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Abstract 
 

In markets with trading friction, the incorporation of information into market prices can be substantially 
delayed through a weakening of the arbitrage process.  We re-examine the profitability of relative strength 
trading strategies (buying past strong performers and selling past weak performers) by testing the 
predictions of a friction-based explanation. We provide a model of price friction and then use this model to 
infer trading costs from investor behavior. We find that the execution of standard relative strength 
strategies requires large trading costs because of the type and frequency of securities traded such that 
trading costs prevent profitable relative strength investing.  In the cross section, we find evidence that 
trading costs provide binding constraints to relative strength strategy profits.  Relative strength returns are 
localized among low-price, poor performers and are increasing in investor transaction costs.  We conclude 
that the delay in price adjustment for security returns simply reflects the costs of arbitrage--creating an 
illusion of anomalous price behavior and momentum trading profit opportunity when, in fact, none exists. 
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 There is substantial evidence that "relative strength" or "momentum" investment 

strategies (maintaining a long position in past strong performers and a short position in 

past weak performers) earn large abnormal returns over a six to twelve month horizon.  A 

growing literature finds this evidence at odds with classical models of rational price 

formation. 1 Rather, the argument is made that characteristics of investor behavior 

generate a certain inertia or "momentum" in abnormal returns that creates persistent 

arbitrage opportunity.  Investor attributes which have been found to generate momentum 

effects include expectation extrapolation (DeLong et al., 1990), conservatism in 

expectations updating (Barberis et al., 1998), biased self attribution (Daniel et al., 1998), 

and selective information conditioning (Hong and Stein, 1999).   

  

We make the case for a more traditional explanation for relative strength portfolio 

returns--friction.  It has been argued that trading costs weaken the price discipline of 

arbitrage in that they prevent arbitrageurs from being fully functional in removing pricing 

errors.2  That is, if trading costs are binding, arbitrageurs have no interest in arbitrage 

positions.  The lack of strict arbitrage discipline allows delays or friction in the price 

adjustment process.  Although the notion of price friction is well accepted, the magnitude 

of the costs of trading and its impact on price behavior is not fully appreciated in some 

contexts.  We find, for example, that relative strength strategies require heavy trading 

among particularly costly stocks such that the trading costs are much larger than 

previously acknowledged.  Our evidence suggests that stocks that generate momentum 

returns are precisely those stocks with high trading costs.  We propose that the 

momentum effect observed in security prices is more precisely a friction effect produced 

by the costs of arbitrage--creating an illusion of trading profit opportunities when, in fact, 

none exists. 

 

                                                                 
1 This literature includes Jegadeesh (1990), Cutler et al. (1991), Jegadeesh and Titman (1993, 2001), Chan 
et al. (1996), and Rouwenhorst (1998).  Fama and French (1996) find that momentum patterns are the only 
CAPM anomaly that is not explained by their three factor model. 
2 See, for example, Rosett (1959), Tobin (1965), and Goldsmith (1976), Cohen et al. (1986). 
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Trading cost effects have been rejected previously as an explanation for relative 

strength portfolio performance.  Jegadeesh and Titman (JT, 1993) argue that relative 

strength returns exceed trading costs.  Their estimate of trading cost, however, is based 

on the trade-weighted mean commission and market impact of early 1985 NYSE trades 

computed by Berkowitz et al. (1988).  We find these transaction cost estimates to be 

unsatisfactory for a number of reasons.  First, since trading costs exhibit substantial 

cross-sectional variation (Keim and Madhavan, 1997), using a NYSE trade-weighted 

measure is not appropriate as a benchmark for a strategy dominated by small, off-NYSE, 

extreme performers.  We show that the securities used in relative strength strategies are 

disproportionately drawn from among stocks with large trading costs.  Second, a constant 

or single period measure is unable to capture the substantial time-series variation in 

trading costs (Lesmond et al., 1999).  Third, the Berkowitz et al. measure understates the 

full trading costs facing investors as it excludes a number of important costs of trading 

such as bid-ask spread, taxes, short-sale costs, and holding period risk.  We conclude that 

the understatement of the trading costs associated with relative strength strategies has 

vastly overstated the respective expected profits.3  

 

We provide a model of price friction and then use this model to infer trading costs 

from investor behavior.  The estimation procedure is superior to alternative methods 

because of its grounding in observed investor behavior.  Rather than estimate the trading 

costs from institutional data, we infer the total costs from the distribution of price 

changes following Lesmond et al. (1999).  The approach provides reasonable estimates of 

transaction costs consistent in magnitude and correlation to other methods and within 

institutional bid-ask spread quotes.  We show that transaction costs are not static, but 

exhibit substantial cross-sectional and time-series variation over the sample period.  We 

find that the costs of relative strength strategy execution are much larger than those 

                                                                 
3 Transaction costs have been used to explain other well-known asset-pricing anomalies, including filter 
rules (Fama and Blume, 1966), portfolio upgrading rules (Jensen and Benington, 1970), block-trade returns 
(Dann et al., 1977), option trading rules (Phillips and Smith, 1980), the January effect (Reinganum, 1983; 
Bhardwaj and Brooks, 1992), the small-firm effect (Stoll and Whaley, 1983), ex-dividend day returns 
(Karpoff and Walkling, 1990), switching strategies (Mech, 1993; Knez and Ready, 1996), closed-end fund 
discounts (Pontiff, 1996), long-run equity offering returns (Pontiff and Schill, 2001), post-earnings price 
drift (Lesmond, 2000), and analyst recommendation underreaction (Copeland and Mayers, 1982; Barber et 
al., 2000; Choi, 2000). 
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previously reported, such that the levels of trading costs dominate the returns obtained 

through relative strength investing.  We find that mean trading costs exceed 12 percent 

for a standard relative strength strategy that gene rates gross six-month returns of less than 

six percent.  The magnitude of trading costs is explained by both the trading intensity 

required of relative-strength strategies (the strategy requires four trades for each period) 

and the illiquidity of the assets traded (the strategy is weighted heavily toward high cost 

stocks).  The trading cost estimates swamp the respective gross strategy profits, implying 

that trading costs preclude profitable relative-strength strategy execution. 4 

 

In the cross section, we find that transaction costs are binding to relative strength 

profits.  Relative strength strategies using stocks with high transaction costs generate 

larger returns than those using stocks with low transaction costs.  We find that the bulk of 

cross-sectiona l variation occurs across price- level, rather than size class as suggested by 

Hong et al. (2000).  Since trading costs, such as bid-ask spread, are negatively correlated 

with share price and price is positively correlated with size, we expect that the reported 

size effect is more appropriately a manifestation of a price effect.  We conclude that not 

only do trading costs prevent profitable relative strength investing, but also that the return 

patterns are not unexpected given the effect that transaction costs have on arbitrage 

trading.  Relative strength portfolio returns appear to be bound by transaction costs such 

that the profitability of these strategies is overstated in the literature.  We find little 

evidence to reject rational-based models and argue that the literature has been too hasty in 

rejecting friction as an explanation for relative strength portfolio returns and too 

dismissive of the economic significance of  trading costs.  

 

This paper is organized as follows.  Section I reviews the evidence and behavior 

of relative strength returns.  Section II proposes a simple model of price friction.  Section 

III discusses our estimates of trading costs.  Section IV compares the level of gross 

trading profits with transaction cost estimates.  Section V cont rasts the existing cross-

                                                                 
4 This conclusion is not unique to our transaction cost estimation procedure.  Other common methods 
generate the same inferences. We show that the magnitude of the trading cost estimates are sufficiently 
large as to accommodate substantial error in our trading cost estimates without altering the conclusion. 
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sectional evidence of relative strength investing returns with that of the friction model.  

Section VI provides concluding remarks. 

 

 

I. The Momentum Anomaly 

 

A. Relative Strength Portfolio Returns 

 

         We examine relative-strength strategies over a period from January 1980 to 

December 1998.  Our classification procedure follows JT (1993) and Hong et al. (HLS, 

2000).5  We construct relative strength portfolios using the Center for Research in 

Security Prices (CRSP) monthly returns file (ordinary common shares excluding ADRs, 

REITs, and closed-end funds).  Each six months, firms are classified into three portfolios 

based on gross returns over the past six months: poor performers (P1), moderate 

performers (P2), and strong performers (P3).  Within each portfolio, stocks are initially 

equally weighted and then held for six months. Since we are less concerned about the 

statistical magnitude of our estimates, we do not overlap holding periods but rather use 

calendar periods (January to June and July to December) which would be more 

operational and cost effective to an investor.  Following the notation of Jegadeesh and 

Titman and Hong et al., the mean returns for each portfolio k are calculated as, 

 

 ( ) ( ) ( )1 1 1 ,Pk r t r i tkT T Nk tt t i k

 
= =∑ ∑ ∑ 

 ∈ 
 (1) 

 

 

                                                                 
5 We focus on the six-month formation period and six-month holding period to be consistent with the 
dominant strategies in the literature.  If some of the performance of the six-month relative strength strategy 
is due to dredging the sample-specific best-performing strategy from a multitude of alternative strategies, 
we are, in a sense, "stacking the deck" against ourselves by testing returns which are not likely to be 
replicated out of sample.  It is worth noting that we repeat our tests for a variety of alternative formation 
and holding periods and find that our conclusions are unchanged. 
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where ( ),r i t  is the holding period return for firm i for period t,  ( )Nk t is the number of 

firms in portfolio k for period t, and T  is the number of periods in the sample period (38 

semi-annual periods). 

 

Summary statistics are presented in Table 1 using all NYSE/AMEX stocks and 

the 10-90 percentile performance breakpoints of JT.  Mean semi-annual returns for the 

P1, P2, and P3 portfolios are respectively 4.3 percent, 8.7 percent, and 9.8 percent.  A 

trading strategy that maintains a long position in the best performers and a short position 

in the worst performers (P3-P1) achieves "paper profits" of 5.5 percent per semi-year, 

significantly positive at the five-percent level.  Table 1 also reports statistics for the HLS 

strategy.  Consistent with the HLS study, for these estimates we include NASDAQ stocks 

and break the performance categories at the 30th and 70th percentiles.  For the HLS 

strategy, the mean performance of the winners and losers is less extreme such that the P3-

P1 profits decline to a still highly significant 3.7 percent semi-annual return.   

 

We note that the majority of trading strategy returns is generated by the short 

position. The P2-P1 position provides 4.4 percentage points of the total 5.5 percent P3-P1 

return for the JT strategy.   The asymmetry in returns is similar for the HLS strategy.  We 

also note that despite the positive mean performance observed over the sample period, 

there is considerable variation in abnormal returns for these strategies in any particular 

period.  For the JT strategy the standard deviation for the 5.5 percent P3-P1 return is 15.7 

percent with single period returns varying from -55 percent to +29 percent.  The evidence 

suggests that relative strength investors face considerable period-by-period portfolio risk.  

Arbitrageurs achieve systematic abnormal performance only over extended periods of 

time.   

 

For the most part, the literature contends that irrational investor behavior leads to 

"momentum" or sustained abnormal performance in stock returns and affords arbitrage 

profits through relative strength investing. 6  Models of investor behavior that generate 

                                                                 
6Conrad and Kaul (1998) and Chordia and Shivakumar (2000) suggest that momentum strategy profitability 
is due merely to cross-sectional variation in individual mean returns.  Martin and Grundy (2001) observe 
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momentum effects include, DeLong et al. (1990), Barberis et al. (1998), Daniel et al. 

(1998), and Hong and Stein (1999).  JT and HLS suggest that transaction costs are 

sufficiently small to allow generous profit opportunity for relative strength investors.  

The estimates of transaction costs used in these studies are based on primarily larger, 

more liquid stocks.  We find that the stocks which comprise relative strength investment 

portfolios are not of this type.  Since there is large cross-sectional variation in stock 

trading costs, the trading cost estimates used are highly understated. 

  

 Table 1 provides some statistics on the composition of the relative strength 

portfolios.  We find that the extreme performing stocks which comprise the securities 

traded in relative strength portfolios are unique.  For the JT strategy, the portfolio beta 

estimated over the sample period is largest for portfolios P1 and P3 with P1, P2, P3 

estimates of 1.19, 1.02, and 1.25, respectively.  We report the mean share price and 

market capitalization of stocks within each portfolio and find that the share price of 

stocks within portfolio P1 are much lower than those in the other portfolios.  The mean 

share price for stocks in portfolios P1, P2, and P3 is respectively, $9.19, $30.31, and 

$34.51.  We find that the size of the firms in the three portfolios is much smaller for the 

relative strength portfolios P1 and P3.  The mean market capitalization for stocks in 

portfolios P1, P2, and P3 is respectively, $0.4 billion, $1.7 billion, and $1.0 billion.   We 

also find that the P1 and P3 stocks are less likely to be traded on the NYSE.  Of our 

NYSE/AMEX sample the proportion of portfolio P1, P2, and P3 stocks which are traded 

                                                                                                                                                                                                 
that standard risk measures do not explain relative-strength portfolio performance.  JT find that momentum 
returns do not increase standard risk measures.  We perform a similar test estimating CAPM and Fama-
French model loadings for each of the strategies in Table 4. If risk explains the observed patterns, the 
loadings should be decreasing in price and abnormal returns should exhibit little monotonic pattern.  The 
results suggest that this is not so.  CAPM beta estimates range from -0.34 to 0.22.  Those with significant 
positive beta estimates are among the portfolios with small size and high price.  The opposite is true for 
those with negative betas.  This finding suggests that among these portfolios the best and worst performer 
positions are not perfect risk hedges.  In contrast to the ris k-based explanation, the portfolios with positive 
betas tend to be those containing firms with high prices and those with negative betas tend to be those 
containing firms with low prices.  This finding is opposite that expected of a risk-based explanation.  The 
momentum strategies for the low price portfolios achieve higher returns with lower betas.  For the Fama-
French model, the loadings on the SMB factor increase across the size groups, but show little variation 
across price level.  There is no consistent patterns across the HML loadings. The abnormal returns 
estimates are similar to those of Table 4.  Adjusting for risk has little impact on abnormal performance.  It 
appears unlikely that standard risk measures explain the relationships observed in Table 4.  Given the 
possibility of a bad-model problem, the rejection of standard risk measures does not imply rejection of 
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on the NYSE is 53 percent, 73 percent, and 59 percent, respectively.  The composition 

pattern for the HLS portfolios is similar.  In summary, the relative strength portfolios, and 

particularly portfolio P1 which generates the majority of the total strategy abnormal 

return, can be characterized as small, high beta, off-NYSE stocks. 

 

 The Table 1 characterization of the relative strength portfolios suggests that the 

assets which generate the abnormal returns may be relatively illiquid.  We investigate the 

relative liquidity of the portfolios by examining the aggregate distribution of CRSP daily 

returns for the stocks which comprise the three JT portfolios.  Figure 1 summarizes the 

results.  First, we note that daily returns of exactly zero percent is quite common among 

NYSE/AMEX stocks.  Over the sample period, zero return days occur on more than 20 

percent of the trading days.  Although  not reported in the figure, we observe that zero 

return days are rare for large capitalization firms yet commonly occur for more than 50 

percent of the days for small capitalization firms.  Figure 1 shows that the number of zero 

return days is particularly large for the P1 portfolio with 30 percent of the daily return 

values at exactly zero.   

 

Second, we find that the variation of non-zero returns is much greater among the 

P1 and P3 portfolio stocks than among the P2 portfolio stocks. Daily returns occur within 

the slightly positive 0 percent to 1 percent range at a rate of only nine percent for 

portfolio P1, 29 percent for portfolio P2, and 23 percent for portfolio P3.  In general the 

frequency of small, but non-zero daily returns is relatively smaller and the frequency of 

large magnitude daily returns is much larger for the P1 and P3 portfolios.  For example, 

daily returns occur within the 10 percent to 20 percent range at a rate of 5.2 percent for 

portfolio P1, 1.7 percent for portfolio P2, and 2.8 percent for portfolio P3.  The pattern is 

similar for other large magnitude ranges.  For the -10 percent to -20 percent range the 

pattern is similar with P1, P2, and P3 daily return frequencies of 5.3 percent, 1.3 percent, 

and 2.3 percent, respectively.   

 

                                                                                                                                                                                                 
Conrad and Kaul's hypothesis.  It may be that other better specified risk pricing models fully explain the 
observed patterns. 
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The pattern of high frequency zero returns, low frequency small-magnitude 

returns and high frequency large-magnitude returns is characteristic of market friction.  

With large trading costs, prices are sticky over time since trading friction prevents price 

updating.  The delayed updating of such securities generates an illusion of abnormal 

return momentum which is fully explained by the costs of trading.  We more formally 

motivate a friction-based explanation of relative strength returns in Section II. 

 

 

II. A Model of Price Friction 

 

In a market without friction, value-relevant information is instantaneously 

incorporated into market prices.  The mechanism that disciplines market prices is 

arbitrage.  Without trading frictions, costless arbitrage prevents market prices from 

straying from "fundamental values."  The introduction of trading friction reduces the 

discipline of the arbitrage function, hampering the market's ability to process information.  

With constrained arbitrage pressure, the incorporation of information into market prices 

can be substantially delayed. 

 

We motivate the effect of friction on price adjustment delay with a simple model.  

Consider a market with two sets of traders: arbitrageurs and liquidity traders.  Liquidity 

traders have incomplete information and trade for liquidity needs and on noise, in the 

spirit of Black (1986).  Arbitrageurs trade on informed signals of mispricing, yet only if 

the value of the accumulated information exceeds the transaction costs (Kyle, 1985; 

Amihud and Mendelson, 1986).  Arbitrageurs have access to enough capital to dominate 

the price impact of liquidity traders. 

 

In a frictionless market, the arbitrageur's model of expected trading returns is 

given as 

 

 ( ) ( ) ( ), * , ,r i t r i t i tε= +  (2) 
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where ( )* ,r i t is the expected return for asset i at time t based on the appropriate asset 

pricing model and ( ),i tε  is a mean zero term that captures the information not yet 

revealed in the liquidity trader pricing sequence.  The ( ),i tε  term may also be 

interpreted as the expected gains from arbitrage.  In a frictionless market, the no-arbitrage 

rule is stated as ( ), 0i tε = . 

 

 We now introduce trading friction into the market, defining α1<0 as the sell-side 

trading cost for asset i, α2>0 as the purchase side cost.  We define ( ),Ar i t as the after 

trading-cost arbitrage return to the informed arbitrageur, such that 

 

( ) ( ) ( )1, ,Ar i t i t iε α= − +   if ε(i,t)<α1(i)  

( ), 0Ar i t =    if α1(i)<ε(i,t)<α2(i)         (3) 

( ) ( ) ( )2, ,Ar i t i t iε α= −  if ε(i,t)>α2(i).  

 

For each asset, the threshold for arbitrage on negative information is α1(i) and the 

threshold for arbitrage on positive information is α2(i).  The arbitrageur makes trading 

decisions on the basis of the observable contemporaneous market-wide information and 

all “other ”information.  The “other” information may contain accumulated past market-

wide and firm-specific information that has not yet been incorporated into the price.  We 

assume that all information not contained in the contemporaneous market return is 

captured by the ε(i,t) term. 

 

With trading friction, the no arbitrage condition is adjusted to ( ), 0Ar i t ≤ .  

Since arbitrageurs face transaction costs, this condition differs from classical models.  

The trading costs faced by arbitrageurs allow for assets to trade among liquidity traders 

across a valid range of prices.  With large trading costs, price updating to ongoing news 

events may be substantially delayed as arbitrageurs are discouraged from moving prices. 
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The behavioral explanation of relative strength portfolio returns is that noise-

trader capital dominates arbitrageur capital, such that abnormal performance can persist.  

The insufficiency of arbitrage capital provides the opportunity for systematic profit 

making through buying past winners and selling past losers.  The alternative friction-

based explanation is that transaction costs and other barriers7 make arbitrage positions 

costly.  The resulting friction in price adjustment produces the illusion of performance 

persistence when paper profits are bound by trading costs.  We assert that the friction 

hypothesis merits greater attention.  Proponents of momentum trading argue that such 

strategies produce abnormal profit opportunities for informed investors.  Yet, claiming 

the existence of profit opportunity requires rejecting the friction hypothesis.  We re-

examine the friction explanation by considering whether trading costs are absolutely and 

cross-sectionally binding to relative strength investing returns.  Specifically, we test 

firstly, whether trading costs exceed relative strength trading profits, and secondly, 

whether relative strength trading profits are increasing in trading costs.  We begin with a 

discussion of an appropriate method for estimating trading costs. 

 

 

 

III. Trading Cost Estimation  

 
 
 The literature provides a menu of trading cost estimation procedures for 

consideration.  The first class of estimators measure the components of trading cost by 

examining transaction cost data directly.  Stoll and Whaley (1983) and Bhardwaj and 

Brooks (1992) produce estimates of "spread plus commission" (S+C) costs by directly 

examining quoted market bid-ask spread data and prevailing commission schedules.  

Since trades frequently occur off the quoted prices and with variation in commissions 

charged, quoted measures are likely to be inaccurate (Lee, 1993; Peterson and 

Fialkowski, 1994; Seppi, 1997).  As an alternative, a number of techniques produce 

"effective" or "realized" trading cost estimates by matching the quotes to the transaction 

                                                                 
7 Shleifer and Vishny (1997) argue that holding costs such as hedging costs and tracking error risk provide 
important barriers to arbitrage.  Pontiff and Schill (2001) find empirical support for such holding risk 
barriers among new equity offerings. 
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record.  Although these estimates may be in many ways superior to the quoted S+C 

approach, they are problematic for our purposes because (1) they still ignore substantial 

components of the total trading costs, such as price impact, commission, or short-sale 

constraints8 and (2) current data limitations do not allow estimation of effective trading 

costs for the entire CRSP universe over our 1980 to 1998 sample period.  

 

The second class of estimators indirectly infer trading costs based on price behavior.  

Roll (1984) proposes an estimator of implied bid-ask spread based on measuring the 

negative autocorrelation produced by bounces between the bid and ask prices.  Although 

the Roll technique produces reasonable estimates using intra-day data for samples of 

large capitalization Nasdaq stocks (Schultz, 2000), the measure is again unsuitable for 

our purposes because the over 60% of large capitalization NYSE/AMEX stocks and over 

35% of small NSYE/AMEX capitalization stocks experience positive serial correlation 

returns in violation of Roll’s conjecture. This result is exacerbated for NASDAQ listed 

securities where over 65% of large capitalization stocks and over 40% of small 

capitalization stocks experience positive serial autocovariance. The disparity in the 

rejection rate of Roll’s conjecture of negative serial covariance is largely due to the 

strong tendency for zero return days we observed among small stocks. Paradoxically, the 

lack of zero returns produces invalid Roll estimates for more liquid stocks.   

 

Lesmond et al. (1999) provide an alternative indirect method for estimating trading 

costs based on earlier limited dependent variable (LDV) procedures by Tobin (1958), 

Rosett (1959), and Maddala (1983).  The Lesmond et al. method is appealing for three 

reasons, (1) the estimator is consistent with the model of price friction presented in 

Section II, (2) it avoids the data limitations of the other approaches since it relies 

exclusively on daily return data which is readily available from CRSP, and (3) it 

generates as estimator which includes all relevant components of total trading costs.  

Although the LDV estimate (like the Roll method) uses an entirely different set of data 

                                                                 
8 Omitted trading cost components, such as price impact and short sale constraints, are particularly 
important for the small, off-NYSE type of securities involved in relative strength investing strategies. Knez 
and Ready (1996) find that because of the poor depth of small firm quotes, effective spread are actually 
generally wider for trades of any significance on small stocks.  
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and approach than the direct methods, Lesmond et al. find that their estimates are highly 

correlated with and of reasonable magnitude when compared with estimates using other 

approaches.  Because of the noteworthy advantages of the LDV trading cost estimate, we 

focus on this approach and further discuss the estimation procedure in the next section. 

 

 

A. The LDV Estimate 
  
 

The maintained hypothesis is that arbitrageurs trade only if the value of the 

accumulated information exceeds trading costs.  If trading costs are sizeable, then 

Lesmond et al. argue that zero return days occur more frequently since new information 

must accumulate longer on average before arbitrage capital affects prices.  The higher the 

level of transaction costs the more zero return days are likely to occur.9   

 

As a simple specification of the return-generating process, r*, they use the common 

“market model” regression of the raw daily return on security i and time t,  r(i,t) , on the 

return of market index, rM(t),  

 

 ( ) ( ) ( ) ( )* , ,Mr i t b i r t e i t= + . (4) 

 

We follow the same approach.  In equation 4, the stock's return is assumed to be 

generated by price responses to market-wide and new firm-specific information through 

the terms b(i)rM(t) and e(i,t), respectively.  In a frictionless market, either index-wide or 

firm-specific information is immediately reflected in asset prices, regardless of the 

magnitude of the impact of the information. 10  As in equation 3, the transaction costs are 

                                                                 
9 This observation is consistent with that of Easley, Kiefer, O'Hara, and Paperman (1996) who observe that 
"on the NYSE it is common for individual stocks not to trade for days or even weeks at a time, while one 
stock in London never traded in an eleven-year period.  One characteristic of such infrequently-traded 
stocks is their large bid-ask spreads."  
10 Cohen et al. (1983) and Amihud and Mendelson (1986) assume that actual returns are determined from 
“expected” returns by adjusting for the bid-ask spread.  The market model is still valid, but only after 
transaction costs are exceeded. 
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modeled as α1 for sell side and as α2 buy side purchases.  Otherwise,  the actual return is 

modeled as zero.  

  

We can use equation 3 and 4 to form an econometric model. Assuming that 

returns are normally distributed, estimates of α1 and α2 are obtained by maximizing the 

following log-likelihood function, 

 

 

( )( ) ( )
( ) ( ) ( ) ( )( )

( )( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )( )

1
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1

1
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2 1

1 1
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L r i t i b i r t
ii

r i t i b i r t
ii

i i

α
σπσ

α
σπσ

= − + −

+ − + −

+ Φ − Φ

∑ ∑

∑ ∑

∑

 (5) 

 

where R1 and R2 denote the region where the measured return r(i,t) in the non-zero 

negative and positive regions, respectively, and rM(t) is the return to market portfolio on 

day t.  The other parameters b(i) and σ(i)2 represent the respective market risk beta 

estimate and the variance of the non-zero measured returns.  The first term corresponds to 

the negative market returns and second term corresponds to the positive market returns of 

equation 3.  The third term corresponds to the zero-return region that spans both positive 

and negative market returns. 

 

The sensitivity of the asset's dollar value to the general information environment 

is ( ) ( )Mb i r t .  If 1 2Mbrα α< <  then the observed dollar value of the security trading 

volume represents noise trading where the positive and negative market returns that span 

this liquidity trading region are consequently defined as 1 2
Mrb b

α α
< < .  The estimate of 

interest is the difference between α2(i) and α1(i), which represents the implied round trip 

trading costs for asset i.  We denote this estimate as, α2-α1.  Since this difference is an 
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estimate of investors' reservation returns, it includes all explicit and implicit trading costs 

(Keim and Madhavan, 1998).11 

 

Using the maximum likelihood formulation of equation 5 we estimate parameters, 

α1(i), α2(i), b(i), and σ(i), simultaneously following Lesmond et al. with a Marquardt-

Lavenberg iteration procedure and a finite difference approximation for the Jacobian.  

This requires using one year of daily returns for each stock that comprise our portfolio.  

Returns are obtained from the CRSP daily master file. For each semi-annual period we 

estimate the transaction costs using the returns up to one week before the portfolio 

performance period so as not to contaminate the estimation results with performance 

results.  Thus, for a portfolio performance period that began on January 1, we estimate 

the trading costs for each firm individually from January 1 to December 24 of the prior 

year.  For a portfolio performance period that began on July 1, we estimate the trading 

costs from June 30 of the prior year to June 24 of the year of the performance evaluation 

again maintaining a separation of one week between the estimation and performance 

periods.12  We use the equally weighted market return to measure market-wide 

                                                                 
11Lesmond et al. (1999) argue that any bias due to misspecification of the return generating model is netted 
out in the LDV estimate. “The intercept term usually included in the market model is now subsumed by 
transaction cost intercept terms. The intercept in the market model normally captures any misspecification 
in the market index that may not be mean-variance efficient. Thus any difference in the alphas across assets 
may simply be due to an inefficient mean-variance market index and not transactions costs. Since we are 
interested in the difference of the α2-α1 to determine the round-trip transaction costs, any effect of model 
specification on the transaction costs is very small. We verified this by running a simulation using a 
benchmark that was likely to be inefficient. We constructed a benchmark portfolio that was composed of 
securities based on size decile. For securities in each decile we used a mismatched benchmark that was 
composed solely of stocks in another decile at the opposite extreme. For example, decile 10 securities were 
grouped in decile 1, size decile 9 securities were grouped into decile 2, etc. We then estimated the 
transaction costs with the LDV model using this misspecified benchmark. For comparison purposes, we 
used the equally weighted index as a more “proper” benchmark. We found that the LDV estimates of α2-α1 

were different in the third decimal place regardless of size decile. Thus we do not believe the results are 
sensitive to the choice of a broad market index” (p. 1120).  We have further tested this claim and found that 
the α2−α1 estimates also appear to be immune to the addition of alternative factors.  For example, the 
addition of a daily Fama and French (1993) SMB factor in the LDV model has a negligible effect on the 
α2−α1 estimates.  We solved algebraically for the LDV model omitted factor bias in the α2−α1 estimate and 
found that it is offset by two countervailing terms.  A detailed discussion of our analytical and empirical 
testing of the LDV model is available by request. 
12 Since the returns used to generate the relative strength portfolios (months t-6 to t-1) overlap with those 
used to estimate the α2−α1 values (months t-12 to t-1), the LDV estimates of the respective portfolios may 
be biased in some way.  To test for any bias, we estimate the LDV model using returns for the year prior to 
the measurement period (months t-18 to t-6).  The estimates are virtually unchanged.  Using the lagged 
estimation period appears to make little difference on the LDV estimates. 
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information because of the equal weight each firm receives in our portfolio formation 

procedure. 

 

Figure 2 provides a histogram of the α2-α1 estimates of round-trip trading costs 

for each firm period.  The frequency distribution is highly skewed with estimates most 

commonly found between two and four percent, but with almost eight percent of the 

estimates greater than 20 percent.  The sample mean α2-α1 is 8.1 percent while the 

median is 5.1 percent.  Stated otherwise, arbitrageurs are not willing to take positions on 

most stocks unless the expected abnormal returns are greater than five percent.  Our 

estimates appear to be consistent with the magnitude and distributions characteristics of 

Lesmond et al. estimates.  We compare our findings to that of other studies in the next 

section. 

 

 

B. Other Trading Cost Estimates 

 

Traditional trading cost estimates are associated with large cross-sectional 

variation (Bessembinder, 1999).  For large capitalization stocks, round-trip trading cost 

estimates are generally between one and two percent over our sample period; however, 

for small capitalization stocks, the estimates are much larger at five to nine percent (see 

Stoll and Whaley, 1983; Kothare and Laux, 1995; Knez and Ready, 1996; Chan and 

Lakonishok, 1997; and Keim and Madhavan, 1998). Jones and Seguin (1997) find that 

the mean bid-ask spread for all Nasdaq stocks is 12 percent and 18 percent for small 

Nasdaq stocks.  As a point of reference, we compare the α2−α1 estimates to those of other 

standard trading cost estimation procedures: the quoted spread-plus-commission estimate, 

the Roll estimate, and the effective spread estimate. 

 

 We obtain quoted spread-plus-commission estimates similar to those used by 

Stoll and Whaley (1983) and Bhardwaj and Brooks (1992).  To obtain these estimates, we 

use the NYSE's Trades and Quotes (TAQ) database to provide quoted spread estimates 



 16

for the 1994 to 1998 sample period.13  The end-of-month bid-ask quote is tabulated for 

each firm over each annual trading period to produce 12 bid-ask quotes that are averaged 

to produce an annual spread measure.  This annual spread measure is tabulated on 

proportional basis and is defined as, 

 

 ( ) ( ) ( )( ) ( ) ( )( ){ }
12

1
2

1

1, , , / , ,12Spread i t Ask i Bid i Ask i Bid i
τ

τ τ τ τ
=
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The commission schedule is determined using the discount brokerage schedule 

from CIGNA financial services that is a standard (broker-assisted) commission schedule 

and reflects competitive commission rates for our sample period.14  The principal amount 

is calculated using information from the NYSE, AMEX, and NASDAQ fact books as to 

the average trade size (in shares) for each year from 1994 to 1998.  TAQ data is 

unavailable prior to 1994.  For comparison purposes the average trade size in 1998 is 

1,063 shares, 2,334 shares, and 1,236 shares, respectively for the NYSE, AMEX, Nasdaq.  

Thus the principal amount is determined using the share price multiplied by the average 

trade size of the listing market.  Summing the spread and commission estimates yields the 

S+C estimate of representative trading costs experienced by investors in each security for 

each year.   

                                                                 
13 We choose to compare the LDV estimate to the quoted spread estimate because of the difficulty in 
estimating spreads for a wide cross-section of stocks.  Traditional effective spread estimation techniques 
are generally applied only to a small sub-sample of more liquid stocks, not the entire CRSP universe. 
14 The commission schedule is as follows:  

Transaction Amount Commission 
$0-$2,500 $29 +1.7% of  Principal Amount 
$2500.01-$6,250 $55 +0.66% of Principal Amount 
$6,250.01-$20,000 $75 +0.34% of Principal Amount 
$20,000.01-$50,000 $99 +0.22% of  Principal Amount 
$50,000.01-$500,000 $154 +0.11% of Principal Amount 
$500,000+ $254 +0.09% of Principal Amount 

For stocks under $1.00 per share the commission rate is $38 plus 4% of principal. The overriding minimum 
commission is $38 per trade.  Although the magnitude of the commissions in this schedule may appear high 
with respect to the on-line commission rates offered in the later part of the sample period.  We use the 
schedule to be consistent with that of those using this method in the literature by using the average 
commission rate charged over the sample period.  We do find, however, that our conclusions are robust to 
excluding commission costs entirely.  Also, the use of a commission schedule for Nasdaq firms may 
overstate the true commission costs experienced by trading individuals as the Nasdaq listed firms 
sometimes lump commissions costs into the spread (Plexus Group).  Thus, for some firms we may be 
overstating the quoted costs for trading in those securities. 



 17

 

To provide a comparison with other commonly used transaction costs measures, 

we provide estimates using the Roll (1984) methodology.  To implement this approach, 

we use one year of daily security returns identical to that used to estimate the LDV 

model’s estimate of transaction costs.  All Roll estimates from a return series with 

positive serial autocovariance are ignored.  Ignoring those stocks that violate Roll’s 

conjecture does not bias our findings as we primarily retain the less liquid stocks.15  

Using only these cases provides the best estimates for the Roll model and a convenient 

comparison with the LDV model’s results consistent with our primary hypothesis of a 

friction effect centered on small stocks.   

 

To complete the alternative transaction cost comparison, we examine the 

“effective spread” defined as twice the absolute value price deviation from the bid-ask 

midpoint.  The effective spread is estimated for the closing trade price and last quote of 

the day.  We infer the trade direction using the following algorithm roughly based on the 

Lee and Ready (1991) procedure.  If the trade price is greater than the midpoint of the 

quote then the trade is classified as a buy.  If the trade price is less than the midpoint of 

the quote then the trade is classified as a sell.  If the trade is at the midpoint then the 

effective spread becomes zero.  Due to the sheer enormity of processing intra-day data 

over such a large cross-section and times-series, this is accomplished for the entire 

sample period using only the last day in December for each year.  

 

The correlation between the LDV estimate and the other trading cost estimates is 

relatively high.  For the NYSE/AMEX stocks, correlation coefficients between the LDV 

estimates and the quoted S+C measure, the Roll spread measure, and the effective spread 

measure are respectively, 0.88, 0.78, and 0.51.  The correlation is even higher when 

NASDAQ stocks are included with respective correlations of 0.90, 0.73, and 0.60.  The 

high correlation between the two very different approaches is consistent with Lesmond's 

(1995) findings.   

                                                                 
15 However, Lesmond (1995) shows that using only those firms with negative serial autocovariance (i.e. 
obeys Roll’s conjecture), the LDV model’s estimates are still more highly correlated with the quoted bid-
ask spread than the Roll model estimates. 
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In Figure 3, we compare the annual mean round-trip trading cost estimates over 

the sample period for all NYSE/AMEX/NASDAQ stocks in size class 2 and 5.  Both the 

LDV measure and the S+C quotes are similar in pattern and magnitude. The figure 

illustrates both the time-series and cross-sectional variation in trading costs.  For size 

class 2, the α2- α1 estimate remains between eight and 16 percent while the S+C 

estimates are consistently slightly larger.   For the larger firms, the mean α2-α1 estimate 

declines from six percent to almost two percent.  Again the S+C estimate is slightly 

greater.  The expected relationship between the LDV and S+C estimates is unclear.  The 

S+C estimate certainly overstates the effective spread and commission facing marginal 

arbitrageurs, but omits other important costs such as taxes, price impact, and short-sale 

constraints.  The Roll spread and effective spread measures are, as predicted, well below 

(about half) the LDV and S+C estimates.  The cross-sectional and time-series variation in 

trading costs emphasizes the importance of matching the trading strategy's asset specific 

characteristics when estimating the appropriate trading costs.  We turn to this process in 

the next section.   

 

 

IV. Do Relative Strength Portfolio Returns Exceed Trading Costs? 

 

We test the magnitude of our trading-cost estimates by comparing the average 

gross P3-P1 returns for various momentum strategies to the respective transaction cost 

estimates.  By the friction hypothesis, relative strength returns must not exceed the 

respective expected transaction costs.  In Panel A of Table 2, we report the mean α2-α1 

trading cost estimate for the semi-annual holding period.  We repeat the P1, P2, P3, and 

P3-P1 estimates from Table 1 for reference ease.  For the JT strategy, investors in the 

long position face 5.9 percent of cost from P3 to generate six-month returns of 9.8 

percent.  For the short position, investor face 7.7 percent of cost from P1 to generate six-

month returns of 4.3 percent.  In aggregate, the strategy generates net P3-P1 profits of 5.5 

percent at a considerable estimated combined α2-α1 cost of 13.6 percent.  As a point of 

comparison, we provide the mean S+C estimate for the semi-annual strategy.  The S+C 
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approach generates a mean direct trading cost estimate of 16.3 percent for implementing 

the momentum strategy. Since the S+C source data is limited, the 16 percent S+C 

estimate is based only on the latter part of the sample period and so is not directly 

comparable to the 14 percent α2-α1 estimate. To provide a comparable statistic, we also 

report the mean α2-α1 estimate for the same period (1994-1998). The α2-α1 estimate for 

the P3-P1 strategy is 12.2 percent. Given the trends observed in Figure 3, the decline of 

the α2-α1 estimate in the later period is expected. We observe that the α2-α1 estimate is 

consistently below the S+C estimates. All four α2-α1 trading cost estimates are below the 

respective S+C estimates when compared with the same sample period. As an additional 

reference estimate we provide the mean Roll spread and effective spread estimates for 

portfolios P1, P2, and P3.  We find that mean 5.5 percent P3-P1 returns are 

approximately the same as the total Roll spread and effective spread costs of 6.3 percent 

and 4.9 percent, respectively.  Because of the relatively large spreads associated with the 

P1 portfolio, relative strength strategy returns do not appear to even exceed bid-ask 

spread costs.  The pattern is even more extreme for the HLS strategy. Trading profit 

returns of 3.7 percent are associated with an α2-α1 cost of 18.8 percent.  The trading cost 

estimate rises substantially due to the inclusion of less liquid NASDAQ stocks.  Again, 

trading costs swamp the relative strength returns.  Even the Roll spread and effective 

spread estimates of 7.0 and 8.3 percent, respectively, exceed the anticipated trading 

profits. 

 

Since the standard momentum strategy requires four trades (opening and closing 

the position in two sets of securities), the average one-way LDV trading cost estimate is 

3.4 and 4.7 percent, respectively, for the JT and HLS strategies.  The magnitude of this 

trading cost estimate is much larger than previous estimates of relative strength strategy 

trading costs.  For example, JT base their trading cost estimate of one percent on 

Berkowitz et al. (1988). We argue that such transaction cost estimates substantially 

underestimate the true execution costs for a number of reasons.  First, the Berkowitz et al. 

estimate excludes a number of relevant and important trading costs facing investors such 

as bid-ask spread, taxes, short-sale costs, and holding period risk.  By comparing trading 

profits to commissions and price impact costs only, JT portray a false sense of net 
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profitability.  Second, a constant or single period measure is unable to capture the 

substantial time-series variation in trading costs (Lesmond et al., 1999).  The Berkowitz 

et al. measure is based solely on transaction data from January to March 1985.  Third, 

since trading costs exhibit substantial cross-sectional variation, using a NYSE trade-

weighted measure is not appropriate as a benchmark if the securities used in such 

strategies are disproportionately drawn from among large trading cost stocks as suggested 

by Table 1 and Figure 1.  To investigate the cross-sectional trading cost characteristics of 

our portfolio composition, we contrast the trading costs of portfolios P1 and P3 with that 

of P2.  We observe large differences in α2-α1 trading cost estimates across portfolios. For 

the JT strategy, portfolios 1 and 3 exhibit mean trading costs estimates of 7.7 and 5.9 

percent, respectively.   Portfolio 2's mean estimate of 3.5 percent is more representative 

of stock trading costs since it includes 80 percent of all stocks, yet the costs are 

significantly lower than that of relative strength portfolio stocks.  For the HLS strategy, 

portfolios 1 and 3 exhibit mean trading costs estimates of 10.6 and 8.2 percent, 

respectively, where as portfolio 2's mean estimate is just 6.3 percent.  The pattern is 

similar for the quoted S+C, Roll spread, and effective spread measures.  The composition 

of the trading portfolios and particularly portfolio 1 is made up of stocks that are 

relatively more costly to trade.  The extraordinary high trading cost observed for relative 

strength strategies results from both the high trading frequency of strategy execution as 

well as the costly nature of the specific securities traded. 

 

Our estimates assume that relative strength traders liquidate their positions in each 

period.  Since next period's strategy may result in the same position for some stocks, the 

trader can avoid incurring unnecessary trading cost by maintaining the position in those 

stocks into the next period.  To provide some measure of the potential savings, we report 

the mean fraction of stocks which remain within the same portfolio in sequential periods.  

If subsequent performance is independent of past performance, we expect the retention 

proportions to be equal to the breakpoint percentiles, 10 percent or 30 percent.  If 

subsequent performance is correlated with past performance, we expect the retention 

proportions to be greater than the breakpoint percentiles.  We find portfolio persistence to 

be strongest among the poor performers.  For the P1 portfolio, 22 percent of the worst 
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performing 10 percent of NYSE/AMEX stocks continue to be among the worst 10 

percent in subsequent periods and 38 percent of the worst 30 percent of 

NYSE/AMEX/NASDAQ stocks continue to be among the worst 30 percent in 

subsequent periods.  Within the P3 portfolio, the retention proportion is 14 percent and 32 

percent, respectively for the JT and HLS strategy, not much greater than through random 

shuffling.  If the arbitrageur can avoid 22 percent of his P1 trading cost and 14 percent of 

his P3 trading cost, the expected total JT strategy cost falls from 14 to 11 percent, still 

well above the mean abnormal return of 5.1 percent.  The effect of trade conservation is 

similar for the HLS strategy.  

 

HLS suggest that investors can generate abnormal profits by pursuing relative 

strength trading among the mid- to small-size firms.  We repeat their experiment. At the 

beginning of each period, we sort all CRSP listed stocks by market capitalization and 

group them into size-based quintiles based on NYSE/AMEX breakpoints.  Market 

capitalization is measured six months prior to portfolio formation so that the past six 

months' performance does not affect firm classification.  Size class 1 contains the 

smallest firms and size class 5 contains the largest firms.  Within each class, we sort 

stocks by past period return performance using the 30-70 breakpoints.  Within the size 

sub-samples, we compute the P3-P1 momentum profits. We report our results in Panel B.  

Consistent with HLS, size class 2 generates P3-P1 returns of five percent and size class 5 

generates P3-P1 returns near zero.    

 

The friction-based explanation predicts that strategies which purport larger paper 

profits are accompanied with larger trading costs.  To begin, for each size class we report 

the mean proportion of zero-return trading days. For the smallest size class, there is no 

close-to-close price change in 44 percent of the trading days.  Among the largest stocks, 

the zero returns occur on only 13 percent of the trading days.  This evidence is consistent 

with increased trading friction among the smaller stocks.  We also report mean trading 

cost estimates by size class.  Trading cost estimates include round trip costs for portfolio 

P3 plus roundtrip costs for P1, (α2-α1)3+(α2-α1)1. The total round-trip transaction cost 

estimates for size classes 1 through 5 are respectively, 30.9, 13.1, 8.6, 6.1, and 4.8 
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percent.  The P3-P1 profits of 1.4, 5.3, 4.2, 2.9, and -0.2 percent, respectively, decrease 

with the trading cost values, yet remain well below the α2-α1 estimates.  Strategies which 

focus on classes of stocks with high expected momentum profits such as size class 2 with 

P3-P1 of 5.3 percent, also face high trading costs of more than 13 percent.  The quoted 

S+C, Roll spread, and effective spread estimates and the portfolio retention figures are 

again provided with similar conclusions.  The effective spread estimates, for example, 

decline from 15 percent for the smallest stocks to one percent for the largest stocks. 

 

Lee and Swaminathan (2000) identify a relationship between share turnover and 

momentum returns. They also reject the friction hypothesis in favor of behavioral 

models.16 We follow their approach by sorting stocks into turnover class based on the 

mean shares traded divided by the number of shares outstanding over the six months prior 

to the measuring period.  Matching their approach we exclude from this analysis stocks 

not traded on the NYSE or AMEX (due to broker-to-broker trade recording problems 

with Nasdaq data) or stocks selling at pre-holding period share prices of less than one 

dollar.  Within each size class we form performance portfolios as before and compute 

mean returns over the six-month holding period.  The results are reported in Panel C.  

Across turnover classes the P3-P1 returns increase from -1.8 percent to 6.1 percent.  Yet, 

the large P3-P1 return for turnover class 5 is still less than the aggregate trading cost 

estimate of 8.0 percent.  Lee and Swaminathan suggest that relative strength returns are 

greater for a long position in low volume winners and a short position in high volume 

losers.  In our smaller sample period the advantage of such cross position is not large.  

The mean P3(turnover class=1)-P1(turnover class=5) returns are only 6.2 percent.  

Estimates of trading costs are even larger for the cross-position strategy. 17 

 

                                                                 
16 Lee and Swaminathan assert that turnover and transaction costs are not highly correlated suggesting that 
turnover provides information about something other than market liquidity.  Chordia, Subrahmanyam, and 
Anshuman (2000), however, find that turnover and market liquidity are highly correlated, and in fact, use 
turnover as a proxy for liquidity. We find correlation coefficient between Lee and Swaminathan's turnover 
measure and the LDV and S+C estimates to both be significant at -0.168 and -0.254, respectively.  
17 Lee and Swaminathan recommend a trading strategy that uses eight trades. Four trades in both high and 
low turnover stocks for the strong performer portfolio and four trades in both the high and low turnover 
stocks for the weak performer portfolio.  Such a strategy roughly doubles trading costs with little effect on 
returns. 
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The evidence for positive trading profit net of transaction costs appears to be 

weak.  The magnitude of trading costs, particularly for those firms which play an 

important role in generating abnormal performance, appears to be sufficiently large such 

that realizing net trading profits is illusive.  Given the magnitude of transaction costs, we 

see little evidence to suggest that momentum strategies generate systematic positive 

trading profit across the variety of strategies we have examined.18  Although we observe 

that trading costs exceed the magnitude of the relative strength returns for the specific 

strategies we consider, there is an infinite number of momentum-oriented strategies to 

evaluate so we can not reject the existence of trading profits for all strategies.   Moreover, 

the lack of comprehensive daily return data prohibits us from directly estimating the 

specific trading costs associated with the longer sample period used by JT or Moskowitz 

and Grinblatt (1999).  However, given the magnitude of the estimates in Table 2, the 

three to six percent semi-annual return generated by these strategies does not appear to be 

extraordinary given the likely trading costs required for implementation.   

 

 

V. Are Relative Strength Returns an Information Diffusion Effect? 

 

In this section, we examine the source of the underlying "momentum" pattern in 

stock returns.  We focus particularly on the implications of the Hong and Stein model 

because of its cross-sectional predictions.19  Hong and Stein advocate that relative 

                                                                 
18 Grundy and Martin (2001) report that momentum strategy profits are no longer statistically significant 
with round-trip transaction costs of 1.5 percent.  Our evidence suggests that trading costs are substantially 
larger. 
19 Lee and Swaminathan (2000) find that relative strength returns are increasing in share turnover.  We 
devote more space to the Hong and Stein implications because of their stronger theoretical motivation.  We 
abridge our findings regarding the Lee and Swaminathan results  in this footnote.  We use our previous 
turnover class specification to compare relative strength returns across turnover and trading cost class. In 
unreported results, we find that controlling for turnover, P3-P1 returns are generally increasing in trading 
cost, especially for the higher turnover classes of stocks.  For the highest turnover class, the lowest 
transaction costs stocks experience a 1.4 percent return while the highest transaction costs stocks 
experience a 7.3 percent return. Similar results are obtained for share turnover classes 3 and 4 with returns 
increasing in the transaction costs.  The rise in P3-P1 returns is more pronounced for turnover class 4 than 
for turnover class 5 and much more pronounced than for turnover class 3.  Turnover class 3 stocks do 
experience a monotonic rise in P3-P1 returns, but the rise in return are much less extreme than that 
experienced for turnover classes 4 and 5.  The results for turnover classes 1 and 2 demonstrate little 
monotonicity in P3-P1 returns with negative returns realized, -1.4 percent in transaction costs class 2 and -
6.3 percent in the highest trading cost class for share turnover 1.  Peak returns are experienced in trading 



 24

strength returns are explained by sluggishness in the diffusion process of information 

rather than by friction in price formation.  Because of the information sets used by 

investors to evaluate asset prices, assets with slow information diffusion experience slow 

price arrival.  To test the information-diffusion theory, HLS choose size and coverage as 

proxies for information diffusion speed, suggesting that small, thinly covered stocks 

should experience slow information diffusion. Their results are consistent with their 

predictions. 

  

Our concern with this inference is that the HLS findings may also be consistent 

with the friction hypothesis. Firstly, the size of market capitalization of a stock is 

certainly correlated with its share price.  Because percentage trading costs are inversely 

related to share prices, trading costs for small-cap stocks are typically higher than for 

trading costs for big-cap stocks.  The friction explanation suggests that price updating is 

slower for high cost stocks, resulting in some serial correlation of returns.  HLS 

acknowledge the inference problems that arise due to the correlation between size and 

transaction costs.  Their choice of the coverage proxy attempts to avoid this problem.  

They claim that coverage is uncorrelated with transaction costs, but only weakly test this 

important assumption. 20  We provide a more rigorous test.  Our objective is to test the 

source of the underlying "momentum" phenomenon.  We investigate whether return 

patterns are more consistent with an information diffusion story or with a friction-based 

explanation. 

 

To distinguish between the two theories, we re-examine the HLS cross-sectional 

evidence incorporating our transaction-cost estimates.  We begin by replicating their size 

                                                                                                                                                                                                 
cost classes 3 and 4.  However, none of the returns exceed the transaction cost estimates enhancing the 
central premise of our no-arbitrage hypothesis.  The lack of monotonicity in P3-P1 returns may be a feature 
of how share turnover is defined: trading volume divided by firm size.  Low turnover stocks may simply 
proxy for low trading volume relative to high share price with high share price stocks exhibiting less of a 
trend with transaction costs due to a reduced transaction costs effect.  The opposite is true for high turnover 
stocks where higher trading volume coupled with a lower share price enhances the trend with P3-P1 returns 
and transaction costs. 
20 In fact, analyst coverage has been used as a proxy for transaction costs (Brennan and Subrahmanyam, 
1995).  HLS do test their assumption using alternative transaction-cost proxies: turnover and option listing.  
We expect these measures are rather noisy proxies. 
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and coverage portfolio results and then comparing the cross-sectional effect of the 

variables on relative strength profits. 

 

 

A. Cross-sectional Correlation 

 

As an initial test, we examine the correlation between our trading cost estimates 

and the HLS information diffusion speed proxies.  The HLS findings may be consistent 

with the friction hypothesis if firm trading costs are negatively correlated with the 

selected information-diffusion proxies.  In Table 3 we provide cross-sectional correlation 

coefficients between size, coverage, and trading cost.  Following HLS, we exclude size 

class 1.  All estimates are log transformed to reduce the effect of skewness.  

 

As with HLS, our data on analyst coverage comes from the I/B/E/S Historical 

Summary File which is available on a monthly basis beginning in 1976.  For each 

security in our sample we set the coverage to the number of analysts who provide fiscal 

year one forecasts six months before we implement our trading strategy.  Thus, for a 

trading strategy that begins in June, we use the number of analysts making fiscal year one 

forecasts in December of the prior year.21  If no analyst coverage is available from 

I/B/E/S we set the analyst coverage to zero.  We use the I/B/E/S provided ticker symbol 

which is converted to the “true” ticker symbol along with the CUSIP number provided by 

I/B/E/S to uniquely identify each firm six months prior to the performance evaluation 

period.  We are unable to uniquely identify approximately 0.5 percent (approximately 

600 firms-years) of the I/B/E/S firms due to missing ticker symbols on CRSP or CUSIP 

numbers that do not match those of CRSP.  Comparisons of our data to the summary 

statistics of HLS suggests that our data sets are nearly identical. 22 As in HLS, we find 

strong positive correlation of 0.67 between coverage and size.  The high correlation 

                                                                 
21 HLS note that the coverage results are robust regardless of exactly when the analyst coverage is 
measured.  They experimented with zero (as is our case), 12, and 18 months prior to the ranking period and 
obtain very similar results. 
22 To be certain that our results are not driven by differences in data, we replicate the summary statistics of 
HLS's Table III.  We find that the two data set are very similar.  Our data set contains slightly more firms.  



 26

between size and coverage motivates HLS's residual coverage measure which is the error 

term obtained from regressing the number of analysts on firm market capitalization and a 

Nasdaq listing dummy within each size class and period.  We generate the same variable 

(Residual coverage). 

 

 We find that all three information diffusion proxies, size, coverage, and residual 

coverage, are significantly negatively correlated with our four trading cost estimates with 

correlation coefficients ranging from -0.68 to -0.11.  The sign and magnitude of the 

correlation coefficients between the trading cost estimates and the information-diffusion 

proxies are such that the HLS variables may just be picking up trading cost effects.  If 

residual coverage is correlated with trading costs, it is unclear whether coverage proxies 

for information diffusion speed or trading costs.  We also report correlation coefficients 

with a residual α2-α1 estimate which removes the size effect.  This estimate is obtained 

by regressing α2-α1 on firm size and a Nasdaq dummy within each size class and for each 

period in the same manner as for coverage.  Still we find significant correlation between 

the coverage estimates and that of residual α2-α1.  The correlation coefficient between 

residual coverage and residual α2-α1 is significant at -0.18. 

 

 The strong negative correlation between trading costs and the information 

diffusion speed proxies call into question the legitimacy of the Hong at al. inferences. 

From their findings, it is difficult to distinguish whether returns decline in information 

diffusion speed or they increase in transaction costs. 

 

 

B. Size Effects 

 

HLS propose that (P3-P1) momentum profits are inversely related to market 

capitalization.  They attribute this pattern to the information diffusion model proposed by 

Hong and Stein (1999).  HLS predict that firms with slower rates of information 

                                                                                                                                                                                                 
For example, HLS list 5935 firms in 1988 whereas our data set includes 6047.  HLS report that 50 percent 
of their firms are covered by I/B/E/S in 1988.  Our figure is slightly less with 46 percent. 
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diffusion, such as small capitalization stocks,23 will exhibit greater momentum.  They find 

that beyond the smallest stocks, momentum profits become strongly positive and then 

diminish to zero as one increases the size of the firms used in the strategy.  They argue 

that the unexpected negative momentum observed for the smallest class of stocks is due 

to the thin market capacity or price discreteness characteristic of the tiniest stocks and can 

be ignored.   

 

Panel B of Table 2 provides the size-based sorting procedure of HLS.  As in HLS, 

the relative strength returns exhibit a decreasing pattern.  Across size classes, semi-annual 

returns are 1.4 percent for the smallest size class.  Relative strength returns among the 

medium size classes are strongly positive with mean returns of 5.3 percent, 4.2 percent, 

and 2.9 percent for classes 2, 3, and 4, respectively.  Relative strength returns are much 

smaller among the largest firms with a sample period point estimate of -0.2 percent. 

 

 

C. Share Price Effects 

 
Since market capitalization is a function of market price, it may be that the pattern for 

relative strength returns observed across size classes is more precisely a price effect 

rather than a size effect.  To test this implication, we sub-divide the size sub-samples into 

5 price classes.  Within each size class, we classify firms based on price level six months 

prior to portfolio formation.  The five categories are in increasing order: under $5, 

between $5 and $10, between $10 and $20, between $20 and $30, and over $30.24  Each 

of the 25 size/price groups is further divided into the three performance portfolios as 

before.  Momentum profits (P3-P1) are calculated for each of the 25 classes across the 19 

year sample period using the semi-annual holding period.  Results are provided in Table 

4.  Since there are few firms with large market capitalization and low stock price and vice 

versa, the estimates for these portfolios may be poor.  Portfolio returns and associated 

                                                                 
23 If investors face fixed costs of information acquisition, Hong and Stein (1999) and HLS suggest that 
information will diffuse faster for those larger firms among which their effort affords them to take greater 
positions.  
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statistics are invalidated for portfolios with less than ten stocks and statistics for groups 

with less than 10 valid period observations are not reported. 

 

 Controlling for price class, there appears to be little consistency in the return pattern 

across size classes.  Only price class 2 shows the decreasing pattern prescribed by HLS  

with P3-P1 returns peaking with a small size class.  Peak returns for price class 3, 4, and 

5 occur with the size class 3 and 4, much larger than predicted by the information-

diffusion model.  The integrity of the size level patterns appears weak.  

 

It is also worthwhile to examine the total variation across price class keeping size 

class constant.  The evidence in Table 4 suggests that the variation in momentum profits 

is relatively small across size classes once adjustments are made for price.  Within price 

class 2, P3-P1 profits are all between 6 and 10 percent across the size classes.  For price 

class 5, P3-P1 profits range from -1 to 3 percent.  The total variation and monotonic 

pattern of  P3-P1 appears to be much stronger across price class than size class.  For 

example, across size class 3, the ascending price class momentum portfolio return 

estimates are respectively, 22.7 percent, 7.8 percent, 6.1 percent, 3.4 percent and 2.6 

percent.  Across price class 3, the ascending size class return estimates are respectively, 

4.0 percent, 4.9 percent, 6.1 percent, 5.5 percent and 0.6 percent.  The P3-P1 estimates 

for the low price classes are nearly always consistently larger than that of the high price 

classes, with much greater cross-sectional variation in returns.  Relative strength 

investing returns appear to be much more a price effect than a size effect.  Since share-

price level is strongly inversely correlated with trading costs, such as bid-ask spread 

(Demsetz, 1968; Stoll and Whaley, 1983), the relative strength returns appear to be more 

likely related to trading costs than information diffusion.   

 

 

D. Coverage Effects 

 

                                                                                                                                                                                                 
24 Bhardwaj and Brooks (1992) use a slightly different price classification scheme.  We prefer our 
breakpoints due to the increase in cross-sectional variation.  We repeat our tests with the Bhardwaj and 
Brooks breakpoints and find little substantive change in the implications. 



 29

To further test the explanatory power of analyst coverage, we estimate relative strength 

profits across analyst coverage classes.  HLS find that controlling for size effects, relative 

strength profits are decreasing in coverage.  We repeat their experiment.   We sort all 

firms within size classes 2 through 5 by residual coverage and form coverage classes 

based on breakpoints at the 30th and 70th percentiles.  Across the 3 by 4 matrix we 

construct relative strength portfolios as before and report the associated P3-P1 profits in 

Panel A of Table 5.  As HLS, we find that relative strength profits generally decline in 

residual coverage, with some exceptions for the largest size classes.  Our data set 

replicates the findings of HLS  Since residual coverage is negatively correlated with 

estimates of trading costs, the results are also consistent with the friction hypothesis.  In 

order for the information diffusion proxies to be convincing they must provide 

explanatory power beyond that provided by trading costs. 

 

 As the information-diffusion model predicts that relative strength returns are 

decreasing in information-diffusion speed, the friction hypothesis predicts that relative 

strength returns are increasing in trading costs.  To control for trading costs we re-sort the 

stocks in Panel A by their α2-α1 estimate each period and form five equal trading cost 

classes.  Mean (α2-α1)1+(α2-α1)3 estimates vary from 2.7 percent for class 1 to 19.0 

percent for class 5 and are reported in Panel B of Table 5.  We form trading-cost-based 

relative strength portfolios and compute the P3-P1 returns. We find the estimates to be 

generally increasing in trading-cost estimate.  P3-P1 profits are respectively 3.8, 2.7, 4.6, 

5.4, and 6.7 percent, respectively for classes 1 through 5.  The positive relationship 

between trading costs and returns is consistent with the friction hypothesis.  Also, 

consistent with the implications of the friction hypothesis, all of the P3-P1 estimates are 

less than the mean trading cost estimates.  

 

To compare the explanatory power of residual coverage with that of our α2-α1 

estimates, we form residual coverage portfolios which control for trading cost.  Within 

each size and α2-α1 class, we compute breakpoints at the 30th and 70th percentile and 

form residual coverage classes.  We compute the P3-P1 estimates for each class.  The 

revised results are reported in Panel B.  After controlling for trading costs, residual 
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coverage appears to provide little explanatory power.  We find that relative strength 

returns for firms among only the largest trading costs (class 5) are decreasing in residual 

coverage.  Otherwise, there is little return relationship across coverage class.  We find 

little evidence to reject the friction hypothesis in favor of the Hong and Stein explanation.  

Scanning across the residual coverage classes the returns tend to increase in trading cost.  

Except for the large profits generated in the residual class 1, trading cost class 1 cell, the 

P3-P1 returns within each coverage class rise with trading costs. 

 

 

E. Information Diffusion Asymmetry and Trading Cost Asymmetry 

 

HLS predict and find asymmetry in the returns from relative strength positions.  

However, such asymmetry in returns is also consistent with the implications of 

transaction costs.  Diamond and Verracchia (1987) and Alexander (2000) discuss how 

short positions are particularly costly.  For example, borrowing costs and margin 

requirement costs are greater for short versus long positions.  Short sellers face risks of 

premature short-squeeze repayment.  Some stocks may be shortable only at high cost.  

All of these factors make classic relative strength strategies (short weak performers and 

long strong performers) particularly costly on the short side.  D'Avolio (2001) finds that 

stocks that have experienced past weak performance are more likely to maintain larger 

short sale costs.  A testable implication of this institutional feature is to expect that the 

relative strength returns be greater for weak performers (the short position) than for 

strong performers (the long position). 

 

We calculate the ratio of P2-P1 mean returns divided by P3-P1 mean returns.  This 

ratio measures the proportion of total returns which is due to the short position.  

Consistent with HLS, the ratio for our sample is greater than 0.50 at 0.66.  HLS attribute 

the asymmetric nature of relative strength returns to asymmetries in news publication.  

We argue that the increased returns found in weak performers may alternatively be due to 

the increased costs associated with short positions.  These increased costs allow greater 

mispricing to persist for securities which are overpriced rather than underpriced.   
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To test this implication, we compute the mean period LDV estimates α1 and α2.  

Since α1 is the trading cost estimate for price declines and α2 is the trading cost estimate 

for price increases, we can compare the relative magnitude of the two estimates to 

determine whether return behavior implies an asymmetry in trading costs.  We do this by 

computing the proportion of total roundtrip costs ( 2 1α α− ) that are represented by the 

sell-side costs ( 1α− ).  The proportion is calculated as ( )1 2 1α α α− − .  The estimate for 

the full sample is 0.54.  Although not much larger than 0.50, our trading costs estimates 

exhibit some asymmetry. 25  The price decline reservation point estimate is systematically 

below the price increase point.  These findings give further evidence against rejecting the 

friction hypothesis since market friction is likely to be greater for price declines than 

price increases. 

 

 

 

VI. Concluding Remarks 

 

The documentation of abnormal return anomalies has generated considerable 

support for the abandon of traditional rational-expectations-based asset pricing models in 

favor of behavioral-based explanations.  This reaction may be premature.  We find that 

the returns associated with relative strength investing strategies (buying past winners and 

selling past losers) can be explained by transaction costs or friction effects. We find little 

evidence that momentum strategies provide positive abnormal return opportunities net of 

trading costs.  The magnitude of the trading costs associated with these momentum 

strategies is much larger than previously appreciated, since the composition of standard 

relative strength portfolios is heavily weighted toward trading of particularly high 

transaction cost stocks.  Moreover, large cross-sectional variation in relative strength 

                                                                 
25 Since this test references a 0 intercept, the estimates of the asymmetry/short sale costs may suffer from 
model misspecification bias as discussed in Footnote 11. 
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returns is increasing in trading-cost proxies, suggesting that trading costs are binding to 

arbitrage.   

 

HLS find that relative strength returns are stronger for small and poorly covered 

stocks and attribute this finding to slower information diffusion among small stocks 

(Hong and Stein, 1999).  We argue that the variables used to proxy for information 

diffusion speed are also highly correlated with trading costs.  In fact, the information 

diffusion speed variables appear to provide little explanatory power after controlling for 

trading costs.  The size effect HLS document for relative strength returns is more 

precisely a price- level effect.  Transaction cost controls also largely eliminate the analyst 

coverage effect.  We accept that the Hong and Stein or othe r behavioral hypotheses may 

provide some additional impact on the mechanism that generates the underlying behavior 

of prices but our evidence suggests that momentum patterns are largely an artifact of the 

slow price updating of high transaction cost stocks.  The existence of performance 

persistence patterns in returns does not appear to conflict with information efficiency or 

suggest the existence of arbitrage opportunity.   

 

Although our evidence casts doubt on the gains from any momentum strategy, we 

do not attempt to reject all momentum strategies.  Explicitly investigating the host of 

existing recommended momentum strategies (e.g., Rouwenhurst's (1989, 1999) non-U.S. 

momentum strategies, Daniel and Titman's (2000) book-to-market portfolio strategies, 

and Gebhardt's (1999) bond market strategies) is left to future research.  Our work also 

calls into question the growing use of momentum factors in asset pricing models 

(Carhart, 1997; Jegadeesh, 2000; Choi, 2000).  Our findings suggest that such factors are 

more appropriately characterized and would be better modeled as trading cost or liquidity 

factors consistent with Amihud and Mendelson (1986), Amihud (2000), Hasbrouck and 

Seppi (1998), and Chordia et al. (2000). 
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Table 1  
Relative strength strategy holding period returns and portfolio characteristics 
 
The sample is composed of all ordinary common shares, excluding ADRs, REITs, and closed-end funds, 
listed on CRSP from January 1980 to December 1998. Using the CRSP monthly returns file, relative 
strength portfolios are constructed by sorting all listed firms by the return performance over the previous 
holding period.  Firms are classified into three portfolios based on the respective breakpoint percentiles of 
past performance.  Within the three portfolios, firms are initially equally weighted and held for the 
respective period.   The portfolio beta is estimated from the CAPM model with the CRSP value-weighted 
portfolio return as the market portfolio return.  Beta estimates are obtained for each portfolio over the 228 
months of the sample period.  The mean share price is estimated using the stock price at the end of the 
formation period and weighting each holding period equally.  The mean market cap is estimated identically 
to the mean share price using the market price and shares outstanding at the end of the formation period.  
Standard errors are reported in parentheses. 
 
  

Jegadeesh and Titman strategy 
10-90 performance breakpoints  

(NYSE/AMEX stocks) 

  
Hong, Lim, and Stein strategy 
30-70 performance breakpoints 

(NYSE/AMEX/NASDAQ stocks) 
  

P1 
 

 
P2 

 
P3 

 
P3-P1 

  
P1 

 
P2 

 
P3 

 
P3-P1 

 
Semi-annual portfolio returns 

        

 
     Mean 

 
0.0433 
(0.036) 

 
0.0868 
(0.023) 

 
0.0980 
(0.029) 

 
0.0546 
(0.026) 

 

  
0.0552 
(0.033) 

 
0.0850 
(0.023) 

 
0.0917 
(0.027) 

 
0.0366 
(0.017) 

     Minimum -0.451 -0.228 -0.232 -0.547  -0.331 -0.231 -0.258 -0.261 
     Maximum 
 
 

0.732 0.407 0.533 0.291  0.557 0.415 0.538 0.187 

Portfolio characteristics 
 

        

Portfolio beta  
 

1.19 
(0.08) 

1.02 
(0.03) 

1.25 
(0.05) 

  1.04 
(0.06) 

 

0.93 
(0.03) 

1.11 
(0.04) 

 

Mean share price 
 

9.19 
(0.67) 

30.31 
(1.60) 

34.51 
(3.48) 

  9.56 
(0.73) 

 

21.34 
(0.88) 

23.20 
(1.21) 

 

Mean market cap 
 ($ millions) 

407.8 
(50.4) 

1695.5 
(167.7) 

1009.2 
(197.3) 

  309.4 
(24.4) 

878.6 
(81.8) 

695.3 
(93.9) 

 

 
Proportion of stocks 
traded on the NYSE  
 

 
0.527 

 
0.730 

 
0.591 

   
0.182 

 
0.333 

 
0.259 
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Table 2 
Estimates of relative strength strategy trading costs 
 
The sample is composed of all ordinary common shares, excluding ADRs, REITs, and closed-end funds, 
listed on CRSP from January 1980 to December 1998. Using the CRSP monthly returns file, relative 
strength portfolios are constructed by sorting all listed firms by the return performance over the previous 
holding period.  Firms are classified into three portfolios based on the respective breakpoint percentiles of 
past performance.  Within the three momentum portfolios, firms are initially equally weighted and held for 
the respective period.  The table reports the returns associated with a short position in portfolio P1 and a 
long position in P3, return P3-P1. α2-α1 is the mean LDV trading cost estimate.  The α2-α1 reported figures 
are the mean estimates for all firms in portfolios P1 and P3 weighted equally by period. The S+C estimate 
is the direct quoted spread plus commission estimate for the abbreviated 1994 to 1998 sample period.  The 
Roll spread is the Roll (1984) spread estimate.  The mean effect. spread is the mean effective spread 
estimate.  The proportion of zero return days is the mean ratio of days with returns equal to zero to the total 
number of trading days for stocks in portfolios P1 and P3.  The proportion of positions retained is the mean 
ratio of stocks in portfolios P1 and P3 that remain in the respective portfolio in the following period.  
Standard errors are reported in parentheses.  In Panel B, the size class sub-samples are formed based on 
NYSE/AMEX market capitalization breakpoints calculated six months prior to the portfolio holding period 
but include all NYSE/AMEX/NASDAQ firms. The turnover class sub-samples are formed based on 
NYSE/AMEX market capitalization breakpoints calculated six months prior to the portfolio holding period. 
(α2-α1)k is the LDV estimate for portfolio k.  Panel C includes only stocks trading on NYSE/AMEX and 
for more than $1 following Lee and Swaminathan (2000). 
 
Panel A. Semi-annual estimates for full sample 
 Jegadeesh and Titman strategy 

10-90 performance breakpoints  
(NYSE/AMEX stocks) 

 Hong, Lim, and Stein strategy 
30-70 performance breakpoints 

(NYSE/AMEX/NASDAQ stocks) 
 P1 P2 P3 P3-P1  P1 P2 P3 P3-P1 
 
Relative strength portfolio returns 

       

Mean 
  (1980-1998) 
 

0.0433 
(0.036) 

0.0868 
(0.023) 

0.0980 
(0.029) 

0.0546 
(0.026) 

 

 0.0552 
(0.033) 

0.0850 
(0.023) 

0.0917 
(0.027) 

0.0366 
(0.017) 

 
Proportion of 
positions retained 

0.221 0.837 0.144   0.382 0.463 0.315  

 
Total trading cost estimates 

       

Mean α2-α1 
  (1980-1998) 

0.0767 
(0.005) 

 

0.0354 
(0.001) 

0.0594 
(0.004) 

0.1362 
(0.007) 

 0.1064 
(0.004) 

0.0628 
(0.006) 

0.0818 
(0.004) 

 

0.1882 
(0.003) 

Mean α2-α1 
  (1994-1998) 

0.0673 
(0.002) 

 

0.0317 
(0.001) 

0.0549 
(0.002) 

0.1222 
(0.003) 

 0.0854 
(0.005) 

0.0526 
(0.002) 

0.0672 
(0.005) 

 

0.1526 
(0.008) 

 
Spread + commissions estimates only  

       

Mean quotes 
  (1994-1998) 

0.0928 
(0.002) 

 

0.0456 
(0.004) 

 

0.0705 
(0.002) 

 

0.1632 
(0.002) 

 0.0938 
(0.004) 

 

0.0627 
(0.001) 

0.0753 
(0.004) 

0.1691 
(0.003) 

 
Spread estimates only 

       

Mean Roll spread 
  (1980-1998) 

0.0353 
(0.002) 

 

0.0173 
(0.001) 

 

0.0272 
(0.002) 

 

0.0625 
(0.003) 

 0.0392 
(0.002) 

 

0.0266 
(0.001) 

0.0312 
(0.002) 

0.0703 
(0.003) 

Mean effect. spread  
  (1994-1998) 

0.0310 
(0.001) 

 

0.0112 
(0.001) 

 

0.0177 
(0.002) 

 

0.0488 
(0.004) 

 0.0498 
(0.005) 

 

0.0272 
(0.001) 

0.0335 
(0.004) 

0.0833 
(0.006) 
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Table 2 (Continued) 
Estimates of relative strength strategy trading costs 
 
Panel B. Mean semi annual estimates by size class 
 (30-70 performance breakpoints for all NYSE/AMEX/NASDAQ stocks) 
  

 
 

P3-P1 

 
Proprtn. of 
positions 
retained 

 

 
Number of 
zero return 

days 

 
 

(α2-α1)1 
+(α2-α1)3 

 
 
 

S+C* 
 

 
Roll 

spread 
estimate 

 
Effective 
spread 

estimate* 

         
1 

(smallest) 
 

0.0143 
(0.019) 

 
 

0.304 44.3 
 
 

0.309 
(0.011) 

 
 

0.267 
(0.011) 

0.097 
(0.006) 

 
 

0.145 
(0.008) 

2 
 

0.0532 
(0.014) 

 

0.242 29.8 
 

0.131 
(0.004) 

 

0.118 
(0.005) 

0.054 
(0.003) 

 

0.056 
(0.002) 

3 
 

0.0422 
(0.013) 

 
 

0.239 23.2 
 
 

0.086 
(0.002) 

 

0.080 
(0.003) 

0.036 
(0.001) 

 
 

0.032 
(0.001) 

4 
 

0.0285 
(0.013) 

 

0.261 17.8 
 

0.061 
(0.002) 

 

0.059 
(0.002) 

0.027 
(0.001) 

 

0.018 
(0.001) 

S
iz

e 
cl

as
s 

5 
(largest) 

 

-0.0017 
(0.014) 

 

0.296 13.0 
 

0.048 
(0.004) 

 

0.041 
(0.001) 

0.021 
(0.001) 

 

0.010 
(0.001) 

*Available only for 1994 to 1998. 
 
Panel C. Semi annual estimates by turnover class  
 (30-70 performance breakpoints for all NYSE/AMEX stocks) 
  

 
 

P3-P1 

 
Proprtn. of 
positions 
retained 

 

 
Number of 
zero return 

days 

 
 

(α2-α1)1 
+(α2-α1)3 

 
 
 

S+C* 
 

 
Roll 

spread 
estimate 

 
Effective 
spread 

estimate* 

         
1 

(lowest) 
 

-0.0177 
(0.019) 

0.221 
 
 

42.4 
 
 

0.1007 
(0.004) 

0.138 
(0.006) 

0.042 
(0.001) 

 

0.036 
(0.003) 

2 
 

-0.0078 
(0.013) 

0.152 
 
 

33.6 
 
 

0.0881 
(0.003) 

0.110 
(0.002) 

0.040 
(0.001) 

 

0.028 
(0.001) 

3 
 

0.0079 
(0.012) 

 

0.137 
 
 

28.5 
 
 

0.0752 
(0.002) 

0.097 
(0.002) 

0.035 
(0.001) 

 
 

0.026 
(0.002) 

4 
 

0.0303 
(0.016) 

 

0.147 
 

25.5 
 

0.0750 
(0.002) 

0.093 
(0.002) 

0.036 
(0.001) 

 

0.023 
(0.002) 

T
ur

no
ve

r 
cl

as
s 

5 
(highest) 

 

0.0611 
(0.015) 

 

0.216 
 

21.4 0.0799 
(0.002) 

0.092 
(0.003 

0.038 
(0.001) 

 

0.025 
(0.001) 

*Available only for 1994 to 1998. 



Table 3 
Sample correlation coefficients 
 
This table includes all firm-period observations for ordinary common shares listed on NYSE, AMEX, and Nasdaq, excluding ADRs, REITs, and closed-end 
funds from January 1980 to December 1998 above the NYSE/AMEX 20th size percentile.  Size is measured by market capitalization.  Coverage is the number of 
analysts reporting earnings estimates with I/B/E/S.  S+C is a spread and commission estimate. α2−α1 is the LDV trading cost estimate.  Size, coverage and 
transaction-cost estimates are logarithm transformed.  Residual coverage and residual α2−α1 is the error term obtained from the respective coverage or α2−α1 
estimate regressed on size and a Nasdaq dummy variable within each size grouping and for each period. 
 
  

 
Size 

 

 
 

Coverage 

 
Residual 
Coverage 

 
 

Price 

 
Roll 

spread 

 
 

S+C 

 
Effective 
spread 

 

 
 

α2-α1 

 
Residual 

α2-α1 

 
Size 
 

 
1.000* 

 

 
0.662* 

 
0.000 

 
0.063* 

 
-0.462* 

 
-0.684* 

 
-0.365* 

 
-0.673* 

 
0.000 

Coverage 
 

 1.000* 0.694* 0.007 -0.436* -0.568* -0.340* -0.598* -0.118* 

Residual Coverage 
 

  1.000* -0.045* -0.122* -0.190* -0.106* -0.128* -0.178* 

Price 

 
   1.000* -0.014* -0.025* -0.013 -0.042* -0.006 

Roll spread 
 

    1.000* 0.662* 0.483* 0.698* 0.299* 

S+C 
 

     1.000* 0.524* 0.816* 0.453* 

Effective spread       1.000* 
 

0.516* 0.367* 

α2−α1 
 

       1.000* 0.509* 

Residual α2−α1 

 
        1.000* 

* Denotes significance at the 1-percent level.



Table 4 
Relative strength returns by size and price class  
 
The sample is composed of all NYSE, AMEX, and Nasdaq stocks listed on CRSP from January 1980 to 
December 1998. Return data is obtained from the CRSP monthly returns file (ordinary common shares 
listed on NYSE, AMEX, and Nasdaq, excluding ADRs, REITs, and closed-end funds). The size class sub-
samples are formed based on NYSE/AMEX market capitalization break points calculated six months prior 
to the portfolio holding period.  Sub-sample 1 contains the smallest firms and sub-sample 5 contains the 
largest firms. Within each size portfolio, firms are classified based on price level six months prior to the 
portfolio holding period.  The five categories are in order: under $5, between $5 and $10, between $10 and 
$20, between $20 and $30, and over $30.  Each of the 25 size/price sub-samples is further divided into the 
three performance portfolios. Firms with six-month return performance below the 30th percentile are 
classified into the P1 portfolio. Firms with performance above the 70th  percentile are classified into the P3 
portfolio. Within the three momentum portfolios, firms are initially equally we ighted and held for a six-
month period.  The table reports the returns associated with a short position in portfolio P1 and a long 
position in P3, return P3-P1. Estimates for classes with less than ten valid period observations are not 
reported.  The associated t-statistics are reported in parentheses.  The associated number of holding periods 
in each performance portfolio is reported in brackets.  
 
   

Price class 
   

1 
(lowest) 

 
2 

 
3 

 
4 

 
5 

(highest) 
 
1 

(smallest) 

 
0.0067 
(0.35) 
[38] 

 

 
0.0678 
(5.37) 
[38] 

 
0.0401 
(3.03) 
[38] 

 
0.0242 
(1.00) 
[35] 

 
-0.0127 
(-0.23) 

[13] 

2 0. 1005 
(3.27) 
[38] 

 

0.0991 
(6.45) 
[38] 

0.0486 
(3.56) 
[38] 

0.0143 
(0.98) 
[38] 

0.0060 
(0.37) 
[38] 

3 
 

0.2265 
(4.85) 
[31] 

 

0.0780 
(2.89) 
[38] 

0.0605 
(4.58) 
[38] 

0.0340 
(2.87) 
[38] 

0.0257 
(1.27) 
[38] 

4 
 

n.a. 
 
 
 

0.0601 
(1.61) 
[30] 

0.0553 
(3.29) 
[38] 

0.0311 
(2.31) 
[38] 

0.0281 
(1.92) 
[38] 

S
iz

e 
cl

as
s 

5 
(largest) 

 

n.a. 
 

 

n.a. 
 

 

0.0057 
(0.14) 
[35] 

-0.0272 
(-0.85) 

[38] 

0.0154 
(1.20) 
[38] 
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Table 5 
Semi-annual holding period returns for relative strength strategies by size, coverage, and transaction 
cost 
 
This table includes all firm-period observations for ordinary common shares listed on NYSE, AMEX, and 
Nasdaq, excluding ADRs, REITs, and closed-end funds from January 1980 to Decemb er 1998 above the 
NYSE/AMEX 20th size percentile.  Firms are classified into class by size, residual coverage, and α2−α1.  
The size classification is based on NYSE/AMEX break points.  The residual coverage classification is 
based on  full sample break points within each size class at the 30th and 70th percentile. The α2−α1 
classification is based on  full sample break points at the 20th, 40th, 60th, and 80th percentile.  All 
classification variables are estimated six-months prior to the holding period.  Each of the sub-samples is 
further divided into the three performance portfolios. Firms with past six-month return performance below 
the 30th percentile are classified into the P1 portfolio. Firms with performance above the 70th  percentile 
are classified into the P3 portfolio. Within the three momentum portfolios, firms are initially equally 
weighted and held for a six-month period.  In this table we report the returns associated with a short 
position in portfolio P1 and a long position in P3, return P3-P1.   The associated t-statistics are reported in 
parentheses.   
 
Panel A: P3-P1 returns sorted by size and analyst coverage 
   

Size Class 
  2 

(smallest) 
3 4 5 

(largest) 
 
1  

(lowest) 
 

 
0.0517 
(3.17) 

 
0.0551 
(3.04) 

 
0.0476 
(2.77) 

 
-0.0052 
(-0.22) 

2 0.0452 
(2.82) 

0.0297 
(2.17) 

0.0058 
(0.40) 

-0.0092 
(-0.64) 

     
3  

(highest) 
0.0304 
(2.00) 

0.0177 
(1.50) 

0.0174 
(1.28) 

0.0016 
(0.10) R

es
id

ua
l C

ov
er

ag
e 

C
la

ss
 

     
 
Panel B: P3-P1 returns sorted by implied transaction cost and analyst coverage 
   

Trading Cost ( α2−α1) Class 
  1 

(lowest) 
2 3 4 5 

(highest) 
 
(α2-α1)1+(α2-α1)3 

 
0.0274 

 
0.0462 

 
0.0674 

 
0.0958 

 
0.1902 

 
Full sample  (P3-P1) 

 
0.0380 
(2.31) 

 
0.0268 
(2.10) 

 
0.0464 
(3.74) 

 
0.0544 
(4.60) 

 
0.0665 
(4.02) 

 
1 

(lowest) 
 

 
0.0591 
(2.72) 

 
0.0298 
(1.75) 

 
0.0327 
(1.92) 

 
0.0419 
(2.68) 

 
0.0702 
(3.11) 

2 0.0046 
(0.33) 

 

0.0091 
(0.68) 

0.0414 
(2.75) 

0.0351 
(2.35) 

0.0533 
(2.64) 

  
R

es
id

ua
l C

ov
er

ag
e 

C
la

ss
 

3 
(highest) 

0.0051 
(0.35) 

0.0228 
(1.59) 

0.0379 
(2.61) 

0.0393 
(2.57) 

0.0336 
(1.44) 
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Figure 1. Histogram of daily returns by relative strength portfolio. The sample is composed of all 
NYSE/AMEX stocks listed on CRSP from January 1980 to December 1998. Using the CRSP monthly 
returns file (ordinary common shares, excluding ADRs, REITs, and closed-end funds), within each sub-
sample relative strength portfolios are constructed by sorting all listed firms by the return performance over 
the previous holding period.  Firms are classified into three portfolios based on breakpoints at the 10th and 
90th percentiles of past performance.  Within the three portfolios, firms are initially equally weighted and 
held for the respective period. Firms are sorted within daily returns categories where the daily return is 
within the (Min, Max) range. 
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Figure 2. Histogram of firm round-trip trading cost estimates.  The sample is composed of all 
NYSE/AMEX/NASDAQ stocks lis ted on CRSP from January 1980 to December 1998.  α2-α1 is the LDV 
trading cost estimate. The figure reports the number of firm period trading cost estimates within the 
respective range (min, max). 
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Figure 3. Mean round-trip trading cost estimates by size class and year.  Sample includes all 
NYSE/AMEX/NASDAQ stocks.  α2-α1 is the LDV trading cost estimate. Quoted S+C is the quoted spread 
and commission estimate.  
 
  

 

  
 


