 0.030 0.031 0.033 0.028 0.021 0.022 0.016 0.009 0.006 0.002 0.000 -0.011
2005 -0.032 -0.022 -0.033 -0.050 -0.049 -0.042 -0.028 -0.042 -0.032 -0.037 -0.027 -0.022 -0.001
2006 0.002 0.008 -0.024 -0.006 0.009 0.000 -0.003 -0.003 0.002 0.012 0.022 0.009 0.001 
2007 0.022 -0.002 0.000 0.010 0.007 0.018 0.025 0.034 0.038 0.036 0.045 0.036 0.012 
2008 0.003 0.022 0.020 0.022 0.020 0.016 0.003 0.003 0.000 -0.001 -0.011 -0.024 -0.03 

              
Panel B: Fama-French 3-factor model          

  Average Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
2001 -0.005 -0.006 0.015 0.004 -0.003 0.002 -0.002 -0.003 -0.007 -0.015 -0.027 -0.012 -0.004
2002 -0.016 -0.001 -0.002 -0.008 -0.002 -0.009 -0.017 -0.023 -0.031 -0.028 -0.040 -0.028 -0.008
2003 -0.007 -0.017 -0.016 -0.021 -0.022 -0.015 -0.001 -0.001 0.002 0.009 0.001 -0.002 -0.001
2004 -0.009 -0.005 -0.001 0.003 -0.003 -0.008 -0.004 -0.007 -0.011 -0.014 -0.016 -0.018 -0.023
2005 -0.023 -0.028 -0.030 -0.028 -0.033 -0.033 -0.025 -0.027 -0.022 -0.022 -0.014 -0.014 -0.002
2006 0.003 0.000 -0.016 -0.005 0.005 -0.002 0.000 0.000 0.004 0.012 0.022 0.011 0.002 
2007 0.017 -0.001 0.000 0.008 0.005 0.013 0.019 0.026 0.030 0.027 0.036 0.029 0.007 
2008 0.009 0.017 0.017 0.020 0.020 0.017 0.008 0.009 0.010 0.009 0.0017 -0.01 -0.016
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Table 6: Correlation between risk premium estimates 

This table presents the correlation coefficients between different measures of the S&P500 index risk
premium. FLRP denotes the forward-looking risk premium. Historical 5yr and Historical 3 yr are the
historical risk premiums measured over five and three years, respectively. The risk premiums using the 
CAPM and the Fama-French three-factor model are denoted as CAPM and FF3, respectively.  ***, **,
and * means statistical significance at the 1%, 5%, and 10% levels,  respectively. 
          

  FLRP   Historical 5yr Historical 3yr CAPM   FF3
FLRP 1        
Historical 5yr -0.036 1      
Historical 3yr -0.249*** 0.506*** 1    
CAPM -0.145 0.430*** -0.091 1  
FF3 -0.042  0.705*** 0.344*** 0.750*** 1
 
 



 34

 
Table 7: S&P500 Fama-French (2002) equity premium 

This table reports the S&P500 risk premiums using the Fama and French (2002) approach. The
numbers reported are real equity premium for the S&P500 index being estimated with earnings or
dividend growth. The results are quarterly from 2001 to 2008. RXYt and RXDt are the estimates for the 
S&P real risk premium based on earnings and dividend growth, respectively. Dt/Pt-1 is real dividend 
yield. GYt and GDt are real earnings and dividend growth rates, respectively. Ft is the three-month T-
bill rate adjusted by inflation. All numbers reported are annualized but not in percentage. 

Panel A: Real risk premium using earnings growth (RXYt = Dt/Pt-1 +GYt -Ft) 
  Average Quarter1 Quarter2 Quarter3 Quarter4 

2001 -0.665 -0.412 -0.785 -0.944 -0.521 
2002 0.122 -0.005 0.326 0.481 -0.316 
2003 0.615 0.382 0.550 0.468 1.061 
2004 0.197 0.283 0.325 0.123 0.059 
2005 0.168 0.117 0.189 0.182 0.186 
2006 0.127 0.128 0.074 0.185 0.122 
2007 -0.217 0.048 0.055 -0.329 -0.641 
2008 -1.021 -0.359 -0.570 -0.420 -2.737 

      

Panel B: Real risk premium using dividend growth (RXDt = Dt/Pt-1 +GDt -Ft) 
  Average Quarter1 Quarter2 Quarter3 Quarter4 

2001 -0.025 -0.244 0.025 0.288 -0.166 
2002 0.078 -0.210 0.389 -0.237 0.368 
2003 0.200 -0.302 0.173 0.238 0.692 
2004 0.070 -0.377 0.097 0.191 0.369 
2005 0.127 0.003 0.005 0.034 0.467 
2006 0.103 -0.129 0.042 0.014 0.486 
2007 0.080 -0.229 0.071 0.085 0.395 
2008 -0.055 -0.290 0.017 -0.037 0.091 

      
Panel C: Correlations     

  FLRPt-1(t) RXDt RXYt   

FLRPt-1(t) 1     

RXDt -0.068 1    

RXYt -0.248 0.073 1   
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Table 8: S&P 500 excess return and change in forward-looking risk premium 

This table reports the regression coefficients from the time series regression of quarterly S&P500
excess holding period return on change in forward-looking risk premium (∆FLRPt(τ)) and change in 
expected future earnings (∆EPSt

e). The sample is from 2001 to 2008. Rm,t is quarterly return for the
S&P500 index. ∆FLRPt(τ) is defined as the quarterly change in FLRPt(τ), where FLRPt(τ) is the 
forward-looking risk premium at the t for quarter t+1.  ∆EPSt

e is the change in expected quarterly 
earnings. Model (1) uses realized earnings in current quarter as a proxy for next quarter expected
earnings. Model (2) uses analysts' forecasted next quarter earnings from I/B/E/S. t-values are reported 
in parenthesis. ***,**, and * means statistical significance at the 1%, 5%, 10% levels, respectively. 

   Rmt -Rft  
   (1) (2)  
 Const.  -0.003   0.013  
   ( -0.24)   (1.09)  

 ∆FLRPt  -0.031*  -0.059***  
   ( -1.85)   ( -3.47)  

 ∆EPSt
e  0.029***  0.032***  

     ( 4.04)     (2.82)   
 Adj. R-sq  45%   59%  
 Nobs.   31     27   
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Table 9: Market illiquidity and risk premium 

This table reports the coefficients for monthly regression from January 2001 to December 2008. MILLIQt-1 is the Amihud (2002) aggregate market 
illiquidity measure; MILLIQt

u is the illiquidity shock in month t; JANDUMt is the dummy variable for January; Rmt is the monthly return for S&P 500 
index; Rft is the 30-day T-bill rate; FLRPt-1(τ) is the forward-looking risk premium for next month at month t-1; Variancet-1(τ) is the forward-looking 
variance for next month at time t-1, which is computed from the GARCH model; FLRPt-1(ex.var) is the forward-looking risk premium minus (γ-
1)σ2Pt(τ); Skewnesst-1(τ) and Kurtosist-1(τ) are the forward-looking skewness and kurtosis for next month available at month t-1. The numbers in 
brackets are t-values; for model (1), they are based on the adjusted standard errors as in Amihud and Hurvich (2004); for models (2) to (6), they are 
based on the Newey-West adjusted standard errors. ***, **, and * means statistical significance at the 1%, 5%, 10% levels, respectively.
              
  Rmt-Rft  FLRPt-1(τ)        Variancet-1(τ)   FLRPt-1(τ) (ex.var)         Skewnesst-1(τ)          Kurtosist-1(τ) 
    (1)  (2)  (3) (4)  (5)  (6)  

Const.  -0.0251 3.2153*** 0.0375*** 1.0136*** -4.3314*** 24.1236*** 
  (-0.43) (2.73) (2.51) (2.32) (-11.02) (9.84) 

Ln MILLIQt-1  -0.0017 0.1851*** 0.0020*** 0.0597*** -0.2045*** 1.1304*** 
  (-0.43) (2.63) (2.37) (2.28) (-8.21) (7.54) 

Ln MILLIQt
U  -0.0269***      

  (-4.38)      
JANDUMt  0.0108 -0.0757 -0.0011* -0.0234 0.1123*** -0.7127*** 

    (0.64)  (-1.43)  (-1.76)  (-1.20)  (2.91)  (-3.13)  
Adj. R-sq  18% 38% 30% 34% 66% 64% 
Nobs.   96  96  96  96  96  96  
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Figure 1: Time series plots of risk-neutral and physical forward-looking volatilities 

This figure presents the time-series of the 28-canlender day risk neutral volatility and physical 
forward-looking volatility for the S&P500 index return. The data period is from January 1996 to
October 2009. Volatilities plotted are annualized. 
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Figure 2: Time series plots of physical forward-looking skewness and kurtosis 

This figure presents the time-series plots of the 28-calender day physical forward-looking 
skewness (Panel A) and kurtosis (Panel B) using the S&P500 index data from January 1996 to
October 2009.  
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Figure 3: Market risk premiums 

This figure presents the times series plot of S&P500 historical and forward-looking risk premiums 
with NBER recession periods. The sample period is from Jan. 2001 to Oct. 2009. 
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Figure 4: Term structure of forward-looking risk premiums 

This figure plots the smoothed forward-looking risk premium up to next 1 year (252 trading days) along with the physical forward-looking volatility, skewness 
(smoothed and unsmoothed) and kurtosis (smoothed and unsmoothed). The three plots at the top are for September 2001 when the market was volatile. The bottom 
three plots are for September 2003 when the market was relatively quiet. The left figures (a1 and b1) are the term structures of forward-looking risk premiums and 
volatilities where the left axis is for the risk premium and the right axis is for the volatility. The middle plots (a2 and b2) are the term structures of physical forward-
looking skewness (smoothed and unsmoothed), whereas and the right plots (a3 and b3) are the term structures of physical forward-looking kurtosis (smoothed and 
unsmoothed). 
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(b) Low volatility state (September 2003)           
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