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ABSTRACT 

In a number of prior studies it has been demonstrated that the traditional 
regression-based static approach is inappropriate for hedging with futures, with the 
result that a variety of alternative dynamic hedging strategies has emerged. In this 
paper we propose a class of new copula-based GARCH models for the estimation of 
the optimal hedge ratio and compare their effectiveness with that of other hedging 
models, including the conventional static, the constant conditional correlation (CCC) 
GARCH, and the dynamic conditional correlation (DCC) GARCH models. In regards 
to the reduction of variance in the returns of hedged portfolios, our empirical results 
show that in both the in-sample and out-of-sample tests, with full flexibility in the 
distribution specifications, the copula-based GARCH models perform more effectively 
than other dynamic hedging models. 
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1.  INTRODUCTION 

With the popularity of financial and commodity futures, how to determine the optimal 

hedging strategy has become an important issue in the field of risk management. While 

the early literature lays stress on estimating a static hedge ratio by means of the 

ordinary least squares technique, 1  more recent studies employ various bivariate 

conditional volatility models to estimate a time-varying hedge ratio and demonstrate 

that generally the dynamic hedging strategy can result in greater risk reduction than the 

static one.2 The superiority of the time-varying hedge ratio essentially comes from 

taking account of the changing joint distribution of spot and futures returns.  

In order to simplify the estimation of optimal hedge ratios, most of the preceding 

models are based on the constant conditional correlation (CCC) GARCH model of 

Bollerslev (1990). While the CCC GARCH model has clear computational advantages 

over the multivariate GARCH (BEKK) model of Engle and Kroner (1995), the 

correlation structure between the spot and futures markets is quite restricted. Engle and 

Sheppard (2001) and Engle (2002) subsequently propose the dynamic conditional 

correlation (DCC) GARCH model as a means of considering the flexible correlation 

structure and simplifying the estimation procedure with two steps. This innovation 

 
1 See, for example, Ederington (1979), Figlewski (1984), Lee et al. (1987), and Benet (1992), among 
many others. 
2 Cecchetti et al. (1988), Baillie and Myers (1991), Myers (1991), Kroner and Sultan (1991, 1993), Park 
and Switzer (1995), and Choudhry (2003) use different GARCH models to estimate a time-varying 
hedge ratio for various assets and support its superiority over the constant one. Moreover, Tong (1996) 
and Brooks and Chong (2001) argue that the advantages of dynamic hedging are more significant for the 
cross-hedge with currency futures.  
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provides an ideal alternative model for the construction of hedge portfolios.  

However, most of these dynamic hedging models assume that the spot and futures 

returns follow a multivariate normal distribution with linear dependence. This 

assumption is at odds with numerous empirical studies, in which it has been shown 

that many financial asset returns are skewed, leptokurtic, and asymmetrically 

dependent.3 Various explanations for the nature of these empirical facts have been 

provided, such as leverage effects and asymmetric responses to uncertainty. Hence, 

these characteristics should be considered in the specifications of any effective 

hedging model.  

This paper attempts to improve the effectiveness of dynamic hedging by 

specifying the joint distribution of spot and futures returns more realistically. We 

introduce a class of new copula-based GARCH models for the estimation of the 

optimal hedge ratio. Without the assumption of multivariate normality, the joint 

distribution can be decomposed into its marginal distributions and a copula, which can 

then be considered both separately and simultaneously. The marginal distributions can 

be any non-elliptical distributions, while the copula function describes the dependence 

structure between the spot and futures returns.4  

Specifically, the proposed hedging model uses the GJR-skewed-t specification for 

the marginal distributions and three different copulas (Gaussian, Gumbel, and Clayton) 

 
3 See, for example, Longin and Solnik (2001), Ang and Chen (2002), and Patton (2006a). 
4 Explanations of the copula theory can be found in Joe (1997) and Nelsen (1999); Patton (2006a,b) and 
Bartram et al. (2007) describe in detail the theory and application of the conditional copula .  
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for the joint distribution to permit a wide range of possible dependence structures.5 

The dependence parameters in these copulas are modeled as time-varying processes in 

order to capture possible dynamic and non-linear relationships between the spot and 

futures returns. Following the multi-stage maximum likelihood method of Patton 

(2006b) and Bartram et al. (2007), we estimate the model parameters and generate the 

dynamic hedge ratio with covariance, which is computed by a numerical integration on 

the copula-based joint density. 

We demonstrate the usefulness of the copula-based GARCH model for two types 

of hedging strategies. The first empirical comparison is conducted for the S&P 500 and 

FTSE 100 indices directly hedged with their own futures. Tong (1996) indicates that 

the optimal hedge ratio determined by the fluctuations of spot and futures prices is 

unlikely to change much through time, because these two prices are tied closely by the 

arbitrage forces. Hence, in our second application we use foreign currency (the Swiss 

Franc) futures to cross-hedge the currency exposure of holding foreign equity (the 

MSCI Switzerland index). We expect that the copula-based GARCH model, which 

permits non-linear and asymmetric dependence between the two assets in the 

cross-hedge portfolio, can result in greater risk reduction.6 As compared to other 

hedging methods, including the conventional, CCC GARCH, and DCC GARCH 

models, the copula-based GARCH models on average provide more effective hedging 
 

5 The selection of the optimal copula in dynamic hedging requires further empirical and theoretical 
works. For the purposes of comparison, it might be useful to consider several copulas which exhibit 
different patterns of dependence.  
6 We thank an anonymous referee for drawing our attention to this issue. 



performance. The Gaussian copula-based model nearly dominates all of the other 

models for the direct hedge, while the Gumbel copula-based model provides the best 

hedging effectiveness for the cross hedge.  

This paper contributes to the literature by proposing and demonstrating a class of 

new models for effective futures hedging. The remainder of this paper is organized as 

follows. Section 2 describes the hedging models, including the conventional, CCC 

GARCH, and DCC GARCH models. Section 3 presents the copula-based GARCH 

models for futures hedging. Section 4 provides details of the data used in this study 

and the empirical results of the different hedging models. The conclusions drawn from 

this study are presented in Section 5. 

2.  THE HEDGING MODELS 

The optimal hedge ratio is defined as the ratio of futures holdings to a spot position 

that minimizes the risk of the hedged portfolio. Let st and ft be the respective changes 

in the spot and futures prices at time t. If the joint distribution of spot and futures 

returns remains the same over time, then the conventional risk-minimizing hedge ratio 

δ* will be:7  

* cov( , )
var( )

t t

t

s f
f

δ = .                          (1) 

An estimation of this static hedge ratio is easily undertaken from the least-squares 
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7  Following Kroner and Sultan (1993), the optimal hedge ratio is derived by maximizing the 
mean-variance expected utility of the hedged portfolio without the assumption of marginal and joint 
distributions.  



regression of st on ft. However, with the arrival of new information, the joint distribution 

of these assets may be time-varying, in which case the static hedging strategy is not 

suitable for an extension to multi-period futures hedging. Conditional on the 

information set at time t –1, we obtain the optimal time-varying hedge ratio by 

minimizing the risk of the hedged return st – δt – 1 ft , or: 

* 1
1

1

cov ( , )
var ( )

t t t
t

t t

s f
f

δ −
−

−

= .                         (2) 

Obviously, the dynamic hedge ratio depends on the way in which the conditional 

variances and covariances are specified.  

Kroner and Sultan (1993) propose the following bivariate error correction model 

of st and ft with a constant correlation GARCH (1,1) structure for the estimation of 
*
tδ : 

0 1 1 1
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where St – 1 and Ft – 1 are the spot and futures prices, respectively, St – 1 – λ Ft – 1 is the error 

correction term, Ψt – 1 is the information set at time t –1, and the disturbance term       

εt = (εst , εft )′ follows a bivariate normal distribution with zero mean and a conditional 
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covariance matrix Ht with a constant correlation ρ. The GARCH term allows the hedge 

ratio to be time-varying, while the error correction term characterizes the long-run 

relationship between the spot and futures prices. 

Since the assumption of constant correlation may be too restrictive to fit in with 

reality, we adopt the DCC GARCH model proposed by Engle and Sheppard (2001) 

and Engle (2002) to release this restriction and improve the flexibility of the hedging 

models. In contrast with the CCC GARCH model, the DCC GARCH model allows the 

correlation R to be time-varying: 

,t t t t t t t t tH D R D D J Q J D= =                      (7) 

where Dt is the diagonal matrix of conditional standard deviations from univariate GARCH 

models, Qt = (qij , t ) 2 x 2 is a positive definite matrix, , and Q1/2 1/2
, ,diag{ , }t s t fJ q q− −= t t satisfies: 

'
1 2 1 1 1 2(1 )t t tQ Qθ θ θ ζ ζ θ 1tQ− −= − − + + −

D

,               (8) 

where ζt is the standardized disturbance vector, such that 1
t t t
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ζ ε−= , Q  is the 

unconditional correlation matrix of ζt , and θ1 and θ2 are non-negative parameters 

satisfying θ1 + θ2 < 1. 

Engle (2002) proposes the use of the two-stage maximum likelihood method for 

the estimation of the parameters for the DCC GARCH model. Let  denote the 

parameters of the univariate GARCH model in D

Ξ

t and Θ  denote the other parameters 

in Rt . Under the assumption of normality, we decompose the likelihood function into a 

volatility component, ( )VL Ξ , and a correlation component, ( , )CL Ξ Θ ; i.e.: 



' 1

1

1 ˆ ˆ( , ) (2 log(2 ) log | | ) ( ) ( , )
2

T

t t t t V C
t

L H H Lπ ε ε−

=

Ξ Θ = − + + = Ξ + Ξ Θ∑ L ,     (9) 

where t̂ε  is the residual vector of (3). In the first step, the parameters in the univariate 

GARCH models are estimated for each residual series. Taking the estimates  as 

given and using the transformed residuals 

Ξ̂

1ˆ ˆ ˆt tD tζ ε−= , we estimate the parameters of 

the dynamic correlation in the second step. Given the estimates 
ˆ

tH  obtained in the 

CCC GARCH and the DCC GARCH models, the optimal dynamic hedge ratios is 

estimated by: 

*
,

ˆ ˆˆ /t sf t fh hδ = 2
,t

2

.                        (10) 

3.  THE COPULA-BASED GARCH MODEL 

3.1  Model Specification 

All of the models mentioned in the previous section are estimated under the 

assumption of multivariate normality. By contrast, the use of a copula function allows 

us to consider the marginal distributions and the dependence structure both separately 

and simultaneously. Therefore, the joint distribution of the asset returns can be 

specified with full flexibility, which will thus be more realistic. 

Following Glosten et al. (1993) and Hansen (1994), we specify the GJR-skewed-t 

models for shocks in the spot and futures returns. Under the same error correction 

model (3), the conditional variance for asset i, i = s, f , is given by: 

2 2 2
, , 1 ,1 , 1 , 2 , 1 , 1 ,i t i i i t i i t i i t i th c b h a a kε ε− − −= + + + −  
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, 1 , , , , )i t t i t i t i t i i i| ,    ~ - ( |h z z skewed t zε η φ−Ψ = ,             
(11)

 

with ki,t – 1 = 1 when εi,t – 1 is negative; otherwise ki,t – 1 = 0. The density function of the 

skewed-t distribution is: 

( )

1
2 2

1
2 2

11 ,
2 1

- | ,

11 ,
2 1

bz a abc z
b

skewed t z

bz a abc z
b

η

η

η φ
η φ

η φ

+
−

+
−

⎧
⎛ ⎞⎛ ⎞+⎪ ⎜ ⎟+ < −⎜ ⎟⎪ ⎜ ⎟− −⎝ ⎠⎪ ⎝ ⎠= ⎨

⎪ ⎛ ⎞⎛ ⎞+⎪ ⎜ ⎟+ ≥ −⎜ ⎟⎪ ⎜ ⎟− +⎝ ⎠⎝ ⎠⎩

.         (12) 

The values of a, b, and c are defined as: 

,
1
24

−
−

≡
η
ηφca   and ,31 22 ab −+≡ φ

( )

1
2 ,
2

2

η

c
ηπ η

+⎛ ⎞Γ⎜ ⎟
⎝ ⎠≡

⎛ ⎞− Γ⎜ ⎟
⎝ ⎠

) )

)

 

where η is the kurtosis parameter and φ is the asymmetry parameter. These are 

restricted to 4 < η < 30 and – 1 < φ < 1.8 Thus, the specified marginal distributions of spot 

and futures returns are asymmetric, fat-tailed, and non-Gaussian. 

Assume that the conditional cumulative distribution functions of zs and zf are 

and , respectively. The conditional copula function, 

denoted as , is defined by the two time-varying cumulative distribution 

functions of random variables 

, , 1( |s t s t tG z −Ψ , , 1( |f t f t tG z −Ψ

1( , | )t t t tC u v −Ψ

, , 1( |t s t s t tu G z −= Ψ  and , , 1( |t f t f t tv G z − )= Ψ . Let Φt be 

the bivariate conditional cumulative distribution functions of zs,t and zf,t. Using the 

                                                 
8 This distribution becomes a symmetrical Student t-distribution when the asymmetry parameter φ is 
equal to 0 and turns to the standard normal distribution when the kurtosis parameter η approaches ∞. 



Sklar theorem, we have: 

, , 1 1 , , 1 , , 1 1( , ) ( , | ) ( ( ), ( )t s t f t t t t t t t s t s t t f t f t t tz z C u v C G z G z− − − −Φ Ψ = Ψ = Ψ Ψ Ψ )−

,

.     (13) 

The bivariate conditional density function of zs,t and zf,t can be constructed as: 

, , 1

, , 1 , , 1 1 , , 1 , , 1

( , | )

  ( ( | ), ( | ) | ) ( | ) ( | )
t s t f t t

t s t s t t f t f t t t s t s t t f t f t t

z z

c G z G z g z g z

ϕ −

− − − −

Ψ

= Ψ Ψ Ψ × Ψ × −Ψ
    (14) 

where 
2

1
1

( , )
( , | ) t t t t

t t t t
t t

C u v
c u v

u v
−

−

∂ Ψ
Ψ =

∂ ∂
, , , 1( |s t s t tg z )−Ψ  is the conditional density of 

zs,t, and , , 1( |f t f t tg z − )Ψ  is the conditional density of zf,t . 

3.2 Parameter Estimation 

At time t, the log-likelihood function can be derived by taking the logarithm of (14): 

,log log log log .t t s tc g g ,f tϕ = + +                   (15) 

Let the parameters in gs,t and gf,t be respectively denoted as θs and θf while the other 

parameters in ct are denoted as θc . These parameters can be estimated by maximizing 

the following log-likelihood function: 

, ( ) ( ) ( ) ( )s f s s f f cL θ L θ L θ L θc= + + ,                  (16) 

with θ = (θs , θf
 , θc ) and Lk representing the sum of the log-likelihood function values 

across observations of the variable k . 

Since the dimensions of the estimated equation may be quite large, it is difficult 

in practice to achieve a simultaneous maximization of Ls,f (θ ) for all of the parameters. 
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In order to effectively solve this problem, we follow the two-stage estimation 

procedure proposed by Joe (1997)9 and then adopted by Patton (2006b) and Bartram et 

al. (2007).  

In the first stage, the parameters of the marginal distribution are estimated from 

the univariate time series by: 

, , 1
1

, , 1
1

ˆ argmax log ( | ; ),

ˆ argmax log ( | ; ).

T

s s t s t t s
t

T

f f t f t t f
t

θ g z θ

θ g z θ

−
=

−
=

≡ Ψ

≡ Ψ

∑

∑
               (17) 

In the second stage, given the marginal estimates obtained above, the dependence 

parameters are estimated by: 

1
1

ˆ argmax log ( ; , , )
T

c t t
t

θ c θ θ θ−
=

≡ Ψ∑ ˆ ˆ
s f c .                (18) 

3.3  The Copula Functions 

Three types of copulas are employed to combine the marginal distributions into the 

joint distributions. First, let ψ be the cumulative distribution function of the standard 

normal, and the Gaussian copula density function can be written as: 

2 1 2 1 2 1 1

22

( ( ) ( ) ) 2 ( ) ( )1( , ) exp
2(1 )1

N t t t t t t
t t t t

tt

u v u vc u v ρ ψ ψ ρψ ψρ
ρρ

− − − −⎧ ⎫+ −
= −⎨ ⎬−− ⎩ ⎭

,    (19) 

where ρt is constrained within the interval (– 1, 1). The Gaussian copula is symmetric 

and implies zero dependence in the extreme tails. The second copula we will consider 
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9 It is called the inference functions for margins method; see Joe (1997).  



is the Gumbel copula. The density function for the Gumbel copula is: 

1

1

1

2

( , )(ln ln ) [( ln ) ( ln ) ] 1
( , )

[( ln ) ( ln ) ]

t t t t

t t t

G
t t t t t t t t tG

t t t t
t t t t

C u v u v u v
c u v

u v u v

κ κ κ κ

κ κ κ

κ κ
κ

−

−

−

−

− + − + −
=

− + −
,    (20) 

where 

1/( , ) exp{ [( ln ) ( ln ) ] },t tG
t t t t t tC u v u vκ κκ = − − + − tκ  

the association parameter 1(1 ) ,t tκ τ −= −  ( 1,1),tτ ∈ −  and tτ  is Kendall’s tau 

measuring the co-movements of markets in the presence of non-linear relationships. 

The Gumbel copula implies a higher dependence at right tails of the marginal 

distributions. Finally, the Clayton copula density function is: 

12

1

(1 )( 1)( , )
( )

t t t

t

C t t t
t t t t

t t

u vc u v
u v

κ κ κ

κ

κκ
−− − − −

+

+ + −
= ,                (21) 

where . The Clayton copula implies a higher dependence at left tails.  2 /(1 )t tκ τ τ= − t

                                                

It should be noted that we can also use the Gumbel survival (Clayton survival) 

copula to construct the joint distribution with left (right) tail dependence.10 Although 

Gumbel (Clayton) and Clayton survival (Gumbel survival) copulas have a similar 

dependence structure, there is no evidence yet for selecting an exclusive copula in 

applications of dynamic hedging. For comparison, we simply consider three types of 

original copulas which have been widely used in economic and financial applications. 

Gumbel and Clayton copulas are the two asymmetric Archimedean copulas suggested 
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10 Replacing ut (vt) with 1-ut (1-vt), the density of the survival copula is a mirror image of the density of 
the original copula; i.e., c*(ut,vt)=c(1-ut,1-vt).  



by Cherubini et al (2004) for financial applications.11  

Following Patton (2006a) and Bartram et al. (2007), we assume that the dependence 

parameters ρt or τt rely on the previous dependences and historical information, (ut – 1 – 

0.5)(vt – 1 – 0.5).12 If the number of the latter term is positive, thereby indicating that both ut – 1 

and vt – 1 are either bigger or smaller than the expectation (0.5), then we infer that the 

correlation is higher than when the number is negative. The time-varying parameters ρt 

and τt are specified respectively as: 

( )( )
( )(

1 2 1 1

1 2 1 1

(1 )(1 ) 0.5 0.5 ,

(1 )(1 ) 0.5 0.5 ,
t t t

t t t

L L u v

L L u v

β β ρ ω γ

β β τ ω γ
− −

− −

− − = + − −

− − = + − − )
             (22) 

where both β1 and β2 are positive and satisfy 0 ≤ β 2 ≤ β 1 ≤ 1, and then the copula 

parameters are θc = (β1 , β2 , ω , γ )'. 

    After estimating the parameters in different copula-based GARCH models, the 

conditional variances 
2
,s th  and 2

,f th  are obtained from Equation (11), and the conditional 

covariance are generated by numerical integration with respect to Equation (14); i.e.: 

, , , , , , , 1( , | )sf t s t f t s t f t s t f t th h h z z z z drdϕ
∞ ∞

−−∞ −∞
= Ψ∫ ∫ w

                                                

.           (23) 

The dynamic hedge ratios for the copula-based GARCH models are then calculated 

from Equation (10). Note that the proposed hedge ratios consider asymmetric 

specifications for the joint and marginal distributions of assets.  

 
11 Alternatively, Hu (2006) proposes a mixed copula model which combines a copula with its survival 
copula to take account of possible structures of tail dependence.  

 
 

12

12 Like ρt in the Gaussian copula, Kendall’s tau τt in the Clayton and Gumbel copulas is bounded 
between -1 and +1. Therefore, we specify the conditional dependence process for the parameter τt 
instead of κt in the Clayton and Gumbel copula-based models.  
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4. EMPIRICAL RESULTS 

4.1  Data and Diagnostic Analysis 

This section examines the performances of alternative hedging models for stock index 

and currency futures. Two of the most highly traded stock index futures for the S&P 

500 and FTSE 100 index are studied herein. To stress the effectiveness of our 

copula-based GARCH models, it may be more interesting to consider an application 

for which the futures are less correlated with the underlying asset. Hence, we also 

compare the performances of alternative models for cross-hedging the currency 

exposure of holding the MSCI Switzerland index (MSCI-SWI) with Swiss Franc 

(USD/SWF) futures. All data are obtained from Datastream, running from 2 January 

1995 to 31 October 2005. The asset returns are the changes in the logarithm of the 

daily closing prices. Table 1 reports the results of diagnostic analysis. 

<Table 1 is inserted about here> 

The stylized facts of the asset returns, such as skewness, leptokurtosis, and 

significant Bera-Jarque statistics, are present in our data, implying that the 

unconditional distributions of spot and futures returns are asymmetric, fat-tailed, and 

non-Gaussian. The Ljung-Box tests show that there is no serial correlation in any of 

the S&P 500 and USD/SWF returns, however, serial correlation is displayed in the 

FTSE 100 and MSCI-SWI returns. Finally, both the Q 
2(24) and LM statistics for the 

ARCH effects present strong autocorrelations in the squared returns for all assets.  



Table 2 reports the results of the unit root and cointegration tests. The augmented 

Dickey-Fuller (ADF) tests show that the spot and futures prices have a unit root, but 

first-differencing leads to stationarity. The Johansen trace statistics show that the spot 

and futures prices for stock markets are cointegrated and that the error correction terms 

should be considered in the model specification. Since the estimates of cointegrating 

parameters λ̂  are close to 1 for the S&P 100 and FTSE 100 data, it is reasonable to 

impose the restriction λ=1 into the error correction models - that is, the error correction 

term becomes St – 1 – Ft – 1 .  

<Table 2 is inserted about here> 

The trace statistic shows that the MSCI-SWI index and USD/SWF futures are not 

cointegrated, and thus the error-correction term is omitted in (3). Because researchers 

often specify the conditional mean to be a function of previous returns, we include the 

MA(1) term in the cross-hedging models (e.g., see Baillie and Myers, 1991).  

4.2  Estimation of the Parameters 

Tables 3, 4, and 5 present the estimation results of the different hedging models, with 

all of the parameters having been estimated by the maximum likelihood method. For 

the CCC GARCH model (Table 3), the constant correlations ρ between the spot and 

futures returns for the two stock markets are positive and close to 1 (around 0.97). 

However, the correlation between the MSCI-SWI spot and USD/SWF futures is much 

lower (only 0.27). All ai + bi estimates are also close to 1, which implies that shocks in 
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the stock and futures markets have high persistence in volatility. Hence, the long-run 

average variance var ( ft ) is not a good proxy for use in calculating the short-horizon 

hedge ratio.  

<Table 3 is inserted about here> 

For the DCC GARCH model (Table 4), the θ1 + θ2 estimates are close to (but less 

than) 1, which implies that the correlations between the futures and underlying assets are 

highly persistent. Such high persistence means that shocks can push the correlation away 

from its long-run average for some considerable time, although the correlation is 

eventually mean-reverting. Replacing the CCC GARCH model with the DCC GARCH 

model can capture the variation in correlation between the spot and futures markets. Note 

that another interpretation for the high persistence in correlations may be due to non-linear 

behaviors in the joint and marginal distributions of assets (e.g., see de Lima, 1998).  

<Table 4 is inserted about here> 

For the copula-based GARCH models, Panel A of Table 5 shows the estimates of 

parameters for conditional means, variances, and marginal distributions. The 

significant ai, 2 estimates for the stock indices indicate that negative shocks have 

greater impacts than positive shocks on the conditional variances, with the asymmetric 

effect on volatility in the S&P 500 returns being stronger than that for the FTSE 100 

returns. However, this asymmetric effect is not significant for currency (USD/SWF) 

futures, which is consistent with previous studies. 
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<Table 5 is inserted about here> 

Panels B, C, and D of Table 5 show the estimates of parameters for different 

copula functions. Since the autoregressive parameter β1 is greater than 0.9 for all 

copulas and portfolios, the dynamic copula parameters ρt and τt are highly persistent. It 

implies that shocks to the dependence structure between the spot and futures returns 

can persist for some considerable time, in turn affecting the estimated hedge ratio. The 

parameter γ is significantly positive at the 10% level, which suggests that the latest 

information on returns is an appropriate measure for modeling the dynamic 

dependence structure. 

In terms of model fitting, the log-likelihood functions in most of the copula-based 

GARCH models are higher than those for the CCC GARCH and DCC GARCH 

models. Comparing with the Gumbel and Clayton copulas, the Gaussian copula has the 

highest log-likelihood for the direct hedge. This finding is consistent with the results of 

Malevergne and Sornette (2003) and Bartram et al. (2007), who demonstrate that 

returns from most pairs of major stock indices are compatible with the Gaussian 

copula. In other words, allowing the dependence measure to be time-varying could be 

more crucial than permitting the dependence structure to be asymmetric, because spot 

and futures returns in the direct hedge are tied closely by their no-arbitrage condition. 

However, the Gumbel copula has the highest log-likelihood for the cross hedge, in 

which spot and futures returns are less linearly correlated and thus allowing 



asymmetric dependence in dynamic hedging may also be important.  

4.3  In-sample Comparison of Hedging Performance 

This section evaluates the in-sample hedging performance of the different models. A 

hedge portfolio is composed of a spot asset and δ units of futures. For comparison, we 

calculate the variance of the returns to these portfolios over the sample: 

*var( )t t ts fδ− ,                        (24) 

where 
*
tδ  represents the estimated hedge ratios. Table 6 summarizes the results of the 

in-sample hedging performance for the different models.  

<Table 6 is inserted about here> 

Panel A of Table 6 considers the risk of hedged portfolios based on 

contemporaneous hedge ratios. It is shown that the copula-based GARCH models 

outperform the conventional and dynamic hedging models for stock markets, with the 

improvement over the conventional model by the Gaussian copula varying from 4.21% 

to 15.97% (the percentage change in variance reduction). As expected, the dynamic 

hedging models perform much better than the conventional hedging model for the 

FTSE 100 data, but the performance of the conventional hedging model is inferior to 

only the copula-based models for the S&P 500 index, demonstrating a smaller variance 

than both the CCC GARCH and DCC GARCH models.  

The asymmetric copula-based models, such as Gumbel and Clayton copulas, 
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perform more effectively for the cross hedge. The Gumbel copula has the largest 

variance reduction over other copula-based models, while the Gaussian copula is the 

worst. Empirical studies have found that stocks tend to crash together, but not boom 

together, which is not necessarily the case between stock and currency markets. The 

dependence could be asymmetric in either direction.  

Panel A of Figure 1 plots the dynamics of Kendall’s tau estimates generated from 

alternative copulas for the cross hedge.13 This figure shows that the time-varying 

estimates of Kendall’s tau are much lower than one and very volatile, which is 

consistent with Tong’s (1996) argument that a continuous adjustment of the hedge 

portfolios is highly required in a cross hedge. Although the two paths of Kendall’s tau 

generated from the Gaussian and Gumbel copulas are very close, it does not 

necessarily imply that these two models produce similar hedge ratios or hedging 

performance since the ratios and performance are determined not only by the 

dependence level, but also by the dependence structure of the two assets in the hedge 

portfolio.  

<Figure 1 is inserted about here> 

Following the evaluation of the contemporaneous variation in hedged portfolio 

returns in Panel A of Table 6, in Panels B and C we extend the respective holding period 

of the portfolios to one day and two days, as a check for robustness.14 Again, as 

 
13 Those for direct hedge are available upon request. 
14 For example, we form a hedge portfolio at time t and evaluate the portfolio variance with the realized 
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compared to the other three hedging models, the copula-based GARCH models are most 

effective in reducing the variances of hedged portfolios. As expected, the amount of 

variance reduction becomes less significant when the portfolio holding period is 

prolonged. For the two-day holding period, the Gumbel and Clayton copula-based 

models are even inferior to the conventional hedge method for the S&P 500 and FTSE 

100 data.  

The in-sample comparison suggests overall that the proposed models have greater 

hedging effectiveness than either the conventional approach or the other two GARCH 

models. These findings support that when estimating the optimal hedge ratio, not only 

is it important to have time-varying variances, but it is of considerable value to employ 

suitable distribution specifications for the time series, as evidenced by the superior 

performance of the copula-based GARCH models.  

4.4  Out-of-sample Comparison of Hedging Performance 

When a model achieves good in-sample performance, it does not necessarily achieve 

good out-of-sample performance, because such ‘over-fitting’ could be quite penalizing. 

If we set out to use a different hedging model, our concern is certainly more about how 

well we can do in the future. It is therefore necessary to determine whether the 

proposed model still works well in terms of its out-of-sample hedging performance.  

To compare such a performance, we adopt a method that involves rolling over a 

 
asset prices at time t+1 or t+2.  
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particular number of samples to determine the series of out-of-sample hedge ratios. 

More specifically, we take 2,000 observations from the sample (for example, from 2 

January 1995 to 29 November 2002) and use these observations to estimate all of the 

hedging models. We then forecast the hedge ratio for the next day (30 November 2002) 

by computing the one-period-ahead covariance forecast divided by the one-period-ahead 

variance forecast. The calculation is repeated for the following day (1 December 2002), 

using the nearest available 2,000 observations before that day (from 3 January 1995 to 

30 November 2002). By continually updating the model estimation through to the end 

of the dataset, we complete 733, 739, and 762 one-period forecasted hedge ratios for 

the S&P 500, FTSE 100, and MSCI-SWI indices, respectively. 

Table 7 reports the one-period-ahead out-of-sample evaluation results of the 

different hedging models based on the forecasted hedge ratios. The hedging 

effectiveness of the copula-based GARCH model outperforms the other hedging 

methods for the FTSE 100 and MSCI-SWI indices, while the DCC GARCH model has 

better hedging performance for the S&P 500 index. In line with our in-sample findings, 

the Gaussian and Gumbel copulas have relative advantages for the out-of-sample 

direct and cross hedges, respectively. Hence, both allowing the dependence measure to 

be time-varying and permitting the dependence structure to be asymmetric are useful 

to improve hedging effectiveness. As shown in Panel B of Figure 1, the out-of-sample 

dynamics of Kendall’s tau estimates generated from alternative copulas for the cross 
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hedge have the same properties as the in-sample dynamics mentioned earlier. 

<Table 7 is inserted about here> 

The copula-based GARCH models in general provide the best performance in both 

in-sample and out-of-sample hedges, with the DCC GARCH model in second place, 

followed by the CCC GARCH model and the conventional model in that order. Of the 

copula-based models, the Gaussian copula has the best performance for the direct hedge, 

while the Gumbel copula leads to the lowest portfolio variances for the cross hedge. 

Therefore, by specifying the joint distribution of spot and futures returns with full 

flexibility, we can use the copula-based GARCH models to effectively reduce the risk in 

hedged portfolios.  

5.  CONCLUSIONS 

In this paper we have proposed a class of new copula-based GARCH models to 

estimate risk-minimizing hedge ratios and have compared the hedging effectiveness of 

the model with that of three other models:  conventional, constant conditional 

correlation GARCH, and dynamic conditional correlation GARCH hedging models. 

Through different copula functions, including Gaussian, Gumbel, and Clayton copulas, 

the proposed models can specify the joint distribution of the spot and futures returns 

with full flexibility and hence the distribution is quite realistic. Since the marginal and 

joint distributions can be specified separately and simultaneously, we estimate the 

conditional variance and covariance to obtain the optimal hedge ratio without the 
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restrictive assumption of multivariate normality.  

With full flexibility in the distribution specifications, the hedging effectiveness 

based on the proposed models is substantially improved as compared to the alternative 

models. The in-sample evidence and out-of-sample evidence for the direct hedge and 

cross hedge both indicate that the copula-based GARCH model outperforms other 

hedging methods. Therefore, with more precise specification of the joint distribution of 

assets, we can effectively manage the risk exposure of portfolios. These findings have 

crucial implications for risk management.  



 
 

23

BIBLIOGRAPHY 

Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of 

Financial Economics, 63, 443-494. 

Baillie, R. T., & Myers, R. J. (1991). Bivariate GARCH estimation of the optimal 

commodity futures hedge. Journal of Applied Econometrics, 6, 109-124. 

Bartram, S. M., Taylor, S. J., & Wang, Y. H. (2007). The Euro and European financial 

market integration. Journal of Banking and Finance, 31, 1461-1481. 

Benet, B. A. (1992). Hedge period length and ex-ante futures hedging effectiveness: 

The case of foreign-exchange risk cross hedges. Journal of Futures Markets, 12, 

163-175. 

Bollerslev, T. (1990). Modeling the coherence in short-run nominal exchange rates: A 

multivariate generalized ARCH approach. Review of Economics and Statistics, 

72, 498-505. 

Brooks, C. & Chong, J. (2001). The cross-currency hedging performance of implied 

versus statistical forecasting models. Journal of Futures Markets, 21, 1043-1069. 

Cecchetti, S. G., Cumby, R. E., & Figlewski, S. (1988). Estimation of optimal futures 

hedge. Review of Economics and Statistics, 50, 623-630. 

Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance.  

London: John Wiley & Sons. 

Choudhry, T. (2003). Short run deviations and optimal hedge ratios: Evidence from 

stock futures. Journal of Multinational Financial Management, 13, 171-192. 

de Lima, R. F. (1998). Nonlinearities and nonstationarities in stock returns. Journal of 

Business and Economic Statistics, 16, 227-236. 



 
 

24

Ederington, L. H. (1979). The hedging performance of the new futures markets. 

Journal of Finance, 34, 157-170. 

Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate 

generalized autoregressive conditional heteroskedasticity models. Journal of 

Business and Economic Statistics, 20, 339-350. 

Engle, R. F. & Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. 

Econometric Theory, 11, 122-150. 

Engle, R. F. & Sheppard, K. (2001). Theoretical and empirical properties of dynamic 

conditional correlation multivariate GARCH. NBER Working Paper No. 8554. 

Figlewski, S. (1984). Hedging performance and basis risk in stock index futures. 

Journal of Finance, 39, 657-669. 

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the 

expected value and the volatility of the nominal excess return on stocks. Journal 

of Finance, 48, 1779-1801. 

Hansen, B. (1994). Autoregressive conditional density estimation. International 

Economic Review, 35, 705-730. 

Hu, L. (2006). Dependence patterns across financial markets: A mixed copula 

approach. Applied Financial Economics, 16, 717-729. 

Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & 

Hall. 

Kroner, K. F. & Sultan, J. (1991). Exchange rate volatility and time varying hedge 

ratios. In S. G. Rhee & R. P. Chang (Ed.), Pacific-basin capital markets research 

(pp. 397-412). Amsterdam: Elsevier Science Publishers, North-Holland.  



 
 

25

Kroner, K. F. & Sultan, J. (1993). Time-varying distributions and dynamic hedging 

with foreign currency futures. Journal of Finance and Quantitative Analysis, 28, 

535-551. 

Lee, C. F., Bubnys, E. L. & Lin, Y. (1987). Stock index futures hedge ratios: Tests on 

horizon effects and functional form. Advances in Futures and Options Research, 

2, 291-311. 

Longin, F. & Solnik, B. (2001). Extreme correlation of international equity markets. 

Journal of Finance, 56, 649-676. 

Malevergne, Y. & Sornette, D. (2003). Testing the gaussian copula hypothesis for 

financial assets dependences. Quantitative Finance, 3, 231-250. 

Myers, R. J. (1991). Estimating time-varying optimal hedge ratios on futures markets. 

Journal of Futures Markets, 11, 39-53. 

Nelsen, R. B. (1999). An introduction to copulas. New York: Springer. 

Park, T. H. & Switzer, L. N. (1995). Bivariate GARCH estimation of the optimal 

hedge ratios for stock index futures: A note. Journal of Futures Markets, 15, 

61-67. 

Patton, A. J. (2006a). Modeling asymmetric exchange rate dependence. International 

Economic Review, 47, 527-556. 

Patton, A. J. (2006b). Estimation of multivariate models for time series of possibly 

different lengths. Journal of Applied Econometrics, 21, 147-173. 

Tong, H. S. (1996). An examination of dynamic hedging. Journal of International 

Money and Finance, 15, 19-35. 

 

http://jae.wiley.com/jae/


Table 1.  Summary statistics 
 

Asset 
S&P 500 FTSE 100 MSCI-SWI USD/SWF Statistics  

 Stock Futures Stock   Futures Spot Futures 

Mean 0.0004 0.0004 0.0002 0.0002 0.0004 5.84e-6 

Std. Dev. 0.0112 0.0116 0.0110 0.0115 0.0115 0.0071 

Skewness – 0.1095 – 0.1688 – 0.1819 – 0.1275 – 0.0286 0.1880 

Kurtosis 6.2742 6.7109 5.8887 5.6690 6.4756 4.8929 

J-B 1225.32* 1580.01* 966.71* 819.81* 1370.46* 422.40*

Q(24) 34.37 30.84 82.57* 77.24* 47.36* 27.29 

Q2(24) 1065.20* 961.30* 3214.60* 2838.10* 1513.72* 162.73*

ARCH(5) 259.00* 243.50* 508.60* 467.80* 340.61* 52.57*

 
Notes: 
a    The sample period for the daily spot and futures returns runs from 2 January 1995 to 31 October 2005 and 

excludes holidays.  
b    J-B is the Jarque-Bera test for normality; Q(24) is the Ljung-Box statistic for up to the 24th order serial 

correlation in the returns; Q 2(24) is the Ljung-Box statistic for the serial correlations in the squared returns; 
and ARCH(5) is the LM test for up to the 5th order ARCH effects.  

c    * indicates significance at the 1% level. 

 
 
 
Table 2.  Unit root and cointegration tests 
 

Asset 
S&P 500 FTSE 100 MSCI-SWI USD/SWF Statistics 

 Stock Futures Stock   Futures Spot Futures 

ADF (price) – 2.68 – 2.66 – 2.15 – 2.12 – 1.71 – 1.46 

ADF (return) – 53.09* – 53.94* – 33.92* – 34.40* – 49.34* – 54.38*

Trace 46.89* – 48.75* – 6.13 – 

 λ̂  0.9995 – 0.9997 – 0.3718 – 
 
Notes: 
a    The sample period for the daily spot and futures returns runs from 2 January 1995 to 31 October 2005 and 

excludes holidays.  
b    The ADF tests are applied to test the null hypothesis of a unit root for the spot and futures prices and the 

returns; the number of lags in the ADF tests is determined by the Schwarz information criterion; Trace is the 
Johansen trace test, with the null hypothesis being that there is no cointegration; λ̂ is the estimated 
cointegrating parameter.  

c    * indicates significance at the 1% level. 
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Table 3.  Constant correlation GARCH model estimations  

  
Asset 

S&P 500 FTSE 100 MSCI-SWI USD/SWFParameters 
i = s i = f i = s i = f i = s i = f 

0.0002 0.0008 0.0004 0.0007 0.0006 –4.40e-5 α0 i

(0.4839) (0.0008) (0.0272) (0.0002) (0.0009) (0.7258) 

– 0.1536 0.0502 – 0.0139 0.1605 0.0439 –0.0319 α1 i

(0.0006) (0.0268) (0.0277) (0.0001) (0.0305) (0.1387) 

7.36e-7 9.64e-7 9.16e-7 1.08e-6 3.63e-6 8.09e-7 c i

(0.0000) (0.0000) (0.0009) (0.0008) (0.0000) (0.0735) 

0.0691 0.0728 0.0835 0.0911 0.0985 0.0231 a i

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0041) 

0.9226 0.9266 0.9104 0.9031 0.8728 0.9606 b i

(0.0000) (0.0000) (0.0000) (0.0000) (0.000) (0.000) 

0.9705 0.9728 0.2738 ρ 

(0.0000) (0.0000) (0.0000) 

Log-likelihood 21270 21705 18625 

 
Notes: 
a    The table presents the maximum likelihood estimates of the constant conditional correlation GARCH model. 
b    Figures in parentheses are p-values, where 0.0000 indicates that the value is less than 0.00005. The model is 

described as follows: 
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c    For the cross hedge between the dollar value of the MSCI Switzerland index and the USD/SWF futures, the 
coefficient estimates of the error correction terms are replaced by the estimates of the MA(1) terms due to the 
inexistence of co-integration. 
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Table 4.  DCC GARCH model estimations 
 

Asset 
S&P 500 FTSE 100 MSCI-SWI USD/SWFParameters 

i = s i = f  i = s  i = f  i = s  i = f  

0.0306 0.0279 0.0191 
θ 1

(0.0011) (0.0244) (0.0000) 

0.9631 0.9675 0.9768 
θ 2 (0.0000) (0.0000) (0.0000) 

Log-likelihood 21392 21821 18684 

 
Notes: 
a    The table presents the maximum likelihood estimates of the dynamic conditional correlation GARCH model. 

Because the marginal processes are identical to those in the CCC GARCH model presented in Table 3, only 
the estimates of correlation parameters are reported. 

b    Figures in parentheses are p-values, where 0.0000 indicates that the value is less than 0.00005. The correlation 
process is specified as follows: 

,t t t t t t t tH D R D D J Q J Dt= =  

, 2 2( )t ij tQ q ×=    1/ 2 1/ 2
, ,diag{ , }t s t fJ q q− −= t

'
1 2 1 1 1 2 1(1 )t t tQ Qθ θ θ ζ ζ θ tQ− − −= − − + + . 

c    For the cross hedge between the dollar value of the MSCI Switzerland index and the USD/SWF futures, the 
coefficient estimates of the error correction terms are replaced by the estimates of the MA(1) terms due to the 
inexistence of co-integration. 
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Table 5.  Copula-based GARCH model estimations 
 

Asset 

S&P 500 FTSE 100 MSCI-SWI USD/SWFParameters 

i = s i = f  i = s  i = f  i = s  i = f  

Panel A: Estimates of marginal processes 

0.0001 0.0003 0.0001 0.0003 0.0003 –3.40e-5 α0 i
(0.5271) (0.0699) (0.5716) (0.0608) (0.0595) (0.8030) 

– 0.0313 0.0110 – 0.0482 0.0730 0.0336 –0.0648 α1 i  
(0.1453) (0.1040) (0.0371) (0.0040) (0.0200) (0.0004) 

1.32e-6 1.51e-6 8.08e-7 8.45e-7 3.44e-6 7.68e-7 c i
(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0213) 

2.50e-14 4.07e-13 1.33e-12 0.0106 0.0232 0.0204 a i, 1
(1.0000) (1.0000) (1.0000) (0.0215) (0.0331) (0.0000) 

0.1402 0.1413 0.1058 0.1040 0.0999 9.72e-13 a i, 2
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.9999) 

0.9212 0.9183 0.9384 0.9309 0.8973 0.9646 b i (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

11.8024 9.4632 19.9499 15.9410 11.8813 6.2239 
ηi (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

–0.0973 –0.1322 –0.1248 -0.1164 –0.0679 0.0639 
φi (0.0001) (0.0000) (0.0000) (0.0000) (0.0200) (0.0055) 

Panel B: Estimates of Gaussian dependence processes 

0.0024 – 0.0017 0.0015 ω 
(0.0000) (0.0000) (0.2584) 

0.9973 0.9317 0.9790 β 1 (0.0000) (0.0000) (0.0000) 

0.0002 0.0003 0.0003 β  2
(0.9767) (0.8141) (0.9996) 

0.0034 0.0039 0.2054 γ 
(0.0011) (0.0000) (0.0163) 

Log-likelihood 21859 21978 18795 
 
 
 



Table 5.  Copula-based GARCH model estimations (cont’d) 
 

Panel C: Estimates of Gumbel dependence processes 

0.0010 0.0022 0.0015 ω 
(0.1030) (0.1199) (0.9985) 

0.9978 0.9964 0.9693 β 1 (0.0000) (0.0000) (0.0049) 

1.40e-6 1.22e-6 0.0013 β  2
(0.9999) (0.9999) (0.9999) 

0.0107 0.0101 0.1801 γ 
(0.0007) (0.0064) (0.0980) 

Log-likelihood 21772 21857 18797 

Panel D: Estimates of Clayton dependence processes 

0.0085 0.0252 0.0002 ω 
(0.0142) (0.0850) (0.9988) 

0.9857 0.9656 0.9875 β 1 (0.0000) (0.0000) (0.0000) 

0.0005 0.0002 0.0092 β  2
(0.9910) (0.9955) (0.9995) 

0.0298 0.0201 0.0719 γ 
(0.0004) (0.0918) (0.0927) 

Log-likelihood 21627 21752 18749 
 
Notes: 
a    The table presents the maximum likelihood estimates of the copula-based GARCH model. 
b    Figures in parentheses are p-values, where 0.0000 indicates that the value is less than 0.00005. The copula- 

based GARCH models are described as follows: 
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c    For the cross hedge between the dollar value of the MSCI Switzerland index and the USD/SWF futures, the 

coefficient estimates of the error correction terms are replaced by the estimates of the MA(1) terms due to the 
inexistence of co-integration. 
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Table 6.  Comparison of the effectiveness of in-sample hedging  

 

 Portfolio Variance Variance Reduction over the 
Conventional Method (%) 

Models 
S&P 500 FTSE 100 MSCI-SWI S&P 500 FTSE 100 MSCI-SWI

Panel A: *var( )t t ts fδ−  

Conventional 0.0712 0.0626 1.2480    

CCC GARCH 0.0725 0.0593 1.3069 
–0.0013 
(–1.83) 

0.0033 
(5.27) 

–0.0589 
(–4.72) 

DCC GARCH 0.0719 0.0587 1.2383 
–0.0007 
(–0.98) 

0.0039 
(6.23) 

0.0097 
(0.78) 

Gaussian Copula 0.0682 0.0526 1.2395 0.0030 
(4.21) 

0.0100 
(15.97) 

0.0085 
(0.68) 

Gumbel Copula 0.0690 0.0529 1.2361 0.0022 
(3.09) 

0.0097 
(15.50) 

0.0119 
(0.95) 

Clayton Copula 0.0695 0.0589 1.2379 0.0017 
(2.39) 

0.0037 
(5.91) 

0.0101 
(0.81) 

Panel B:  )var( 1
*

1 ++ − ttt fs δ

Conventional 0.0713 0.0626 1.2481    

CCC GARCH 0.0722 0.0601 1.3049 
–0.0009 
(–1.26) 

0.0025 
(3.99) 

–0.0568 
(–4.55) 

DCC GARCH 0.0718 0.0596 1.2382 
–0.0005 
(–0.70) 

0.0030 
(4.79) 

0.0099 
(0.79) 

Gaussian Copula 0.0671 0.0524 1.2397 0.0042 
(5.89) 

0.102 
(16.29) 

0.0084 
(0.67) 

Gumbel Copula 0.0677 0.0530 1.2366 0.0036 
(5.05) 

0.0096 
(15.34) 

0.0115 
(0.92) 

Clayton Copula 0.0683 0.0597 1.2372 0.0030 
(4.21) 

0.0029 
(4.63) 

0.0109 
(0.87) 

Panel C:  )var( 2,
*

2, ++ − ttttt fs δ

Conventional 0.0707 0.0677 1.2483    

CCC GARCH 0.0732 0.0681 1.3045 
–0.0025 
(–3.54) 

–0.0004 
(–0.59) 

–0.0562 
(–4.50) 

DCC GARCH 0.0722 0.0667 1.2400 
–0.0015 
(–2.12) 

0.0010 
(1.48) 

0.0083 
(0.66) 

Gaussian Copula 0.0704 0.0674 1.2424 0.0003 
(0.42) 

0.0003 
(0.44) 

0.0059 
(0.47) 

Gumbel Copula 0.0708 0.0676 1.2392 
–0.0001 
(–0.14) 

0.0001 
(0.15) 

0.0091 
(0.73) 

Clayton Copula 0.0711 0.0683 1.2406 
–0.0004 
(–0.57) 

–0.0006 
(–0.89) 

0.0077 
(0.62) 

Notes: 
a    We evaluate the effectiveness of the hedging models with the contemporaneous, 1-day-later, and 2-day-later 

prices, for which the respective results are reported in Panels A, B, and C.  
b    Computation of the variance in portfolio returns is carried out by Equation (24) and all reported values of 

variance have been multiplied by 104.  
c    The variance reduction over the conventional method is given as . The numbers in the 

parentheses, in percentage terms, are given as: 
)( 22

alconventioni σσ −−

2 2 2100( ) /iσ σ σ− −
conventional conventional

. 
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Table 7.  Comparison of the effectiveness of out-of-sample hedging 
 

 Portfolio Variance Variance Reduction over the 
Conventional Method 

Models 
S&P 500 FTSE 100 MSCI-SWI S&P 500 FTSE 100 MSCI-SWI

*
1 1| 1var( )t t t ts fδ+ + +−  

Conventional 0.0308 0.0280 0.8914    

CCC GARCH 0.0288 0.0268 0.9179 0.0020 
(6.49) 

0.0012 
(4.29) 

–0.0265 
(–2.97) 

DCC GARCH 0.0285 0.0266 0.8442 0.0023 
(7.47) 

0.0014 
(5.00) 

0.0472 
(5.30) 

Gaussian Copula 0.0288 0.0261 0.8428 0.0020 
(6.49) 

0.0019 
(6.79) 

0.0486 
(5.45) 

Gumbel Copula 0.0290 0.0263 0.8375 0.0018 
(5.84) 

0.0017 
(6.07) 

0.0539 
(6.05) 

Clayton Copula 0.0295 0.0278 0.8533 0.0013 
(4.22) 

0.0002 
(0.71) 

0.0381 
(4.27) 

 
Notes: 
a    The method adopted to determine the series of out-of-sample hedge ratios involves rolling over a particular 

number of samples (2000 observations). The variation in portfolio returns is evaluated using the spot and 
futures returns which are observed at the forecasted date. 

b    Computation of the variance in portfolio returns is carried out by Equation (24) and all reported values of 
variance have been multiplied by 104.  

c    The variance reduction over the conventional method is given as . The numbers in the 
parentheses, in percentage terms, are given as: 

)( 22
alconventioni σσ −−

2 2 2100( ) /iσ σ σ− −
conventional conventional

. 
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Figure 1.  The Time-varying Dependence from Alternative Copula Models 
Panel A: In-sample 

MSCI-SWI v.s. USD/SWF
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Panel B: Out-of-sample  

MSCI-SWI v.s. USD/SWF
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Notes: 
a This figure shows the in-sample and out-of-sample estimates of time-varying Kendall’s tau between the 

dollar value of the MSCI Switzerland index and USD/SWF futures  
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