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tures can be more efficient than using the underlying options when dealers are
likely to charge defensive margins due to imperfect replication.
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1. Introduction

Futures and options on VIX allow investors to buy or sell the VIX (which
measures the SPX’s implied volatility over 30 days), whereas VT allows investors
to trade the difference between implied and realized variance of the SPX over
three months. The distinction between variance futures and variance swaps is
minimal, as the information contained in them is virtually identical. There are
several problems associated with using the variance futures for empirical analysis:
First, they are illiquid. The VT contracts are far less liquid than the VIX futures
(Huang and Zhang, 2010 [2]). For example, on March 2, 2010, the trading volume
of the VIX futures was 13,864 contracts, which was 4,621 times greater than 3 (2)
contracts traded on the VT (VA). Second, VT has a maturity of three months.
This means that there have been only 29 non-overlapping VT observations during
the December 2004 to March 2012 period covered by this paper. Given the high
volatility of returns on variance futures, there is not enough data to determine if
the mean return is statistically significant.

Where data may be too sparse to be credible, this study uses the so-called
“VIX squared” (which corresponds to the 1-month S&P500 variance swap rate)
as and when necessary. Since the VIX goes back to the 1990s, this would give us
over 250 non-overlapping monthly variance swap returns, making it possible to
establish a variance risk premium with more meaningful precision.

From an investor’s point of view, it seems attractive that the negative correla-
tion between volatility and stock index returns is particularly pronounced in stock
market downturns, thereby offering protection against stock market losses when
it is needed most. Empirical studies, however, indicate that this kind of downside
or crash protection might be expensive because of its constant negative carries.
Practically speaking, however, it may be impossible to time the market to pay for
protection only during a significant market downturn. Egloff, Leippold and Wu
(2010) [1] have an extensive analysis of how variance swaps or volatility futures
fit into optimal portfolios in dynamic context that takes into account how variance
swaps, in addition to improving Sharpe ratios, improve the ability of the investor
to hedge time-variations in investment opportunities. Moran and Dash (2007) [6]
discuss the benefits of a long exposure to VIX futures and VIX call options. Szado
(2009) [7] analyzes the diversification impacts of a long VIX exposure during the
2008 financial crisis. His results suggest that, dollar for dollar, VIX calls could
have provided a more efficient means of diversification than provided by SPX
puts.

This study begins by using volatility futures and variance swaps as extreme
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downside hedges. We apply hedging techniques as they are typically used in
real-life trading, with rolling methods that are consistent with market practice
– we approach this analysis from the perspective of real-life trading practices in
order to come up with realistic estimates on true hedging effectiveness. Practically
speaking, an investor often needs a dealer who is willing to take the other side of
the trade on the exchange because of the lack of liquidity, while the dealers are
simply replicating their VIX or variance futures exposures with options positions.
In principle, it is not obvious how using the VIX and variance futures can be
more efficient than using the underlying options, since dealers are likely to charge
defensive margins due to imperfect replication, unless significant trading volume
native to the VIX future or variance futures markets already exists. To objectively
analyze the effectiveness of using VIX or variance futures in the time of market
crisis, we use a long SPX portfolio and compare various hedging strategies using:
(i) VIX futures; (ii) variance futures, (iii) 5% out-of-the-money (OTM) SPX put
options, and (iv) 10% out-of-the-money (OTM) SPX put options.

The remainder of the paper is organized as follows: Section 2 describes the
hedging strategies implemented. Section 3 provides an analysis of the hedging
results. Section 4 concludes.

2. Methodology

This section will provide an in-depth discussion of the methodologies used
in this paper: (i) the hedging schemes; (ii) the rolling methodology for the VIX
futures; (iii) the rolling methodology for the variance futures and the creation
of synthetic 1-month variance futures data where required; and (iii) the rolling
methodology for OTM put options on SPX.

2.1. Hedging Schemes
Kuruc and Lee (1998) [3] describe the generalized delta-gamma hedging al-

gorithm. In principle, this algorithm can be expanded to delta-gamma-vega by
naming vega risk factors, but the author is not aware of any simple and practical
solution to the vega mismatch problem: i.e. simply adding vegas corresponding
to implied volatilities with different moneyness and maturities does not provide
meaningful solutions.

The generalized delta solution using minimal Value-at-Risk (VaR) objective

function is defined as follows: Let our objective function be V aR
(
⇀
a
)

=

√
⇀
α
T

Θ
⇀
α,
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where
⇀
a =

[
∂A
∂r1

∂A
∂r2
· · · ∂A

∂rn

]T
is the vector of “delta equivalent cashflow” posi-

tions of our portfolio A as measured against a m-dimensional vector of nominated
risk factors

⇀
r = [r1 r2 · · · rm]T , with αj = σj

√
∆t(rjaj), and σj is the volatility

of the log changes in the j-th risk factor multiplied by a scalar dependent on the
confidence level, and Θ is the correlation matrix for the nominated risk factors
in

⇀
r = [r1 r2 · · · rm]T . The corresponding variance/covariance matrix is given

by Σ = diagj

(
σj
√

∆t
)

Θdiagj

(
σj
√

∆t
)

. In the case of delta Value-at-Risk,

the n-dimension vector ĥ representing the hedging solution can be obtained from
solving min⇀

h
σ2
(
⇀
a +X

⇀

h
)

, where σ2(·) denotes the variance of the hedged

portfolio (
⇀
a + X

⇀

h) and X is a m × n-matrix with its i-th column being the
corresponding m-dimensional delta equivalent cashflow mapping vector for the
i-th hedging instrument. Its closed-form solution, in the absence of any trading
constraints, is

ĥ = −
[
(GX)T (GX)

]−1

(GX)T
(
G
⇀
a
)

where G is the Cholesky decomposition of Σ, or Σ = GTG.
The more general delta-gamma solution can be obtained by using a modified

objective function V aR (A) =

√
⇀
α
T

Θ
⇀
α+1

2
trace (βΘ∆βΘ), where (using δij as

the Kronecker delta notation):

βij = σiσj∆t

(
∂2A

∂lnri ∂lnrj

)
= σiσj∆t

(
rirj

∂2A

∂ri ∂rj
+ δijrj

∂A

∂rj

)
In general, the hedging objective function above can be made arbitrarily com-

plex, but doing so may result in non-unique boundary value solutions. Further-
more, highly complex hedging objective function may not be readily solvable in
the context of real-world trading due to the presence of constraints: for instance,
it is not uncommon for hedgers to be disallowed from “shorting” put options or
other volatility instruments by their risk and compliance departments. For our em-
pirical analysis piece to be impactful, this paper will focus on applying the general
hedging scheme described above in ways that are relevant to practical real-world
trading.

No matter how simple or complex the hedging methodology, hedging can al-
most always be translated into an equivalent optimization problem with different
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objective functions. To the best of the author’ knowledge, the formulation by Ku-
ruc and Lee (1998) [3] was one of the few original hedging formulations that do
not assume a certain degree of resemblance between the portfolio and the chosen
hedging instruments, as it is often the case when hedging problems are posed as
statistical problems. Moreover, the general vector and matrix framework can still
apply by customizing different objective functions for the specific hedging prob-
lem. For example, the value of a large fixed income portfolio is usually expressed
in terms of “deltas” in order to consolidate a complex portfolio of many different
bonds with relevant yield curve factors. For a simple portfolio of a few assets,
one can simply nominate the asset itself as the risk factor. In this paper, we can
simplify the problem by stating that a portfolio of one unit of the SPX index has
an exposure to the dollar S&P 500 factor. These are the seven objective functions
used in our study when applied to a single hedging instrument:

1. Minimum absolute residual hedge by minimizing the sum of absolute per-
centage changes in the market-to-market value of the hedged portfolio, pherr(t),
or

min
h

∑
1≤t≤T

|pherr (t)|

where pherr (t) = MTM(t)
MTM(t−1)

− 1 = A(t)+hxcumP&L(t)
A(t−1)+hxcumP&L(t−1)

− 1; A (t) is the
day-t mark-to-market value of the unhedged portfolio; and xcumP&L (t) =
x (t) − x(0) is the cumulative P&L of the hedging instrument on day t,
assuming x(0)= 0 in general.

2. Minimum variance hedge by minimizing the sum of squared percentage
changes in mark-to-market value of the hedged portfolio, pherr(·), or

min
h

∑
1≤t≤T

(pherr (t))2

3. Minimize the peak-to-trough maximum drawdown of the mark-to-market
value of the hedged portfolio:

min
h
MaxDD

(
T ; {A(t) + hxcumP&L(t)}Tt=0

)
The drawdown is the measure of the decline from a historical peak in some
time series, typically representing the historical mark-to-market value of a
financial asset. Let MTM (t) = A (t) +hxcumP&L(t) be the dollar mark-
to-market value of the brokerage account representing the hedged portfolio
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at the end of the period [0, t], and MTMpeak
cum,0≤τ<t = max0≤τ≤t[MTM(τ)]

be the maximum cumulative dollar mark-to-market value in the [0, t] period.
The drawdown at any time, t, denoted DD(t) is defined as

DD (t) = MTMpeak
0≤τ≤t −MTM(t)

The Maximum Drawdown (MaxDD) from time 0 up to time T is the max-
imum of the drawdown over the history of the MTM . Formally,

MaxDD
(
T ; {MTM(t)}Tt=0

)
= max

0≤t≤T
{DD(t)}

Alternatively, MaxDD% is also used to describe the percentage drop from
the peak to the trough as measured from the peak. Using MaxDD as a
measure of risk, the optimization procedure will find an estimate of the
hedge ratio h that can achieve the lowest possible MaxDD.

4. Minimize the Expected Shortfall or Conditional Value-at-Risk at 95% com-
puted from the daily P&L of the hedged portfolio, or equivalently,

min
h
CV aR (AP&L (t) +hxP&L(t))

with AP&L (t) = A(t)−A(t− 1) and xP&L (t) = x(t)− x(t− 1) using the
Cornish-Fisher expansion (Lee and Lee, 2004 [5]), where

CV aR95%(·) = − [µ(·) + σ(·)E (zcf,1−κ | κ > 95%)]

= −µ(·)− σ(·)E


zC(1−κ) + 1

6

(
z2
C(1−κ) − 1

)
S(·)

+ 1
24

(
z3
C(1−κ) − 3zC(1−κ)

)
K(·)

− 1
36

(
2z3

C(1−κ) − 5zC(1−κ)

)
S(·)2

∣∣∣∣∣∣∣∣∣κ > 95%


with zC(1−κ) being the critical value for probability 1 − κ with standard
normal distribution (e.g. zC(1−κ) = −1.64 at κ = 95%), while µ, σ, S
and K following the standard definitions of mean, volatility, skewness and
excess kurtosis, respectively, as computed from the daily P&L of the hedged
portfolio. Practically, the expected value of the tail of zcf,1−κ at and above
95% estimated numerically by using the discrete average of zC(1−κ) taken
at 95.5%, 96.5%, 97.5%, 98.5% and 99.5% (e.g. zC(1−κ) = −1.70 at κ =
95.5%, zC(1−κ) = −1.81 at κ = 96.5%, zC(1−κ) = −1.96 at κ = 97.5%,

6



zC(1−κ) = −2.17 at κ = 98.5%, and zC(1−κ) = −2.58 at κ = 99.5%, while
their average is −2.04).

5. Minimize the Expected Shortfall or Conditional Value-at-Risk at 99%, or
CV aR99%, by setting κ = 99%.

6. All of the above are risk measures. It is not uncommon that minimizing risk
measures will result in minimizing both the downside and the upside of the
profit and loss stream. Since the specific problem is essentially one of com-
bining two long assets, we will explore the possibility of maximizing an
Omega-function-like measure (Omega functions are essentially functions
based on ratios of a measure of upside cumulants to a measure of downside
cumulants) known as the Alternative Sharpe Ratio (Lee and Lee, 2004 [5]).
This is a more “balanced” approach of optimal hedging from the perspec-
tive of not only minimizing risk (which also tends to minimize returns) but
also achieving an optimal balance between “upside moments” and “down-
side moments”, and is generally consistent with real-world practice in that
traders tend to underhedge to “preserve upside.” The objective function to
maximize is defined as:

ASR ≡
∑

i eiπi
z−π σπ

+
1

2

∑
i πi
(
z+
i σi
)2

z−π σπ
− 1

2
z−π σπ

where:
ei = excess return rate of the i-th asset of the portfolio π; given that our
study uses a single hedging instrument, the i-th asset is the portfolio itself,
which is calculated as the percentage changes in the mark-to-market value
of the hedged portfolio, pherr(t)
πi = i-th position of the portfolio π

z+
i =

max(zcf(z+C (i)),0)
z+C

where z+
C is critical value for probability κ and

z−π =
min(zcf(z−C (π)),0)

z−C
where z−C is critical value for probability 1− κ

(e.g. z+
C = 2.33 at 1%, z−C = −2.33 at 99%)

7. Maximize the traditional portfolio Sharpe Ratio, or SR ≡
∑
i eiπi
σπ

.

Roughly consistent with real-world hedging practice, we use a minimum of
2 months of daily trading data prior to the hedging date in order to compute
the hedging ratio. For objective function (2), all the residuals are exponentially
weighted based on the industry-standard choice of λ = 0.94. At each rolling or
hedge rebalancing date (3-month VT futures are rebalanced monthly), the hedg-
ing ratio is recomputed. An important factor affecting hedge effectiveness is the

7



rolling assumption. That will be instrument specific and will be discussions in the
next subsections.

2.2. VIX Futures
In order to test the various hedging strategies, our study uses the daily settle-

ment prices on VIX futures from December 2004 to March 2012. The contract
size of VIX futures is $1,000 times the value of the VIX Index. Price data on the
VIX futures are obtained from the transaction records provided by the Chicago
Futures Exchange (CFE).

According to the product specifications published by the CFE2, the final set-
tlement date for the VIX futures is the Wednesday which is 30 days before the
third Friday of the calendar month immediately following the month in which
the contract expires. This study chooses to roll on the fifth business day prior
to the expiration date for the monthly VIX futures, in order to avoid well-known
liquidity problems associated with the last week of trading. More specifically,
on the first day of rolling to a contract, we want to take long positions on the
second-nearby monthly VIX contracts based on closing price. The daily cumu-
lative payoffs are calculated using daily settlement prices. The contracts are then
closed at the closing prices. On the same day, we buy back the second-nearby
contract at the closing price, and so on.

Since an investor does not pay upfront cash for the futures, his mark-to-market
value (MTM ) at the end of the day is the market value of his futures contract
plus the cash balance of any financing required. The act of finally closing the
futures in itself should create cash receivable/payable. The daily P&L should be
computed based on a combination of the change in market values of the assets and
in the balance of cash borrowed to finance any final settlement. For the purpose
of this calculation, we have ignored the potential financing cost required to meet
one’s margin requirements. We then initiate a new contract on the next day to
maintain the hedge. If the futures contracts close in the money, one should receive
the exercise value of the contracts as cash, or pay cash if the contracts close out
of the money. Any interest charges on a negative balance or interest accruals
on a positive balance from the current period are treated as zero to simplify the
analysis. The cumulative P&L as given below can be used as our mark-to-market
value of the futures contracts starting from time t:

2See http://cfe.cboe.com/Products/Spec VIX.aspx.
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Cumulative P&L (t+ l4t) of V IX futures in the first rolling month

=

{
$1000 × fvixfutcum (t+ l4t) , l = 0, 1, 2, . . . ,M1 − 1
cash (t+ l4t) , l = M1

where M1 ≡ (T1 − t)/4t is the number of trading days between the current
day t and position closing day T1; fvixfutcum(t + l4t) = vixfutsettle(t +
l4t)−vixfutopen(t) is the cumulative value of the futures contract at daily settle-
ment on day t + l4t, taking the difference between the daily settle futures price,
vixfutsettle(t + l4t), and the day-t futures price at the initiation of the contract,
vixfutopen(t).

On day T1 we close out the first VIX futures and keep any resulting net cash-
flow in a cash account. Since the contract size of VIX futures is $1,000 multiplied
by the VIX Index points, the value of the day-T1 cash account is:

cash (T1) = $1000×fvixfutcum (T1) = $1000×
[
vixfutclose(T1)− vixfutopen(t)

]
In theory, the cumulative P&L for VIX futures initiated on day (T1 +4t) in

the second rolling month depends on whether interest charges from the first period
become part of the P&L for the second period:

Cumulative P&L (T1 + ξ4t) of V IX futures in the second rolling month
= $1000× fvixfutcum(T1 + ξ4t) + cash(T1 + ξ4t), for ξ = 1, 2, . . . ,M2

where M2 ≡ (T2 − (T1 +4t))/4t; fvixfutcum(T1 + ξ4t) = vixfutsettle(T1 +
ξ4t)− vixfutopen(T1 +4t) is the cumulative value of the contract on day T1 +
ξ4t with the opening price, vixfutopen(T1 + ξ4t), of the second VIX futures
initiated on day T1 +4t. The cash balance account, cash(T1 + ξ4t), is given by

cash (T1 + ξ4t) in second rolling month = cash (T1)× eR(T1)ξ∆t

where R(T1) is the continuously compounded zero-coupon interest rate on day
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T1. Similar cumulative P&L calculations are used for subsequent periods.
Typically, investors gain exposure to the SPX Index by trading ETF on the

SPX.3 Depositary receipts on the SPX, such as “SPDRs,” represent ownership in
unit trusts designed to replicate the underlying index. As such, SPDRs closely if
not perfectly replicate movements in the underlying stock index. One of the most
popular SPDRs, the SPY, is valued at 1/10th the value of the Index.4 SPDRs typi-
cally tend to be transacted in 100-lot (or “round-lot”) increments, like most other
equities.5 Further, the contract size of VIX futures is $1,000 times the index value
of the VIX. In order to compute the number of VIX futures contracts required for
one unit of the SPX index, we apply the appropriate multipliers for adjusting unit
size and unit dollar values in the hedged portfolio.

In this study, we assume that a typical investor holds the long asset already,
but it will be atypical for any fully-invested portfolio to set aside surplus cash to
pay for the cost of hedging, except for realized P&L already captured by a cash
account at time t. Any on-going margin funding requirement is assumed to be
minimal. The total amount realized for the asset, when the profit or loss on the
hedge is taken into account, is denoted by mark-to-market value (MTM), so that
for , ς = 0, 1, 2, . . . ,M = (T − t)/4t,

MTM (t+ ς∆t) = $10× SPX (t+ ς∆t) +

h× [$1000× fvixfutcum (t+ ς∆t)] + cash (t)

The corresponding cumulative P&L of the portfolio from time t is given by

3An ETF represents fractional ownership in an investment trust, or unit trusts, patterned after
an underlying index, and is a mutual fund that is traded much like any other fund. Unlike most
mutual funds, ETFs can be bought or sold throughout the trading day, not just at the closing price
of the day.

4A single SPDR was quoted at $78.18, or approximately 1/10th the value of the S&P 500 at
778.12, on March 17, 2009.

5If a single unit of SPDRs was valued at $78.18 on March 17, 2009, it implies that a 100-lot
unit of SPDRs was valued at $7,818 on that day.
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MTM cumP&L (t+ ς∆t) = MTM (t+ ς∆t)−MTM (t)

= $10× SPXcumP&L (t+ ς∆t) +

h× [$1000× fvixfutcum (t+ ς∆t)]

where fvixfutcum (t+ ς∆t) is the cumulative value of the futures contract on day
t + ς∆t for ∀ς; cash(t + ς∆t) is the cash balance account; MTM (t) = $10 ×
SPXopen(t); and SPXcumP&L(t+ ς∆t) = [SPXclose(t+ ς∆t)− SPXopen(t)].

When hedging is used, the hedger chooses a value for the hedge ratio h that
minimizes an objective function of the value of the hedged portfolio, such as its
variance. It is important to use the percentage changes in the cumulative P&L as
input, i.e.,MTMcumP&L(t+ς∆t)/MTMcumP&L(t+(ς−1)∆t)−1, because doing
so avoids unstable and even non-sensical numerical values when there are massive
market shocks in the market, and also because that is the most natural quantity
to hedge against as seen from the investor’s perspective. Figure 1 presents an
example of the computed hedging ratios times 100 for one unit of the S&P index
under all hedging models, against the specified numbers of round-lot VIX futures.
All hedging ratios are lower-bounded by zero since in real-life trading traders are
likely to face severe compliance restrictions against “shorting volatility”.

[Figure 1 about here]

2.3. Variance Futures
Our study uses the daily VT futures prices from December 2004 to March,

2012. The contract multiplier for the VT contract is $50 per variance point. In the
following, we describe the algorithm for the rolling strategies of variance futures
at five business days prior to the expiration date. Where 3-month VT data may
be too sparse to be credible, this study performs monthly rolls based on synthetic
1-month VT, replicated from using V IXTerm observations. The contracts are
rolled quarterly, but rehedging can occur monthly.

VT contracts are forward starting three-month variance swaps. Once a futures
contract becomes the front-quarter contract, it enters the three-month window dur-
ing which realized variance is calculated. Because VT is based on the realized
variance of the SPX, the price of the front-month contract can be stated as two
distinct components: the realized variance (RUG) and the implied forward vari-
ance (IUG). RUG indicates the realized variance of the SPX corresponding to
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the front-quarter VT contract. IUG represents the future variance of the SPX that
is implied by the daily settlement price of the front-quarter VT contract.

Using martingale pricing theory with respect to a risk-neutral probability mea-
sure Q, the time-t VT price in terms of variance points is the annualized forward
integrated variance, F V T

t (T ) = 1
τ1
EQ
t (υT−τ1,T ) for τ1=3 months = 1/4 year. The

value of a forward-starting VT contract is composed of 100% implied forward
variance (IUGT−τ1,T ), as given by

F V T,fs
t (T ) =

1

τ1

EQ
t (υT−τ1,T ) = IUGT−τ1,T (1)

where 0 < t < T − τ1 < T . The analytical pricing formula for front-month VT is
given by

F V T,fm
t (T ) =

1

τ1

EQ
t (υT−τ1,T )

=

(
1− T − t

τ1

)
RUGT−τ1,t +

(
T − t
τ1

)
IUGt,T , (2)

where τ1 is the total number of business days in the original term to expiration of
the VT contract, t is current time, T is the final expiration date of the VT contract,
and 0 < T−t

τ
< 1 . The formula to calculate the annualized realized variance

(RUG) is as follows:6

RUG = 252×

(
Na−1∑
i=1

R2
i /(Ne − 1)

)
, (3)

where Ri = ln(Pi+1/Pi) is daily return of the S&P 500 from Pi to Pi+1; Pi+1 is
the final value of the S&P500 used to calculate the daily return; and Pi is the initial
value of the S&P 500 used to calculate the daily return. This definition is identical
to the settlement price of a variance swap withN prices mapping toN−1 returns.
Na is the actual number of days in the observation period, and Ne is the expected
number of days in the period. The actual and expected number of days may differ
if a market disruption event results to the closure of relevant exchanges, such as

6See http://cfe.cboe.com/education/VT info.aspx for the details. Our RUG in Eq. (2) multi-
plying 10,000 is the RUG data available in the Chicago Futures Exchange website.
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September 11, 2001.
Because the square of VIX (denoted by V IX2

t,T ) is defined as the variance
swap rate, we are able to evaluate V IX2

t,T by computing the conditional expecta-
tion under the risk-neutral measure Q, as follows:

V IX2
t,T ≡

1

T − t
EQ
t (υt,T ) (4)

Based on Eqs. (1)−(4), the IUG portion of a front-quarter VT contract can be
replicated by V IX2

t,T extracted from V IXTerm with identical days to maturity.
In other words, we can synthesize the front-quarter VT with the following using
notations from above:

F V T,fm
t (T ) =

(
1− T − t

τ1

)
×RUGT−τ1,t +

(
T − t
τ1

)
× V IX2

t,T (5)

Since the market price of a forward-starting VT future is completely attributable
to IUG, this study takes the initial forward V IX (denoted fV IX) curve im-
plicit in V IXTerm to synthesize the forward-starting VT price, i.e., for ∀t ∈
[0, T − τ1],

F V T,fs
t (T ) = fV IX2

T−τ1,T (t) (6)

Specifically, the following equation uses historic V IXTerm observations to com-
pute a time series history of forward V IX2:

fV IX2
T−τ1,T (t) =

1

τ1

[
V IX2

t,T × (T − t)− V IX2
t,T−τ1 × (T − τ1 − t)

]
(7)

where 0 < t < T − τ1 < T .
The following steps are used to construct the monthly rolling of VT. On day t,

we take a long position of the synthetic forward-starting 1-month variance futures.
For forward-starting contracts, the daily cumulative payoffs are calculated using
fV IX2

T−τ1,T (t) for t < T − τ1 based on Eq. (6), while for synthetic front-month
contracts, we use RUGT−τ0,t and V IX2

t,T for T − τ1 ≤ t < T based on Eq. (5).
The contracts are then closed on the second Friday of the contract month. On
the same day, we buy back the next synthetic forward-starting 1-month variance
futures. The primary reason to roll the synthetic 1-month variance futures one
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week before expiration (on the third Friday of the contract month) is to ensure
consistency with other rolling strategies used in this study.

Given the growth of the futures and option markets on the VIX, the CBOE has
calculated daily historical values for V IXTerm dating back to 1992. V IXTerm
is a representation of implied volatility of SPX options, and its calculation in-
volves applying the VIX formula to specific SPX options to construct a term
structure for fairly-valued variance. The generalized VIX formula has been mod-
ified to reflect business days to expiration. As a result, investors will be able to
use V IXTerm to track the movement of the SPX option implied volatility in the
listed contract months. V IXTerm of various maturities allows one to infer a
complete initial term structure of IUG that is contemporaneous with the prices of
variance futures of various maturities.

2.4. Out-of-the-Money SPX Put Options
The monthly series of out-of-the-money (OTM) SPX put options 7 are created

by purchasing 5% (or 10%) OTM SPX puts monthly one month prior to their
expiration. Given good liquidity relative to the volatility derivatives market and
the significant bid/ask in the options market, we will let any purchased options
expire instead of trying to roll them forward. This is generally consistent with
practice in real-world trading.

The monthly series of out-of-the-money (OTM) SPX put options are created
by purchasing 5% (or 10%) OTM SPX puts one month prior to their expiration. In
real-life trading, longer-dated options are usually rolled up (by paying additional
premium) rolled down(i.e. monetizing earned premium) with significant market
moves. However, given the average maturity of the options in the series is only
about 10 trading days, it is unlikely that they will be rolled them up or down in
real-life trading in view of the significant trading costs involved.

This study accounts for the option premia in SPX put options primarily by
using the “burn rate” (which can be thought of as a form of daily theta) implied by
the premia.8 Although an investor pays upfront cash for the premium, his mark-to-
market value (MTM) at the end of the day is his negative cash position paid plus

7Some may argue that the SPY options should be used instead of the CBOE SPX options, since
the former is more liquid. However, the CBOE SPY options tend to be traded by institutions at
larger sizes and therefore more consistent with the objective of this study.

8Suppose that the investor has a securities account. He has to account for both the asset and
liability columns when computing his P&L. On day t he buys an option: the cash account is
−Put(t) while the asset account is +Put(t). If he sells the option right away, the net account on
day t is back at 0 P&L. On day t + 1 , if the underlying price has not changed, the cash account
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the value of his option. The act of purchasing the option in itself should not create
any P&L shock. The interest charges are also ignored to simply the analysis.9

In general, the strategy is expected to maintain a negative cash balance until the
option strategy generates enough profits to cover the outstanding debt. In other
words, the P&L should be computed based on a combination of money borrowed
to finance the option and the option itself. In a sense, one is not expected see any
negative value representing the entire option premium, unless the option expires
at less than the original premium paid plus any interest cost, or unless the option
position has lost most of its intrinsic value.10

Suppose a put option is purchased at regular intervals of length 4t. As de-
scribed above, at time t we short an instantaneously maturing risk-free bond B(t)
to raise cash, and then purchase a put option Put(t, t+4t) of maturity4t, such
that the net P&L at time t is zero. In other words, the combined position is a self-
financed portfolio: The investor borrows cash in order to finance the purchase
of the option, such that B (t) = Put (t, t+4t). Accordingly, interest based on
a deterministic continuously compounded rate R(t) should be paid when money
is borrowed to purchase the option. At time t + 4t, the mark-to-market value
(MTM ) of the self-financed portfolio is given as follows:

MTM (t+4t) = Put (t, t+4t)−B (t) eR(t)4t

where B (t) = Put(t, t + 4t). We can repeat this net P&L calculation at time
t+ l4t, where l = 1, 2, 3, . . .. The MTM value at time (t+ l4t) of the (l−1)-th

still remains at −Put (t) and asset account at Put (t + 1) = Put (t) − one day of theta.
Thus, net P&L on day t + 1 is equal to one day of theta. If the option expires worthless, his
cumulative P&L become −Put (t)− interest ONLY at the expiration day. In other words, while
he has already paid upfront cash for the option on day t , the full negative P&L for the option
premium usually does not manifest itself until the expiration day.

9While small initially, interest rate charges can become quite significant over time, thus one
may argue that there is a need to account for them as part of the total costs in running a hedging
strategy. However, both the negative carry in the volatility and variance futures and the premium
in SPX options will run up identical financing costs if they have the same negative P&L, hedging
effectiveness can be compared on an “apple-to-apple” basis without accounting for the interest
rate charges.

10Some researchers treat the option premium as a negative P&L because “money is paid” up-
front. Doing so results in a large P&L shock when the option is paid. Technically, that seems
incorrect because one can buy the option in the morning and sell it in the afternoon. Thus, no P&L
changes should be recorded for that day as long as the price of the option stays the same.
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put strategy is given by

MTM(t+ l4t) =Put (t+ (l − 1)4t, t+ l4t)−
Put (t+ (l − 1)4t, t+ (l − 1)4t) eR(t+(l−1)4t)×4t

The study uses the formula above to estimate the P&L of a mechanical rolling
strategy of buying one option and rolling it forward every month. The study then
runs statistics to estimate the appropriate hedging ratio each month by minimizing
residuals (or other relevant alternative objective functions).

Since bids and asks right before expiration often do not reflect actual trad-
able values of the option, it is more reliable to use the exercise value of the op-
tion at expiration date. Once a settlement price is published on a specific con-
tract month, the movement of that put no longer reflects changes in the value of
the underlying index; i.e., it is going into “settlement mode”. Accordingly, we
initiate a new contract on its expiration day to maintain the hedge. Typically,
execution traders will be given at least one trading session to “build” a new po-
sition. To reflect real-world conditions, our study initiates a new 5% (or 10%)
OTM put contract on its subsequent trading day. If the option expires in the
money, one should include the exercise value into the cumulative P&L, i.e., one
receives cash into the cash account if the option expires in the money. There is
no value left in the option if it expires out of the money. Any interest receipts
(charges) from the current period also become part of the positive (negative) P&L
for the next period. Assuming that one put option expires on each 4t-interval,
Put (t+ (l − 1)4t, t+ l4t) = (K(t+ (l − 1)4t)− S(t+ l4t))+, where the
final index settlement value is S(t+ l4t) at expiration time t+ l4t and the strike
price is K(t+ (l − 1)4t).

The mark-to-market value for the put option on its first trading day t+4t+ 1
of the second rolling month will depend on whether interest charges (surpluses)
from the first period will become part of the negative (positive) P&L for the second
period.

3. Hedging Performance

This section will discuss the empirical results from: (i) the hedging schemes
as applied to the VIX futures; (ii) the hedging schemes as applied to the variance
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futures; (iii) the hedging schemes as applied to the 5% OTM SPX puts; and (iv)
the hedging schemes as applied to the 10% OTM SPX puts.

[Table 1 about here]

3.1. 1-month VIX Futures
The study conducts the empirical hedging analysis based on the seven different

hedging methodologies as described in Section 2.2, by using VIX futures as a
hedge to one unit of the SPX index. The rebalancing, done every month, takes
place five business days prior to the expiration of VIX futures to avoid well-known
liquidity problems in the last week of trading of futures contracts. The study
focuses on a one-month out-of-sample hedging horizon, using data for the period
December 2004 through March 2010. Hedge effectiveness is measured based on
the magnitude of percentage drawdown reduction from before the hedge to after
the hedge:

MaxDD%
(
T ;MTM before hedge

)
−MaxDD%

(
T ;MTMafter hedge

)
where MTM before hedge = $10 × SPX; MTMafter hedge = $10 × SPX + h ×
$1000 × fvixfutcumP&L; and MaxDD%(T ; ·) is defined as the maximum sus-
tained percentage decline (peak to trough) for period [0, T ], which provides an in-
tuitive and industry-standard empirical measure of the loss arising from potential
extreme events. We use the percentage Maximum Drawdown in this case, which
is calculated as the percentage drop from the peak to the trough as measured from
the peak:

MaxDD%
(
T ; {MTM}Tt=0

)
= max

0≤t≤T

[
MTMpeak

0≤τ≤t −MTM (t)

MTMpeak
0≤τ≤t

]

The graphical results are plotted in Figures 2 and 3. Descriptive statistics on both
the unhedged and hedged profits and losses (P&Ls) are also reports in Panel A
of Table 1. Note the following technical details: First, all mark-to-market value
(MTM ) time series are starting at at the unhedged value of one unit of the SPX
index at the beginning of the empirical analysis, from December 2004 to March
2011, covering a period of extreme volatility due to the bankruptcy of Lehman
Brothers. The in-sample data period allows for the use of roughly 2 months of data

17



to estimate the first out-of-sample hedging ratio. Second, summary statistics are
computed based on raw daily P&Ls, without any time scaling. Third, maximum
drawdown is computed based on the percentage drop from the peak to the trough
as measured from the peak. Finally, in this specific analysis, we have computed
the Cornish-Fisher CVaR at 95% and 99%, but have noticed minimal differences
between the two choices. One may conclude from the statistical results that:

1. Minimizing Cornish-Fisher CVaR is not effective in minimizing maximum
drawdown. In addition, “second-order techniques” such as minimizing ab-
solute residuals and squared residuals have not shown particularly effective
performance as extreme downside hedges.

2. Minimizing maximum drawdown is effective in reducing maximum draw-
down, its overall performance in terms of offering protection during a draw-
down scenario without incurring unreasonable cost is unimpressive. This is
not too surprising considering the “look back” nature of maximum draw-
down as a measure. It is generally believed that, under this method, one
can only compute the correct hedging ratio after a significant drawdown has
already happened. By then, the hedge is put on only when it is no longer
needed, while incurring heavy losses when the hedging instrument is “re-
coiling” in its P&L.

3. Both the Sharpe Ratio and Alternative Sharpe Ratio perform reasonably as
an objective function for extreme downside hedges.

[Figures 2 and 3 about here]

3.2. 1-Month Variance Futures
This subsection conducts the empirical hedging analysis based on the seven

different hedging methodologies as described above, by using VT futures as a
hedge to one unit of the SPX index. The algorithm for creating the monthly rolls
of synthetic 1-month variance futures has been described in Section 2.3. The
graphical results are shown in Figures 4 and 5.

The standard descriptive statistics on both the unhedged and hedged profits
and losses (P&Ls) are reported in Panel B of Table 1. Note the following tech-
nical details: First, all mark-to-market value (MTM ) time series are starting at
the unhedged value of one unit of the SPX index at the beginning of the empiri-
cal analysis, from December 2004 to March 2011, covering a period of extreme
volatility due to the bankruptcy of Lehman Brothers. The in-sample data period
allows for the use of roughly 2 months of data to estimate the first out-of-sample
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hedging ratio. Second, summary statistics are computed based on raw daily P&Ls,
without any time scaling. Third, maximum drawdown is computed based on the
percentage drop from the peak to the trough as measured from the peak. Finally,
in this specific analysis, we have computed the Cornish-Fisher CVaR at 95% and
99%, but have noticed minimal differences between the two choices. One may
conclude from the statistical results that:

1. Minimizing Cornish-Fisher CVaR is not effective in minimizing maximum
drawdown. In addition, “second-order techniques” such as minimizing ab-
solute residuals and squared residuals have not shown particularly effective
performance as extreme downside hedges.

2. Minimizing maximum drawdown, maximizing Sharpe Ratio as well as max-
imizing the Alternative Sharpe Ratio are roughly as effective in reducing
maximum drawdown. However, in this case minimizing maximum draw-
down and maximizing Sharpe Ratio both give better performance in terms
of preserving upside.

3. In all cases, the trader ends up being better off by not hedging.

The practical issue with using the VT is that its implied negative carry costs
can be very high. This implied negative carry is caused by the significant burn
rate on the premia of options used to replicate the variance futures. Because VT
is the square of the VIX, when the strategy benefits from the upside of VT, there
can be a dramatic improvement to portfolio performance. In fact, the impressive
surge followed by the expected “recoil” has resulted in a potential increase in
maximum drawdown for some hedging models tested. Such an extreme swing
is likely to deter real-life traders from using such an instrument as a practical
hedging solution.

[Figures 4 and 5 about here]

3.3. 1-Month 5% (or 10%) Out-of-the-Money SPX Put Options
This section conducts the out-of-sample hedging analysis based on the five

different hedging methodologies as described above, by using 5% (or 10%) OTM
SPX puts as a hedge to one 100-lot unit of long S&P500 ETF. The algorithm
for creating the monthly rolls of synthetic 1-month SPX puts has been described
in Section 2.4. The graphical results are plotted in Figures 6 and 7 (as well as
Figures 8 and 9).

The standard descriptive statistics on both the unhedged and hedged profits
and losses (P&Ls) in Panels C and D of Table 1. Note the following technical
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details: First, all mark-to-market value (MTM ) time series are starting at the un-
hedged value of one unit of the SPX index at the beginning of the empirical anal-
ysis, from December 2004 to March 2011, covering a period of extreme volatility
due to the bankruptcy of Lehman Brothers. The in-sample data period allows for
the use of roughly 2 months of data to estimate the first out-of-sample hedging ra-
tio. Second, summary statistics are computed based on raw daily P&Ls, without
any time scaling. Third, maximum drawdown is computed based on the percent-
age drop from the peak to the trough as measured from the peak. Finally, in this
specific analysis, we have computed the Cornish-Fisher CVaR at 95% and 99%,
but have noticed minimal differences between the two choices. One may conclude
from the statistical results that:

1. In general, all hedging schemes produce low hedging ratios in an up market
and provide very reasonable protection during extreme events.

2. After an extreme event, all hedging schemes produce significantly higher
hedging ratios, resulting in rather poor performance when market recovers.

3. In all cases, the trader ends up being better off by not hedging.

Monthly 10% OTM SPX puts go into the money about once every decade.
Very often, they become costly propositions as extreme downside hedges due to
the constant need to pay premia without benefiting from the payoff, especially
when market volatility shoots up (thereby increasing the costs of the options), but
the net return to the hedger (even after the option goes into money) is still far
from sufficient to cover the cumulative option premia over time. Monthly 5%
OTM SPX puts go into the money more often but they are also more expensive.
Because of the steep premia of OTM puts, many hedgers either (i) underhedge
with a smaller than suitable notional amount or (ii) use options further out of the
money, potentially lowering the payoff when protection is needed. In this case,
the observed negative carry is likely deter to any real-life traders from using such
an instrument for hedging.

[Figures 6 and 7 about here]

[Figures 8 and 9 about here]

3.4. Overall Comparison on Choices of Hedging Instruments
The following P&L graphs presents examples of combining the choices of

hedging instruments under different hedging models, to provide traders a more
visual way to choose an appropriate hedging strategy:

20



[Figures 10, 11, 12 and 13 about here]

Our key observations are as follows:

1. As noted earlier, the negative carries from using VT futures and OTM SPX
puts are way too high for them to be deployed as practical hedging solu-
tions. The trader ends up being better off by not hedging. As expected,
one can get worse performance by using 10% OTM SPX puts than using
5% OTM SPX puts, but futures have done better than options. This is sur-
prising considering that volatility and variance futures are created from a
series of SPX options in theory. This observation is significant, since there
are not yet obvious theoretical justifications as to why using a synthesized
product can be more efficient than using the relevant raw materials used to
synthetically replicate the synthesized product. This does not appear to be
caused by the “smile” of the volatility curve being so steep that it becomes
cost-ineffective to use way out-of-the-money put options, since the obser-
vation is consistent between 10% OTM SPX puts and 5% OTM SPX puts.
Lee et. al. 2010 [4] have shown by sophisticated simulation that inability
to carry out frictionless hedging due to liquidity conditions may result in
significant deviation from theoretical option pricing. This may be another
piece of empirical evidence supporting such a result, and the likely mecha-
nism giving plausible explanations to this observation will be an interesting
topic for future research.

2. The overall winner in our empirical analysis is the VIX futures, which has
provided both extreme downside protection as well as upside preservation
under reasonable choices of hedging models. The pragmatic issue faced
by real-world hedgers is whether they can execute any such hedging trades
with the extended tenor in reasonable size. That is an empirical question
that can only be satisfactorily answered by placing large trades directly in
the VIX futures market.

4. Conclusions

This paper attempts to address whether “long volatility” is an effective hedge
against a long equity portfolio, especially during periods of extreme market move-
ments. Our study examines using volatility futures and variance futures as ex-
treme downside hedges, and compares their effectiveness against traditional “long
volatility” hedging instruments such as 5% and 10% OTM put options on the SPX.
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In each case, out-of-sample hedging ratios are calculated based on seven reason-
able choices of objective functions, and the hypothetical performance of the hedge
is computed again a long portfolio consisted of one unit of the SPX index.

Our empirical results show that the CBOE VIX futures can potentially be more
effective extreme downside hedges than out-of-the-money put options on the S&P
500 index, especially after applying contract-rolling methodologies that are gen-
erally consistent with market practice. In particular, using 1-month rolling VIX
futures presents a cost-effective choice as hedging instruments for extreme down-
side risk protection as well as for upside preservation.

The pragmatic issue faced by real-world hedgers is whether they can execute
any such hedging trades with the desirable tenor in reasonable size, which is an
empirical question that can only be satisfactorily answered by placing large trades
directly in the VIX futures market.

By replicating hedging techniques used by real-life traders, our findings sup-
port the following conclusions and recommendations:

1. First, using volatility instruments as extreme downside hedges, especially
when combined with an appropriate model to estimate the hedging ratios,
can be a viable alternative to buying a series of out-of-the-money put options
on SPX.

2. Second, the volatility and variance future markets may be more efficient
than suggested by the general perception among market participants .

3. Third, there is a business case supporting that volatility/variance instru-
ments can be made more widely available as extreme downside hedging
instruments. For instance, in the Asia region where the author is currently
located, this can be accomplished by: (i) creating daily benchmark volatility
indices on the Hang Seng Index (HSI) and the Straits Times Index (STI), in
a fashion similar to the Volatility Index Japan (VXJ), the Volatility Index of
TAIFEX index options, or the Volatility Index of the KOSPI 200 (VKOSPI);
and (ii) creating exchange-traded volatility/variance instruments once such
reference indices gain wider acceptance by the OTC market.
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Table 1: Descriptive Statistics on Hedging – The first row gives the descriptive statistics on the unhedged SPX ETF. The
remaining rows give the descriptive statistics on the hedged P&L under the seven different models used, ranked by
the maximum drawdown reduction starting from the most effective hedging model. Panels A, B, C and D provide
summary statistics on hedging with 1-month rolling VIX futures, 1-month rolling VT futures, 1-month rolling 5%
OTM SPX puts and 1-month rolling 10% OTM SPX puts, respectively

N Mean Median Max Min Stddev Skew E Kurt %MaxDD MaxDD
%Red

Panel A. 1-Month Rolling VIX Futures
Unhedged Daily P&L of SPX 1832 33.46 54.91 370.50 -518.12 175.15 -0.60 0.17 37.19 NA
Hedged P&L of CVaR (99%) 1832 90.14 69.85 397.94 -120.10 118.96 0.55 -0.37 33.31 3.88
Hedged P&L of Squared Residuals 1832 105.39 106.32 347.04 -184.19 108.10 0.06 -0.58 29.05 8.14
Hedged P&L of CVaR (95%) 1832 100.67 67.23 338.42 -135.87 117.01 0.25 -1.17 28.33 8.86
Hedged P&L of Absolute Residuals 1832 -6.03 -67.93 327.91 -421.79 172.36 0.04 -0.96 27.45 9.74
Hedged P&L of SR 1832 50.29 42.43 305.80 -264.12 108.40 -0.03 0.04 25.60 11.59
Hedged P&L of ASR 1832 55.76 44.00 303.52 -220.05 99.91 0.14 0.07 25.41 11.78
Hedged P&L of Max Drawdown 1832 -32.16 -19.66 168.02 -371.56 106.84 -0.71 0.22 14.06 23.13
Panel B. 1-Month Rolling VT Futures
Unhedged Daily P&L of SPX 1832 33.46 54.91 370.50 -518.12 175.15 -0.60 0.17 37.19 NA
Hedged P&L of CVaR (95%) 1832 115.92 75.18 873.64 -143.36 159.83 1.55 4.01 73.13 -35.94
Hedged P&L of CVaR (99%) 1832 105.39 75.75 873.64 -122.26 152.81 1.85 5.61 73.13 -35.94
Hedged P&L of Squared Residuals 1832 108.40 86.31 733.45 -206.83 159.03 0.80 0.93 61.39 -24.20
Hedged P&L of Absolute Residuals 1832 63.68 62.45 488.34 -311.08 146.54 0.09 -0.16 40.88 -3.69
Hedged P&L of Max Drawdown 1832 75.78 58.84 354.95 -243.23 109.82 0.24 -0.13 29.71 7.48
Hedged P&L of ASR 1832 45.33 39.50 334.25 -193.98 72.49 0.19 0.30 27.98 9.21
Hedged P&L of SR 1832 73.06 54.37 320.48 -151.42 95.39 0.55 -0.36 26.83 10.36



N Mean Median Max Min Stddev Skew E Kurt %MaxDD MaxDD
%Red

Panel C. 1-Month Rolling 5% OTM SPX Puts
Unhedged Daily P&L of SPX 1832 33.46 54.91 370.50 -518.12 175.15 -0.60 0.17 37.19 NA
Hedged P&L of CVaR (99%) 1832 85.46 69.01 1110.54 -548.11 254.82 1.01 2.42 92.96 -55.77
Hedged P&L of CVaR (95%) 1832 146.96 115.07 961.18 -181.31 151.30 2.01 5.82 80.46 -43.27
Hedged P&L of Absolute Residuals 1832 -86.37 -18.75 862.64 -917.53 260.25 -0.08 -0.12 72.21 -35.02
Hedged P&L of Max Drawdown 1832 -151.14 3.45 604.82 -803.49 358.36 -0.39 -1.35 50.63 -13.44
Hedged P&L of SR 1832 -154.67 -13.75 454.75 -575.29 246.69 -0.47 -0.98 38.07 -0.87
Hedged P&L of ASR 1832 -145.23 6.93 374.19 -713.71 337.55 -0.26 -1.56 31.32 5.87
Hedged P&L of Squared Residuals 1832 -170.63 -41.38 274.76 -791.70 302.60 -0.38 -1.20 23.00 14.19
Panel D. 1-Month Rolling 10% OTM SPX Puts
Unhedged Daily P&L of SPX 1832 33.46 54.91 370.50 -518.12 175.15 -0.60 0.17 37.19 NA
Hedged P&L of Absolute Residuals 1832 29.87 10.24 728.15 -303.48 162.39 1.11 2.14 60.95 -23.76
Hedged P&L of SR 1832 -141.68 0.94 387.59 -674.25 315.51 -0.15 -1.60 32.44 4.75
Hedged P&L of ASR 1832 -111.57 -17.61 350.83 -677.41 272.78 -0.19 -1.26 29.37 7.82
Hedged P&L of CVaR (95%) 1832 -143.18 -26.06 339.28 -759.07 288.44 -0.24 -1.20 28.40 8.79
Hedged P&L of CVaR (99%) 1832 -117.71 -16.57 334.62 -601.68 259.89 -0.18 -1.33 28.01 9.18
Hedged P&L of Max Drawdown 1832 -69.54 -7.95 334.36 -470.63 222.06 0.00 -1.35 27.99 9.20
Hedged P&L of Squared Residuals 1832 -14.12 -15.78 316.22 -316.79 150.17 0.29 -0.90 26.47 10.72



Figure 1: Hedging Ratios for VIX Futures 1-Month Rolling Contracts (Dec 2004 – Mar 2011) under All Hedging
Models
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(a) Hedging Model = CVAR(99%) (b) Hedging Model = CVAR(95%)

(c) Hedging Model = Squared Residuals (d) Hedging Model = Absolute Residuals

(e) Hedging Model = Alternative Sharpe Ratio (f) Hedging Model = Sharpe Ratio

(g) Hedging Model = Maximum Drawdown

Figure 2: VIX Futures 1-Month Rolling Contracts (Dec 2004 – Mar 2011) by Differ-
ent Hedging Models
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Figure 3: VIX Futures 1-Month Rolling Contracts (Dec 2004 – Mar 2011) under All Hedging Models
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(a) Hedging Model = CVAR(99%) (b) Hedging Model = CVAR(95%)

(c) Hedging Model = Squared Residuals (d) Hedging Model = Absolute Residuals

(e) Hedging Model = Alternative Sharpe Ratio (f) Hedging Model = Sharpe Ratio

(g) Hedging Model = Maximum Drawdown

Figure 4: VT Futures 1-Month Rolling Contracts (Dec 2004 – Mar 2011) by Differ-
ent Hedging Models
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Figure 5: VT Futures 1-Month Rolling Contracts (Dec 2004 – Mar 2011) under All Hedging Models
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(a) Hedging Model = CVAR(99%) (b) Hedging Model = CVAR(95%)

(c) Hedging Model = Squared Residuals (d) Hedging Model = Absolute Residuals

(e) Hedging Model = Alternative Sharpe Ratio (f) Hedging Model = Sharpe Ratio

(g) Hedging Model = Maximum Drawdown

Figure 6: 5% OTM SPX Put Options 1-Month Rolling Contracts (Dec 2004 – Mar
2011) by Different Hedging Models

31



Figure 7: 5% OTM SPX Put Options 1-Month Rolling Contracts (Dec 2004 – Mar 2011) under All Hedging Models
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(a) Hedging Model = CVAR(99%) (b) Hedging Model = CVAR(95%)

(c) Hedging Model = Squared Residuals (d) Hedging Model = Absolute Residuals

(e) Hedging Model = Alternative Sharpe Ratio (f) Hedging Model = Sharpe Ratio

(g) Hedging Model = Maximum Drawdown

Figure 8: 10% OTM SPX Put Options 1-Month Rolling Contracts (Dec 2004 – Mar
2011) by Different Hedging Models
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Figure 9: 10% OTM SPX Put Options 1-Month Rolling Contracts (Dec 2004 – Mar 2011) under All Hedging Models
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Figure 10: 10% OTM SPX Put Options 1-Month Rolling Contracts (Dec 2004 – Mar 2011) under All Hedging Models
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Figure 11: All Hedging Instruments (Dec 2004 – Mar 2011) under Minimum Variance
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Figure 12: All Hedging Instruments (Dec 2004 – Mar 2011) under CVaR(95%)
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Figure 13: All Hedging Instruments (Dec 2004 – Mar 2011) under Maximum Drawdown
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