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Abstract: 
 
I extend the Conditional Autoregressive Range (CARR) model of Chou (2001b) to 
use an Asymmetric CARR (ACARR) model to quantify the evolution dynamics of the 
downside risk of the financial markets.  It is shown in Chou (2001a,b) that the range 
can be used as a measure of volatility and the CARR model performs very satisfactory 
in forecasting volatilities of S&P500 using daily and weekly observations.  In this 
paper I allow separate dynamic structures for the upward and downward ranges of 
asset prices to allow for asymmetric behaviors in the financial market.  The types of 
asymmetry include the trending behavior, the skewness persistence and the 
interactions of the first two conditional moments via leverage effects, risk premiums, 
and other types of volatility feedbacks.  The return of the open to the max of the 
period is used as a measure of the upward range and the downward range is defined 
likewise.  I propose a Quasi Maximum Likelihood Estimation method for the model 
parameters.  Empirical examples using S&P500 daily and weekly frequencies 
provide consistent evidences supporting the asymmetry in the US stock market over 
the period 1962/01/02-2000/08/25.  The upward range and the downward range 
deviate from each other on the leverage effect, the weekday pattern, and the dynamic 
pattern.  The asymmetric model also provides sharper volatility forecasts comparing 
with the symmetric model.   
 
 
Keywords:  CARR, asymmetric CARR, GARCH, volatility modeling, leverage 
effect, value-at-risk, downside risk modeling, market crashes 
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1. Introduction 
 
The modeling of volatilities of speculative asset prices is of central concern in the 
recent literature of financial economics and econometrics.  As a measure of risk, 
volatility modeling is important to researchers trying to understand the nature of the 
dynamics of volatilities.  It’s also of fundamental importance to policy makers and 
regulators as it is closely related to the functioning and the stability of financial 
markets, which has a direct linkage to the functioning and fluctuations of the real 
economy.  Since the mid-70’s, there is a remarkable rapid surge and expansion of the 
market of derivative assets and this has further reinforced the concentration of 
attention on this subject.  Hedging funds play important roles in the portfolios of 
banks, whether commercial or investment, pension funds, insurance companies and 
the roles are essential in some securities houses.  Central bankers pay close attention 
to the development of the markets of derivatives as the off-balance-sheet activities 
increase in their regulated banks and as catastrophic losses occur at a non-trivial 
frequency, for example, the episodes of the Bearings Bank, the Orange County event, 
and the Long-Term Capital Company.  Whether such a trend is reversible1 is 
debatable but it’s clear that this trend is continuing at least in the near future, say 5 to 
10 years2.  Another thing clear is the fact that what is at stake is increasing 
dramatically.3 
 

Developed along the rise of the derivative markets is the literature on the 
modeling of the financial volatilities.  Both from theoretical considerations and from 
empirical modeling of the data, a time-varying volatility is essential in almost all 
studies of issues related to the derivative assets.  A milestone in the theory of 
derivative assets is Hull and White (1987), extending the Black and Scholes (1976) 
option valuation model with stochastic volatilities.  This is an important contribution 
because it explains away some empirical regularity associated with the deficiency of 
the Black and Scholes model, namely, the smile pattern, among others.  See Cox and 

                                                 
1 One of the consequences of the 1997-1998 Asian financial crises was the reconsideration of central 
bankers on the pro/con of the derivative markets.  Malaysia and Taiwan are two cases that the 
regulators have done some drastic policy moves halting the trade of some derivative securities related 
to foreign exchanges.  
2 Lawrence Summers in a recent address gives an analogy in describing the functioning of the financial 
industry in recent years by comparing it with a jumbo jet aircraft.  The speed and economic efficiency 
of the airplane is remarkable by all measures.  However, comes with the efficiency is the risk of a 
crash, complicated to estimate and almost unbearable to any airline company.  Does it mean we 
should revert to the less sophisticated means of transportation given the reported crashes?  
3 The above three examples of catastrophic risk related to derivative trading are related with (or has 
caused) the solvency of a reputable bank, a county government, and unknown number of 
commercial/investment banks with the loss amount large enough to cause the Federal Reserve Board to 
step in to avoid a large scale chain of multiple bank failures.   
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Rubinstein (1985) for a discussion of this issue.  Models of stochastic volatilities 
have surged in the finance journals and are seriously adopted by investment banks, 
e.g., see Lewis (2000).   
 

It’s known for a long time in statistics that range is a viable measure of the 
variability of random variables, among other alternatives.  In Chou (2000a) I propose 
as a simple yet useful measure of financial volatility using the range of asset prices 
within fixed time intervals.  In a subsequent paper, Chou (2001b), I propose the 
CARR (Conditional Autoregressive Range) model for range as an alternative to the 
modeling of financial volatilities.  It’s shown both theoretically and empirically that 
CARR models are worthy candidates in volatility modeling in comparison with the 
existing methodologies, say the GARCH models.  Empirically, the CARR model 
performs very satisfactory in forecasting volatilities of S&P500 using daily and 
weekly observations.  In all four cases with different measures of the "observed 
volatility", CARR dominates GARCH in the Mincer/Markovtz regression of 
forecasting evaluations.  The CARR model, not only representing a good volatility 
model, also extends the efficiency arguments in the literature considering using range 
as a volatility estimator; e.g., see Parkinson (1980), Garman and Klass (1980), 
Beckers (1983), Wiggins (1991), Rogers and Satchell(1991), Kunitomo (1992), 
Rogers (1998), and Yang and Zhang (2000).  It’s a puzzle (see Cox and Rubinstein 
(1985)) that despite the elegant theory and the support of simulation results, the range 
estimator has performed poorly in empirical studies.  In Chou (2001b) I argue that 
the failure of all the range-based models in the literature is due to its ignorance of the 
temporal movements of the range. Using a proper dynamic structure for the 
conditional expectation of range, the CARR model successfully resolves this puzzle 
and retains its superiority in empirical forecasting powers. 

 
I focus in the paper on an important feature in financial data: asymmetry.  

Conventionally, symmetric distributions are usually assumed in asset pricing models, 
e.g., normal distributions in CAPM and the Black/Sholes option pricing formula. 
Furthermore, in calculating various measures of risk, standard deviations (or 
equivalently, variances) are used frequently, which implicitly assume a symmetric 
structure of the prices.  However, there are good reasons why the prices of 
speculative assets should behave asymmetrically.  For investors, the more relevant 
risk is generated by the downward price moves rather than the upward price moves; 
the latter is important in generating the expected returns.  For example, the 
consideration of the value-at-risk only utilizes the lower tail of the return distribution.  
There are also models of asset prices that utilize the third moment (an asymmetric 
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characteristic feature), for example, Levy (1974).  Furthermore, asymmetry can arise 
in a dynamic setting in models considering time-varying conditional moments.  For 
example, the ARCH-M model of Engle, Lillian and Robbins (1987) posits a linkage 
between the first sample moment and past second sample moments.  This model has 
a theoretical interpretation in finance: the risk premium hypothesis (See Malkiel 
(1978), Pindyck (1984), Poterba and Summers (1986) and Chou (1988)). The 
celebrated leverage effect of Black (1975) and Christy (1976) is cast into a dynamic 
volatility model in the form of the linkage between the second sample moment and 
past first sample moments; See EGARCH of Nelson (1991) and NGARCH of Engle 
and Ng (1995), Duan (1995). Furthermore, the asymmetry can arise in other forms 
such as the volatility feedback of Campbell (1997). Barberis and Huang (2000) gives 
an example of loss aversion and mental account that would predict an asymmetric 
structure in the price movements.  Tsay (2000) uses only observations of the 
downward, extreme movements in stock prices to model the crash probability.   
 

I have incorporated one form of asymmetry, the leverage effect, into the CARR 
model in Chou (2001b) and it appears to be very significant, much more so than 
reported in the literature of GARCH or Stochastic Volatility models.  The nature of 
the CARR model is symmetric because range is used in modeling which treats the 
maximum and minimum symmetrically.  In this paper I consider a more general 
form of asymmetry by allowing the dynamics structure of the upward price 
movements to be different from that of the downward price movements.  In other 
words, the maximum and the minimum of price movements in fixed intervals are 
treated in separate forms.  It may be relevant to suspect that the information in the 
downward price movements are as relevant as the upward price movements in 
predicting the upward price movements in the future.  Similarly, the opposite case is 
true.  Hence it is worthy to model the CARR model asymmetrically.  

 
The paper is organized as following.  I propose and develop the Asymmetric 

CARR (ACARR) model with theoretical discussions in section 2.  In addition, I also 
discuss some immediate natural extensions of the ACARR model.  An empirical 
example is given in section 3 using the S&P500 daily index.  Section 4 concludes 
with considerations of future extensions.   
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2. Model specification, estimation, and properties  
 
2.1 The model specification, stochastic volatilities and the range 
 
Let Pt be the logarithmic price of a speculative asset observed at time t, t =1,2,… T.  
Pt is a realization of a price process {Pt}, which is assumed to be a continuous 
process4.  I further assume that within each time interval, we observe Pt at every 
fixed time interval dt.  Let n denote the number of intervals between each unit time, 
then dt = 1/n.  There are hence, n+1 observations within each time interval between 

t-1 and t. Let o
tP , c

tP , HIGH
tP , LOW

tP  be the opening, closing, high and low prices, 

in natural logarithm, between t-1 and t.  The closing price at time t will be identical 
to the opening price at time t+1 in considerations of markets that are operated 
continuously, say, some of the foreign exchange markets.   Further, define UPRt, the 
upward range, and DWNRt, the downward range as the differences between the daily 
highs, daily lows and the opening price respectively, at time t, in other words, 
 

(2.1)  UPRt = HIGH
tP - o

tP  

  DWNRt = LOW
tP - o

tP  

Note that these two variables, UPRt and DWNRt, represent the maximum returns and 
the minimum returns respectively over the unit time interval (t-1, t).  This is related 
to the range variable in Chou (2001b) that Rt, defined to be  
 

(2.2)  Rt = HIGH
tP - LOW

tP  

 
It’s clear that the range is also the difference between the two variables, UPRt and 
DWNRt, in other words, 
 
(2.3)  Rt = UPRt - DWNRt 
. 
 

                                                 
4 A general data generating process for Pt can be written as 

  dPt = µt + σtdWt 
dσt =θ t + κdVt 

where Wt and Vt  are two independent standard Wiener processes, or Brownian motions. 
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In Chou (2001b) I propose a dynamic model, the CARR (Conditional 

AutoRegressive Range) model, for the range.  It’s a conjecture that the extreme 
value theory can be used to show that the conditional range, or equivalently the 
disturbance term, has a limiting distribution that is governed by a shifted Brownian 
bridge on the unit interval5.  This is true under very general regularity conditions.  
In this paper, I propose a model for the one-sided range, UPRt and DWNRt, to follow a 
similar dynamic structure.  In particular,  
 

 (2.4) u
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  u
tε ~ iid f u(.), d

tε ~ iid f d(.). 

     
Model (2.4) is called the Asymmetric Conditional Autoregressive Range 

(Asymmetric CARR or ACARR, henceforth).  In the following discussions, I will 

disregard the super-scripts when there is no concern of confusion.  In (2.4) λt is the 
conditional mean of the one-sided range based on all information up to time t. The 

distribution of the disturbance terms εtof the normalized One-Sided-Range, or OSRt 
(=UPRt or DWNRt,), εt=OSRt/λt, are assumed to be identically independent with 
density function fi(.), where i=u or d.  Given that both the one-sided ranges UPRt and 

-DWNRt, and their expected values λt are both positive hence their disturbances εt, the 
ratio of the two, are also positively valued.   

 
The asymmetric behavior between the market up movements and down 

movements can be characterized by different values for the pairs of parameters, (ω u, 
ω d), (α u, α d), (β u, β d) and from the error distributions (f u(.), f d(.)).   

 

The equations specifying the dynamic structures for λt’s characterize the 
persistence of shocks to the one-sided range of speculative prices or what is usually 

known as the volatility clustering as documented by Mandelbrot.  The parameters ω, 

                                                 
5 See Lo (1991) for a similar case and a proof. 
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αi, βj, characterize respectively, the inherent uncertainty in range, the short-term 
impact effect and the long-term effect of shocks to the range (or the volatility of 

return).  The sum of the parameters ∑∑
==

+
q

j
j

p

i
i

11

βα , plays a role in determining the 

persistence of range shocks.  See Bollerslev (1986) for a discussion of the 
parameters in the context of GARCH.  

 
The model is called an Asymmetric Conditional AutoRegressive Range model of 

order (p,q), or ACARR(p,q).  For the process to be stationary, we require that the 
characteristic roots of the polynomial to be out side the unit circle, or 

.1
11

<+ ∑∑
==

q

j
j

p

i
i βα  The long-term range denoted ω-bar, is calculated as 

ω/ )).(1(
11

∑∑
==

+−
q

j
j

p

i
i βα  Further, all the parameters in the second equation, are assume 

positive, i.e., ω, αi, βj > 0.   
 
It’s useful to compare this model with the Conditional AutoRegressive Range 

model (CARR) of Chou (2001b): 
 
(2.5)  tttR ελ=  

  jt

q

j
jit
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i
it R −
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−

=
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11

 

  εt ~ iid f(.)    

 
Ignoring the distribution functions, the ACARR model reduces to the CARR if 

all the parameters with superscript u and d are identical pair-wise.  Testing these 
various types of model asymmetry will be of interest because asymmetry can arise in 

varieties, e.g., size of the range, i.e., level of the volatility (ω-bar=ω/(1−α−β)), the 
speed of mean-reversion (α+β), and the short-term (α) versus long-term (β) impact of 
shocks. 

 
It will be shown that although the sampling distributions maybe different, the 

limiting distributions of u
tε  and d

tε are identical.  Note also that the distribution for 

the disturbance will be different from the one in CARR because these are maximum 
and minimum while in CARR the disturbance is the sum of the maximum and the 
minimum.  My result follows from Davis (1979, 1983) who provides limiting joint 
and marginal distributions for the maximum and minimum.   
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  Equation (2.4) is a reduced form for the one-sided ranges.  It is straight 

forward to consider extending the model to include other explanatory variables, Xt-1,,l 
that are measurable with respect to the information set up to time t-1. 

   

(2.6)  
ltl

L

l
jt

q

j
jit

p

i
it XR ,1

111
−

=
−

=
−

=
∑∑∑ +++= γλβαωλ  

 
This model is called the ACARR model with exogenous variables, or ACARRX.  

Among others, some important exogenous variables are trading volume (See Lamoroe 
and Lastrape (1990), Karpoff (1988)), the lagged returns measuring the leverage 
effect of Christie (1975), Black (1976) and Nelson (1990) and some seasonal factor to 
characterize the seasonal pattern within the range interval. 
 

Note that although we have not specified specifically, all the variables and 
parameters in (2.4) are all dependent on the parameter n, the number of intervals used 
in measuring the price within each range-measured interval.  It’s clear that all the 
range estimates are downward biased if we assume the true data-generating 
mechanism is continuous or if the sampling frequency is lower than that of the data 
generating process if the price is discrete.  The bias of the size of the one-sided-range, 
whether upward range (UPRt) or downward range (DWNRt), like the total range, will 
be a a non-increasing function of n.  Namely, the finer the sampling interval of the 
price path, the more accurate the measured ranges will be.  
 

It’s possible that the highest frequency of the price data is non-constant given the 
heterogeneity in the trading activities within each day and given the nature of the 
transactions of speculative assets.  See Engle and Russell (1998) for a detailed 
analysis of the non-constancy of the trading intervals, or the durations.  Extensions 
to the analyses of the ranges of non-fixed interval prices will be an interesting subject 
for future research6.  However, some recent literature suggest that it’s not desirable 
to work with the transaction data in estimating the price volatility given the 
consideration of microstructures such as the bid/ask bounces, the intra-daily 
seasonality, among others.  See Anderson et.al. (2000), Bai, Russell and Tiao (2000), 
and Chen, Russell and Tsay (2000). 

 

                                                 
6 It’s not clear to me yet how the daily highs/lows of asset prices are compiled reported on the public 
or private data sources such as the Wall Street Journal, Financial Times and in CRSP.  They may be 
computed from a very high, fixed frequency.  Alternatively, they may be computed directly from the 
transaction data, a sampling frequency with non-fixed intervals.   
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As is the case for the CARR model, the ACARR model mimics the ACD model 
of Engle and Russell (1998) for durations between trades.  Nonetheless, there are 
important distinctions between the two models. First, duration is measured at some 
random intervals but the range is measured at fixed intervals, hence the natures of the 
variables of interest are different although they share the common property that all 
observations are positively valued.  Secondly, in the ACD model, the distribution of 
the disturbances is usually chosen arbitrarily - a feature also shared by all GARCH 
models.  The ACARR model, on the contrary, has some natural choices from the 
results of extreme value theories in statistics.7   

 
2.2 Properties of ACARR: estimation and relationships with other models 
 
Given that the ACARR model has exactly the same form as the CARR model, all the 
statistical results in CARR apply to ACARR.  Further more, the ACARR model has 
some unique properties of its own.  We illustrate some of the important properties in 
this subsection.  Given that the upward range and the downward range evolutions are 
specified independently, the estimation can hence be performed independently.  
Further, consistent estimation of the parameters can be obtained by the 
Quasi-Maximum Likelihood Estimation or QMLE method.   
 
Proposition 1: (Consistency) Assuming any general density function f i(.) (i=u or d) 

for the disturbance term i
tε , (i=u or d) the parameters in the ACARR model can be 

estimated consistently by QMLE in which the density function of the disturbance term 

i
tε , (i=u or d), or equivalently, the conditional density function of the one-sided range 

are given by an exponential density function. 
 
Proof: See the proof in Chou (2001b). 
 
Given the exponential distribution for the error terms, we can perform the 
Quasi-Maximum Likelihood Estimation.  Using Rt , t=1,2,… ,T as a general notation 
of UPRt and DWNRt, the log likelihood function for each of the one-sided range series 
is: 
 

                                                 
7 Although in this paper we follow the approach of Engle and Russell (1998) in relying on the QMLE 
for estimation, it is important to recognize the fact that the limiting distribution of CARR is known 
while it is not the case for ACD.  This issue is dealt with in the later section. 
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L(αi, βj; R1, R2,…  RT,) = - ])
1
[log(

t

tRT

t t
λ

λ +∑
=

. 

 
The intuition of this proposition relies on the insight that the likelihood function 

in ACARR with an exponential density is identical to the GARCH model with a 
normal density function with some simple adjustments on the specification of the 
conditional mean.  Furthermore, all asymptotic properties of GARCH apply to 
ACARR.  Given that ACARR is a model for the conditional mean, the regularity 
conditions (e.g., the moment condition) are in fact, less stringent then in GARCH. 

   
Note that although QMLE is consistent, it is not efficient.  The efficiency can 

be obtained if the conditional density function is known.  This leads us to the 
limiting distribution of the conditional density of range.  The discussion will require 
a far more complicated theoretic framework, which is worthy of pursuing by an 
independent work.  I hence do not pursue this route in this paper and follow the 
strategy of Chou (2001b) in relying on the QMLE.8  Again, it’s an empirical question 
as to how substantial in efficiency such methods can generate.  Engle and Russell 
(1998) reported that deviations from the exponential density function do not offer 
efficiency gain sufficiently high in justifying the extra computation burdens.   
 

It is important to note that the direct application of QMLE will not yield 
consistent estimates for the covariance matrix of the parameters.  The standard errors 
of the parameters are consistently estimated by the robust method of Bollerslev and 
Wooldridge (1996). The efficiency issue related to these estimates is a subject for 
future investigation.  

 
Another convenient property for ACARR (due to its connection with ACD) is the 

ease of estimation.  Specifically, the QMLE estimation of the ACARR model can be 
obtained by estimating a GARCH model with a particular specification: specifying a 
GARCH model for the square root of range without a constant term in the mean 
equation9.  This property is related to the above QMLE property by the observation 
of the equivalence of the likelihood functions of the exponential distribution in 
ACARR and ACD and of the normal density in GARCH.  It indicates that it is 

                                                 
8 It’s of course a worthy topic for future research as to how much of efficiency gain can be obtained by 
utilizing the FIML with the limiting distribution to estimate the parameters. Alternatively, one can 
estimate the density function using nonparametric methods.   
9 See Engle and Russell (1998) for a proof. 
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almost effortless to estimate the ACARR model if a GARCH software is available.   
 
 It will be interesting and important to investigate whether the ACARR model 
will satisfy a closure property, namely, whether the ACARR process is invariant to 
temporal and cross-sectional aggregations.  This is important given the fact that in 
financial economics, aggregates are frequently encountered, e.g., portfolios are 
cross-sectional aggregates and monthly, weekly returns are temporal aggregates of 
daily returns. It’s also a property that is stressed in the literature of time series 
econometrics.10   

 
Another interesting property of the CARR model is the encompassing property.  

It is interesting that the square-root-GARCH model turns out to be a special case of 
CARR, and in fact, the least efficient member of the CARR model.  This property 
does not apply to ACARR since there are no analogies of the open to maximum 
(minimum) in the GARCH model family.  
 
2.3 Robust ACARR 
 
It is suggested in statistics that range is sensitive to outliers.  It is useful hence, to 
consider extension of ACARR to address such considerations. I consider robust 
measures of range to replace the standard range defined as the difference between the 
max and the min.  A simple naive method is to use the next-to-max for max and the 
next-to-min for min.  By so doing, the chance of using outliers created by typing 
errors will be greatly reduced.  It will also reduce the impact of some true outliers. 

 
A second alternative is to use the quantile range, for example, a 90% quantile 

range is defined as the difference between the 95% percentile and the 5% percentile.  
A frequently adopted robust range is the interquartile range (IQR) which is a 75% 
quantitle and it can be conveniently obtained by taking the difference of the medians 
of the top and lower halves of the sampling data.  In measuring a robust maximum or 
minimum likewise, we can use the 75% quantile in both the upward price distribution 
and the downward price distribution.  

 
Similarly other types of robust extreme values can be adopted like the 

next-ith-to-max (min) and the average of the top 5% observations and the bottom 5% 

                                                 
10 It’s noteworthy that the closure property holds only for the weak-GARCH processes.  Namely, in 
general, the GARCH process is not closed under aggregation.  See Nijman and Drost (1996) for the 
discussion of the closure property of GARCH process. 
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observations, et.al.  There are several important issues relevant in such 
considerations such as the efficiency loss, e.g., the interquartile range discards 50% of 
the information while the next-to-max approach discards very little.  Another issue is 
the statistical tractability of the new range measures.  For example, the quantile 
range will have a more complicated distribution than the range and the statistical 
property for the next-ith-to-extreme approach is less known than the quantile range.  
Another consideration is the data feasibility, in most cases, none of the information 
other than the extreme observations is available.  For example, the standard data 
sources such as CRSP, and the Wall Street Journal, the Financial Times only report the 
daily highs and lows.  As a result, the robust range estimators are infeasible unless 
one uses the intra-daily data. Nonetheless, the robust range estimators are feasible if 
the target volatility is measured at lower frequency than a day.  This is obvious since 
there are twenty some daily observations available in each given month hence the 
monthly volatility can be measured by a robust range if the outlier problem is of 
concern.  Given the existence of intra-daily data, daily robust range model is still an 
important topic for future research since the stake is high in ensuring a high precision 
in forecasting volatilities. 
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3. An Empirical Example using the S&P500 Daily Index, 1962/01/03-2000/08/25 
 
3.1 The Data Set 
 
The daily index data of the Standard and Poor 500 (S&P500) are used for my 
empirical study in this paper to gauge the effectiveness of the ACARR model.  The 
data set is downloaded from the finance subdirectory of the website “Yahoo.com”. 
The sample period covered in this paper is 1962/01/03-2000/08/25.  The models are 
estimated by using this daily data set and in latter part of this section, comparisons are 
made for various volatility models on the accuracy of the volatility predictions. 
 

Figures 1-4 give the plots of the daily max and min price movements.  Tables 1 
gives the summary statistics of range, UPRt and DWNRt.  It’s interesting that the 
upward range and downward range are roughly symmetric from the closeness of 
summary statistics and the seemingly reflective nature of figure 1.  Another 
interesting observation (see figures 2,3 and 4) is that excluding the outlier of the 1987 
crash, the two measures have very similar unconditional distributions.  Careful 
inspection of the figures and tables however, reveals important differences in these 
two measures of market movements in the two opposite directions.  For example, 
although both one-sided ranges (henceforth OSR’s) have clustering behaviors but 
their extremely large values occur at different times and with different magnitudes.  
Further as figure 5 shows, the magnitude of the autocorrelation for the UPR seems to 
be consistently higher than that of the DWNR indicating different level of persistence.  
The dynamic structures of the two range processes are also at odds with each other as 
shown in the difference in the fitted models.  This will be discussed in the later part 
of the paper. 

 
Sub-samples are considered because there is an apparent shift in the level of the 

daily ranges roughly on the date 1982/04/20.  The averaged range level was reduced 
by almost a half since this particular date.  Reductions in the level of similar 
magnitude are seen for the max and min as well.  It’s likely an institutional change 
occurred at the above-mentioned date.  From a telephone conversation with the 
Standard and Poor Incorporated, the source of this structural change was revealed.  
Before this stated date, the index high and index low were compiled by aggregating 
the highs and lows of individual firm prices for each day.  This amounts to assume 
that the highs and lows for all 500 companies occur at the same time in each day.  
This is clearly an incorrect assumption and amounts to an overestimate of the highs 
and an underestimate of the lows.  As a result, the ranges are over-estimated.  The 
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compiling process was corrected after April 1982.11  The company computes the 
index value at some fixed (unknown to me, say, 5 minutes) intervals within each day 
and than select the maximum and minimum price levels to be the index highs and 
index lows.12     
 
3.2 Estimating results 
 
We use QMLE to estimate the ACARR and ACARRX models with different dynamic 
specifications and exogenous variables.  The exogenous variables considered are 
lagged return, rt-1, for the leverage effect, a Tuesday (TUE) and a Wednesday dummy 
(WED), for the weekly seasonal pattern, a structural shift dummy (SD, 0 before 
1982/4/20 and 1 otherwise) for capturing the shift in the data compiling method.  I 
also include the lagged opposite range variable, i.e., DWNR in the UPR model and 
UPR in the DWNR model.  This is for the consideration of the volatility clustering 
effect.  Table 2 and table 3 give respectively the model estimating results for UPR 
and for DWNR. 
 
 It’s interesting that for both one-sided ranges, a ACARR(2,1) clearly dominates 
the simpler alternative of ACARR(1,1) model, which is in contrast of the result in 
Chou (2001b) using CARR to estimate the range variable13.  This is shown clearly 
by the difference in the values of the log likelihood function (LLF) reported for the 
two models, ACARR(1,1) vs. ACARR(2,1).  The ACARR(2,1) model is consistent 
with the specification of the Component GARCH model of Engle and Kim (1999), in 
which the volatility dynamics is decomposed into two parts, a permanent component 
and a temporary component.   
 

Another conjecture for the inadequacy of the (1,1) dynamic specification is 
related to the volatility clustering effect.  It’s known that volatility clusters over time 
and in the original words of Mandelbrot (1963), “large changes tend to be followed by 
large changes and small by small, of either sign… ”.  Given that range can be used as 
a measure of volatility (see Chou (2001a)), both UPR and DWNR can be viewed as 
“signed” measure of volatility.  It is hence not surprising that a simple dynamic 
structure offered by the ACARR(1,1) model is not sufficient to capture the clustering 
effect.  This conjecture is supported by the result of the model specification of 
                                                 
11 The exact date is unknown since this change in compiling process was not documented by the 
company.  However, from a detailed look at the data, the most likely date is April 20, 1982. 
12 Mathematically, these two compiling methods are respectively, index of the highs (lows) and highs 
(lows) of the index.  The Jensen inequality tells us that these two operations are not interchangeable. 
13 For the range variable, it is consistently found that a CARR(1,1) model is sufficient to capture the 
dynamics for daily and weekly and for different sub-sample periods. 
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ACARRX(2,1)-b where the opposite one-sided range are included and the coefficients 
significantly different from zero.     

 
The dynamic structures for the UPR and DWNR variable are different as is 

revealed in comparing the values of the coefficients.  The coefficient of β1, 
measuring the long-term persistence effect, is (0.927, 0.906, 0.911) respectively for 
the three different ACARRX specifications for DWNR in table 3.  They are all 
higher than their corresponding elements (0.903, 0.871, 0.877) in the ACARRX 
models for UPR in table 2.  This suggests that volatility shocks in the downside are 

more long-lived than in the upside.  Further the impact coefficient α1 is equal to 
(0.252, 0.233, 0.239) in the DWNR models and is (0.203, 0.179, 0.186) in the UPR 
models.  Volatility shock effects in the short-run are also higher for the downside 
shocks than for the upward surges.  Both of these findings are new in the literature of 
financial volatility models as all existing literatures do not distinguish the shock 
asymmetry in this fashion. 

 
Another interesting comparison between the two one-sided range models is on 

the leverage effect.  This coefficient is statistically negative (positive) for the 
ACARRX(2,1)-a specifications for the UPR (DWNR).  It is however, less significant 
or insignificant in models ACARRX(2,1)-b and ACARRX(2,1)-c, when the lagged 
opposite one-sided range is included. . My conjecture is that the opposite sided ranges 
are correlated with the returns and hence multicollinearity reduces some explanatory 
power of the leverage effect.  It remains, however, to be explained why such a 
phenomenon is more severe for the DWNR model than the UPR models.  I leave this 
issue for future studies.   

 
A different weekly seasonality also emerges from the comparison of the 

estimation result of the two one sided ranges.  For reasons unknown to me, a positive 
Tuesday effect is found for the upward range while a negative Wednesday effect is 
present for the downward range.  The dummy variable SD, measuring the effect of 
the structuring change in the data compiling method, are not significant for UPR 
models but are negatively significant for one of the DWNR models.  It’s not clear 
why there should be such difference in the results.  Again I leave these as empirical 
puzzles to be explored in future studies.   

 
 Model specification tests are carried out in two ways, the Ljung-Box Q statistics 
and the Q-Q plots.  The Ljung-Box Q statistics measure the overall significance of 
the autocorrelations in the residuals for the fitted models.  The evidence shown in the 
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two tables are consistent that a pure ACARR model is not sufficient and exogenous 
variables are necessary to warrant the model to pass the model misspecification tests.  
Using a 5% significance level for the test, the model is satisfactory once the lagged 
returns, the weekly dummies and the opposite-sided range are included in the 
specifications. 
 
 Figures 6 (figure 7) provide the expected and observed UPR (DWNR).  It is 
interesting to note that the ACARR model gives smoother yet very adaptive estimates 
of the two one-sided ranges.  Figures 8-11 are histograms and Q-Q plots of the 
estimated residuals in the two models.  Each seems to indicate that the exponential 
distribution is satisfactory roughly for the two signed-ranges variables.  The fit for 
the UPR seems to be better than that for the DWNR as measured by the deviations of 
the Q-Q plot from the 45 degree lines.  This fact further indicates the difference in 
the characteristics of the two variables in addition to the results reported above.  
Further investigation in the direction may also be useful. 
 
 The message from this section is clear: the market dynamics for the upward 
swing and the downward plunge are different.  They are different in their dynamics 
of the volatility shocks, i.e., the short-term impact and long-term persistence.  They 
are also different in the forces that have effects on them, the leverage effect, the 
weekly seasonal effect and the volatility clustering effect.  Finally, even the error 
structures of the two variables are different. 
 
3.3 Comparing ACARR and CARR, the asymmetric model with the symmetric model 
 
Although the above results shows important differences in the models for the upward 
range and the downward range, we further ask a question on the value of the modeling 
of asymmetries.  How much difference does this modeling consideration make to 
improve the power of the model in forecasting volatilities?  In Chou (2001b) I 
proposed the CARR model, where the upward and downward movements of the stock 
price are treated symmetrically.  I showed that the CARR model provides a much 
sharper tool in forecasting volatility than the GARCH model.  In this section, we 
further compare the forecasting power for volatilities of the CARR model which 
ignores the asymmetry, and the ACARR model which give explicit considerations to 
the asymmetric structures.  Given our finding of the importance of modeling 
asymmetry in the above section, we would expect the ACARR model to provide more 
accurate volatility forecast comparing with the CARR model. 
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 Since volatility is an unobservable variable, we employ three proxies as 
measures of volatility (henceforth MV’s).  They are the daily high/low range (RNG) 
as defined in (2.2), the daily return squared (RETSQ) as is commonly used in the 
literature of volatility forecast comparisons and the absolute value of the daily returns 
(ARET) which is more robust to outliers than the second measure.  We then use the 
following regressions to gauge the forecasting powers of the CARR and the ACARR 
models. 
 
 (3.1)  MVt = a + b FVt(CARR) + ut 
 (3.2)  MVt = a + b FVt(ACARR) + ut 
 (3.3)  MVt = a + b FVt(CARR) + c FV(ACARR) + ut, 

 

where FVt (CARR) is the forecasted volatility using the CARR model in (2.5).  
FVt(ACARR) is computed as the sum of the forecasted UPR and forecasted DWNR 
as is shown in (2.4).  Proper transformations are made to adjust the difference 
between a variance estimator and a standard deviation estimator.  Table 4 gives the 
estimation result. 
 
 The results are consistent for the three measures of volatility.  In all cases, the 
forecasted volatility using ACARR dominates the forecasted volatility using CARR.  
In the three measures, the corresponding t-ratios for the two models are (21.83, 0.46) 
using RNG, (7.61, -2,32) using RETSQ and (8.09, -1.91) using ARET.  Once the 
forecasted volatility using ACARR is included, CARR provides no additional 
explanatory power.  Another interesting observation is that both RETSQ and ARET 
are much more noisier than RNG.  Hence the adjusted R-squares of the regression 
using these two measures are much smaller than that using RNG.   
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4. Conclusion 
 
The ACARR model provides a simple, yet efficient and natural framework to analyze 
the asymmetry of the price movement in financial markets.  Applications can be 
used in computing the option prices where the upward (downward) range (or the 
maximum (minimum) return) is more relevant for computing the price of a call (put) 
option.  Value-at-Risk is another important area for applications using the downward 
range dynamic model.  The ACARR model is related to studies like the duration 
between a threshold high or low price level.  Further more, the ACARR model can 
be used to forecast volatilities comparing with the symmetric model, CARR or other 
competing volatility models like GARCH or SV models.  Further Monte Carlo 
analysis will be useful as well as applications to other financial markets such as 
foreign exchanges, bonds, and commodities.  Applications of the ACARR model to 
other frequency of range interval, say every 30 minutes, every hour, or every quarter 
and other frequencies, will provide further understanding of the usefulness/limitation 
of the model.  Other generalization of the ACARR model will be worthy subjects of 
future research, for example, the generalization of the univariate to a multivariate 
framework, models simultaneously treat the price return and the range data, long 
memory ACARR models,14 FIML estimations of ACARR, ACARR diffusion models 
in the spirit of Duan (1995, 1997). 
  

The ACARR model in this paper can be seen as an example of an emerging 
literature: applications of extreme value theory in finance.  Embrecht, Kluppelberg 
and Mikosch (1999) and Smith (1998), among others, are strong advocates of such an 
approach in studying many important issues in financial economics.  Noticeable 
examples are Embrecht and McNeil (1998) for correlation of market extreme 
movements, McNeil and Frey (2000) for volatility forecasts, and Tsay (2000) for 
modeling crashes15.  In fact, all the static range literature (Parkinson (1980)) and the 
long-term dependence literature using rescaled range (Mandelbrot (1972,1975), Lo 
(1991)) can be viewed as earlier examples of this more general broader approach to 
the study of empirical finance.    
     

                                                 
14 In the daily ACARR models, as is suggested by the Portmanteau statistics, the memory in range 
(hence in the volatility) seems to be longer than can be accounted for using the simple ACARR(1,1) or 
ACARR(2,1) models with short memories.  However, such a phenomenon disappears in the weekly 
model.  Given our empirical results, it’s questionable whether such an attempt is useful in practice.   
15 See also Davis (199?). 
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Nobs Mean Median Max Min Std Dev ρ1 ρ2 ρ12 Q(12)

Full sample
RANGE 1/2/62-8/25/00 9700 1.4641.40722.9040.1450.760.6290.5750.44330874
UPR 1/2/62-8/25/00 9700 0.7370.6369.0530 0.6210.3080.1470.1723631
DWNR 1/2/62-8/25/00 9700 -0.727-0.5980 -22.90.6810.3260.1810.162 4320

Before structural shift
RANGE 1/2/62-4/20/825061 1.7531.6439.3260.530.5650.7230.6540.55421802
UPR 1/2/62-4/19/825061 0.8890.7988.6310 0.5810.3350.0870.1061199
DWNR 1/2/62-4/19/825061 -0.864-0.7480-6.5140.5590.3780.1360.1632427

After structural shift
RANGE 4/21/82-8/25/00 46391.150.96222.9040.1460.8180.4760.4140.22911874
UPR 4/21/82-8/25/00 46390.5720.4049.0530 0.6220.1890.0890.125651
DWNR 4/21/82-8/25/00 4639-0.578-0.3880 -22.90.7670.2470.1470.101994

Table 1: Summary Statistics of the Daily Range, Upward Range and Downward Range of
 S&P500 Index, 1/2/1962-8/25/2000
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Table 2: QMLE Estimation of ACARR Using Daily Upward Range of S&P500 Index  
1/2/1962-8/25/2000 

 

 

           
           

           
           

  εt ~ iid f(.)        
           

Estimation is carried out using the QMLE method hence it's equivalent to estimating an    

Exponential ACARR(X)(p,q) or and EACARR(X)(p,q) model.  Numbers in parentheses are  

 t-ratios (p-values) with robust standard errors for the model coefficients ( Q statistics).   

LLF is the log likelihood function.   
           

 ACARR(1,1) ACARR(2,1) ACARRX(2,1)-a ACARRX(2,1)-b ACARRX(2,1)-c 
          

LLF -12035.20 -12011.86 -11955.78 -11949.64 -11950.32 
           

constant 0.002[3.216] 0.001[3.145] -0.002[-0.610] -0.003[-0.551] -0.004[-0.973] 
           

UPR(t-1) 0.03[8.873] 0.145[10.837] 0.203[14.030] 0.179[11.856] 0.186[12.845] 
           

UPR(t-2)   -0.126[-9.198] -0.117[-9..448] -0.112[-8.879] -0.115[-9.245] 

           

λ(t-1) 0.968[267.993] 0.978[341.923] 0.903[69.643] 0.871[48.426] 0.877[52.942] 

           

r(t-1)     -0.057[-8.431] -0.018[-1.959] -0.023[-2.734] 

           

TUE     0.058[3.423] 0.059[3.475] 0.059[3.481] 

           
WED       0.02[1.271]   

           

SD     0.0000[0.201] -0.003[-1.647]   
           

DWNR(-1)       0.046[4.868] 0.042[4.803] 
           

Q(12) 184.4[0.000] 22.346[0.034] 22.304[0.034] 20.282[0.062] 20.503[0.053] 
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Table 3: QMLE Estimation of ACARR Using Daily Downward Range of S&P500 Index  
1/2/1962-8/25/2000 

 

 
           

           

           

           

  εt ~ iid f(.)        

           

Estimation is carried out using the QMLE method hence it's equivalent to estimating an    

Exponential ACARR(X)(p,q) or and EACARR(X)(p,q) model.  Numbers in parentheses are    

t-ratios(p-values) with robust standard errors for the model coefficients ( Q statistics).   

LLF  is the log likelihood function.   

           

 ACARR(1,1) ACARR(2,1) ACARRX(2,1)-a ACARRX(2,1)-b ACARRX(2,1)-c 
          

LLF -11929.39 -11889.61 -11873.54 -11868.55 -11870.14 
           

constant 0.014[5.905] 0.004[4.088] 0.017[4.373] 0.017[3.235] 0.017[4.417] 
           

DWNR(t-1) 0.084[11.834] 0.229[16.277] 0.252[16.123] 0.233[14.770] 0.239[16.364] 
           

DWNR(t-2)   -0.195[-13.489] -0.189[-12.811] -0.185[-12.594] -0.186[-12.897] 
           

λ(t-1) 0.897[101.02] 0.961[199.02] 0.927[87.639] 0.906[61.212] 0.911[63.893] 
           

r(t-1)     0.023[4.721] -0.009[-1.187]   

           
TUE       -0.008[0.503]   

           

WED     -0.051[-3.582] -0.053[-3.617] -0.052[-3.587] 
           

SD     -0.002[-2.124] 0.001[0.904]   
           

UPR(-1)       0.037[4.164] 0.028[5.084] 
           

Q(12) 192.8[0.000] 18.94[0.009] 22.227[0.035] 14.422[0.275] 14.774[0.254] 
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Table 4: ACARR versus CARR  

          

In-sample Volatility Forecast Comparison Using Three Measured Volatilities as Benchmarks. 

The three measures of volatility are RNG, RETSQ and ARET: respectively, 

daily ranges, squared-daily-returns, and absoulte daily- return. 

A CARR(1,1) model is fitted for the range series and a ACARR models are fitted for the upward range  

and the downward range series.  FV(CARR) (FV(ACARR)) is the forecasted volatility using CARR (ACARR). 

(FV(ACARR)) is the forecasted range using the sum of the forcasted upward range and downward range.  

Proper transformations are made for adjusting the difference between a variance estimator  

and a standard-deviation estimator.  Numbers in parentheses are t-ratios.   

          

  MVt = a + b FVt(CARR) + ut      

  MVt = a + c FVt(ACARR) + ut      

  MVt = a + b FVt(CARR) + c FVt(ACARR) + ut    

          

Measured Volatility Explanatory Variables    

          

 constant FV(CARR) FV(ACARR) Adj. R-sq.  S.E. 

          

RNG -0.067 [-0.366] 1.005 [96.29]   0.489  0.543 

          

RNG -0.006 [-4.148]   1.047 [101.02] 0.513  0.531 

          

RNG -0.067 [0.632] 0.021 [0.46] 1.026 [21.83] 0.513  0.531 

          

          

RETSQ -1.203 [-1.35] 0.397 [14.25]   0.02  5.725 

          

RETSQ -0.265 [-2.94]   0.459 [16.02] 0.026  5.709 

          

RETSQ -0.249 [-2.76] -0.191 [-2.32] 0.644 [7.61] 0.026  5.708 

          

          

ARET 1.142 [7.41] 0.334 [27.07]   0.07  0.642 

          

ARET 0.113 [5.85]   0.354 [28.28] 0.076  0.639 

          

ARET 0.115 [5.95] -0.106 [-1.91] 0.458 [8.09] 0.076  0.639 
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Figure 1: Daily UPR and Daily DWNR, S&P500, 1962/1-2000/8
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Figure 2: Daily UPR of S&P500 Index, 1962/1-2000/8
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Figure 3: Daily DWNR of S&P500 Index, Unsigned, 1962/1-2000/8
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Figure 4: Daily DWNR w/o Crash, Unsigned, 1962/1-2000/8
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Figure 5: Correlograms of Daily UPR and DWNR
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Figure 6: Expected and Observed Daily UPR, 1962/1-2000/8
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Figure 7: Expected and Observed Daily DWNR, 1962/1-2000/8
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Figure 8: Histogram of Daily et_UPR, 1962/1-2000/8
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Figure 9: Histogram of daily et_DWNR, 1962/1-2000/8
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Figure 10: Q-Q Plot of et_UPR
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