
Definition of Random Variable 
In simple terms, a random variable (also referred to as a stochastic variable) is a 

real-valued set function whose value is a real number determined by the outcome of 

an experiment. The range of a random variable is the set of all the values it can 

assume. More formally, in measure theoretic terms, a random variable X is a 

real-valued function that maps S into R and satisfies the condition that for every 

Borel set BB the inverse image 1( )X B F, where 1( ) { :X B s s   S and 

X(s)B} 

 

Definition of Cumulative Density Function 
The real-valued function F(x) such that F(x)= {( , ]} ( )xP x P X x    for each 

x  R is called the distribution function, also known as the cumulative 

distribution/density function, or CDF. 

 

Definition of Probability Density Function 
 For a random variable X if there exists a nonnegative function f(x), defined on the 

real line, such that for an interval B, ( ) ( )
B

P X B f x dx   , then X is said to have a 

continuous distribution and the function f(x) is called the probability density 

function or simply the density function (or PDF). 

 

Moreover, for a continuous random variable, we can find the following properties 

 (i) ( ) ( )
x

F x f u du


   

 (ii) ( ) ( )f x F x  

 (iii) ( ) 1f u du



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 (iv) ( ) ( ) ( )
b

a
F b F a f u du    

 
Definition of Normal Distribution 
 Normal distribution has the following density: 
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 The distribution is written as 2~ ( , )X N   . The special case of the normal 

distribution for  =0 and  =1 is known as the standard normal and it has the 

following properties: 

(i) ( ) 0E X   



(ii) ( ) 1V X   

(iii) 3( ) 0E X   

(iv) 4( ) 3E X   

  

Definition of Lognormal Distribution 
 The Lognormal distribution can be extended by letting 2ln ~ ( , )Y X N   . X  

has the following PDF 
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 Furthermore, we have: 

 (i) 
2

2( )E X e
  

 (ii) 
2 22 2( ) [ ]V X e e e     

 

Definition of Convergence in Distribution 
 Given a sequence of random variables nX  whose CDF is ( )nF x , and a CDF 

( )XF x  corresponding to the random variable X , we say that nX  converges in 

distribution to X , and write nX
d

 X , if ( ) ( )lim n X
n

F x F x


  at all points x at 

which ( )nF x  is continuous. 

 

Definition of Convergence in Probability 
 The sequence of random variables nX  is said to convergence in probability to the 

real number x if [| | ] 0lim n
n

P X x 


    for each 0  . Thus it becomes less and 

less likely that the random variable nX x  lies outside the interval ( , )   . The 

sequence if random variables nX  is said to converge in probability to the random 

variable X if the sequence of their difference nX X  converges in probability to 0. 

 We write 
p

nX X . 

 

Definition of Convergence in mean-squared 
 The sequence of random variables nX  is said to convergence in mean-squared to X 

and designated 
(2)

nX X  or 
. .M S

nX X , if 2[| | ]nE X X  exists and 

2lim [| | ] 0n
n

E X X


  , that is, if the 2nd moment of the difference tends to zero. 



 

Definition of Convergence Almost Surely 
 The sequence of random variables nX  is said to convergence almost surely to the 

real numbers x, and is written as 
. .a s

nX x , if [lim ] 1nP X x  . In other words, the 

sequence nX  may not converge everywhere to x , but the points where it does not 

converge form a set of measure zero in the probability sense. nX  is said to 

converge almost surely to the random variable X  if 
. .

0
a s

nX X  . 

 
Relationships among Modes of Convergence 

We have the following relationships among the above convergence modes (the black 

arrows from A to B mean that “A implies B”): 

 

 Counter examples: 

(i) Suppose the sample space is [0,1]S   and nX  is a sequence of random 

variables defined as follows:  
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With a probability of one-half for each case. The corresponding sequence of 

distribution functions is 
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Convergence almost surely 

Convergence in probability 

Convergence in distribution 

Convergence in mean-squared 



Next suppose the random variable X  is defined as 
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with a probability of one-half for each case. It’s easily verified that the 

corresponding CDF is the same as that for nX , which means that nX
d

 X . 

However, nX - X  is always equal to 1 and hence nX  does not converge 

in probability to X . 

(ii) ~ [0,1]X U  and binary intervals 1
1 2 2[0,1], [0, ],...I I   so that  
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      for m=0,1,2,… and i=0,1,…, 2m -1. Therefore, the 2m  intervals of length 

2 m  cover the interval [0,1]. 
      Let 1nY   if nX I  and nY =0 if nX I . The sequence 1 2, ,...Y Y  

converges in probability to Y=0 since, for all 0 1  , 

(| 0 | ) Pr( 1) ( )n n nP Y Y P X I      =length of interval 0,nI when  

n . nY  does not converge almost surely to zero since any X is in only 

one of the 2n  intervals of length 2 n , for all n. In other words, for all 
 , ( )Y   assumes the value 1 for an infinite number of n’s and 

assumes the value 0 for an infinite number of n’s. Hence, for each  , 

( )Y   does not converge. 

(iii) Let 
1

1

0, 1

,
n

n
n

p
X

n q

 
  

 hence we have 
p

nX X . However, 

2 2 1[( 0) ]n nE X n   , as n . 

(iv) Let ~ (0,1)U , and 1{(0, )}
( ) 1 ( )

n
nX n  . [0,1]   and 0  , there 

0N  s.t. 0n N  with 1
n   and ( ) 0 .nX     It implies that 

. .

0
a s

nX  . However, 2[| 0 | ] 1nE X    0 . Thus, nX  does not converge to 

0 in mean-squared sense. 

 

 
 
 
 



The Ito Integral 

We are sufficient to prove . 

Let , where  And  

[ ]E Q t  

 

 

 

 

Because 2[ ] (( ) ) 0
n

Var Q E Q t


   ,   


