Definition of Random Variable

In simple terms, a random variable (also referred to as a stochastic variable) is a
real-valued set function whose value is a real number determined by the outcome of
an experiment. The range of a random variable is the set of all the values it can
assume. More formally, in measure theoretic terms, a random variable X is a
real-valued function that maps § into R and satisfies the condition that for every
Borel set Be B the inverse image X *(B) € % where X *(B)={s:se S and
X(s)e B}

Definition of Cumulative Density Function
The real-valued function F(x) such that F(x)=P{(-,x]}=P(X <=x) for each

X e R is called the distribution function, also known as the cumulative
distribution/density function, or CDF.

Definition of Probability Density Function
For a random variable X if there exists a nonnegative function f(x), defined on the

real line, such that for an interval B, P(X € B) :jB f (x)dx, then X is said to have a

continuous distribution and the function f(x) is called the probability density
function or simply the density function (or PDF).

Moreover, for a continuous random variable, we can find the following properties
() Fo=[" f(u)du

(i) () =F'(x)

(iii) ji f(u)du =1

(iv) F(b)-F(a)=] f(u)du

Definition of Normal Distribution
Normal distribution has the following density:

f(x) = —exp[- 2], xeR

The distribution is written as X ~ N(u,0°). The special case of the normal
distribution for £ =0 and o =1 is known as the standard normal and it has the

following properties:
(i) E(X)=0



(i) V(X)=1
(i)  E(X?)=0
(iv) E(X*)=3

Definition of Lognormal Distribution
The Lognormal distribution can be extended by letting Y =In X ~ N(x&,06°). X

has the following PDF

f(x) = ——exp[- "2 DL x>=0

X )

Furthermore, we have:

() E(X)=e"7

(ii) V(X)=e*[e* —e”]

Definition of Convergence in Distribution
Given a sequence of random variables X, whose CDF is F (x), and a CDF

F, (x) corresponding to the random variable X, we say that X, converges in

d
distribution to X, and write X, — X, if ||mF.(X)=F,(x) at all points x at

n—oo

which F, (x) is continuous.

Definition of Convergence in Probability
The sequence of random variables X is said to convergence in probability to the

real number x if |ymPIl X, —x[>&]=0 for each &>0. Thus it becomes less and

less likely that the random variable X —x lies outside the interval (—&,+¢). The
sequence if random variables X is said to converge in probability to the random
variable X if the sequence of their difference X, —X converges in probability to O.

p
We write X, — X.

Definition of Convergence in mean-squared
The sequence of random variables X is said to convergence in mean-squared to X

() M.S.
and designated X ,—X or X ,—X , if E[X,-X[] exists and

n

limE[| X, — X *]=0, that i, if the 2"® moment of the difference tends to zero.



Definition of Convergence Almost Surely
The sequence of random variables X_ is said to convergence almost surely to the

n

a.s.
real numbers X, and is written as X —Xx, if P[lim X, =x]=1. In other words, the
sequence X, may not converge everywhere to X, but the points where it does not

converge form a set of measure zero in the probability sense. X, is said to
a.s.

converge almost surely to the random variable X if X —-X—>0.

Relationships among Modes of Convergence

We have the following relationships among the above convergence modes (the black
arrows from A to B mean that “A implies B”):

Convergence almost surely Convergence in mean-squared

~N S

Convergence in probability

A 4

Convergence in distribution

Counter examples:
Q) Suppose the sample space is S =[0,1] and X, is a sequence of random

variables defined as follows:
1, 0<s<
X, (6) - e
0, k¥<s<l1
With a probability of one-half for each case. The corresponding sequence of
distribution functions is

0, s<0

Fxn(s)z v, 0<s<¥%
1 s>¥



Next suppose the random variable X is defined as
0, 0<s<
X (s) = S</.
1 ¥<s<1
with a probability of one-half for each case. It’s easily verified that the

d
corresponding CDF is the same as that for X, which means that X, — X.

However, X -X is always equal to 1 and hence X, does not converge
in probability to X .
(i) X ~UJ0,1] and binary intervals 1, =[0,1],1, =[0,%],... so that

[ s

2™ i 2m ? om

for m=0,1,2,... and i=0,1,..., 2"-1. Therefore, the 2" intervals of length
2°" cover the interval [0,1].

Let Y, =1 if Xel, and Y, =0 if X el . The sequence Y,,Y,,..
converges in probability to Y=0 since, for all O<e<=1 ,
P(Y,-0p>=¢)=Pr(Y,=1)=P(X €1,) =length of interval 1 — 0,when
n—o. Y, does not converge almost surely to zero since any X is in only
one of the 2" intervals of length 27", for all n. In other words, for all
weQ, Y(w) assumes the value 1 for an infinite number of n’s and

assumes the value 0 for an infinite number of n’s. Hence, for each weQ,
Y (w) does not converge.

0,p=1-1%
n,g=-21

n

p
hence we have X —X . However,

n

(iii)  Let xn={
E[(X,-0)’]=n’t >0 ,asn— o,

(iv) Let o~U(0,1), and Xn(a)):nl{(oyi)}(a)). Vwe[0,1] and £>0, there
AN, st n>=N, with i<w and |X (®)-0/<e It implies that

X —0. However, E[| X —0[’1=1>€0. Thus, X, does not converge to

0 in mean-squared sense.



The Ito Integral

. MLE
We are sufficient to prove I(dw)* — t.

Let @ = Z(dw)* = Z az*, where dw= &z z~N(0,1) And ﬁ=%

E[Q]=t

Var(Q) = nVar(Az%) = naVar(z?)

Var(z®) = E(z*) — E*(z%)
=3-1=2

_*llr:f

« Var(Q) = 2n&*= In [%J =
BecauseVar[Q] = E((Q -t)?) - 0, E(dw)? - :



