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ABSTRACT 

This study examines whether incorporating jumps with stochastic volatility can improve the 
predictive power of option-implied densities of the FTSE 100 index. A general double-jump 
model, as proposed by Duffie et al. (2000), is used to fit the market prices of options and to 
estimate ‘risk-neutral’ densities. ‘Real-world’ densities are then converted from their 
risk-neutral form by means of alternative statistical calibrations. Both the risk-neutral and 
real-world densities are evaluated, over five forecast horizons, using two different tests. Our 
empirical results indicate that adding jumps into the price and/or volatility processes not 
only substantially lowers the fitting errors of option prices, but also improves the predictive 
power of risk-neutral densities. Furthermore, satisfactory density prediction was 
consistently provided by the real-world densities, which were not dependent on the addition 
of jumps, the approach used to construct the densities, or the prediction horizon. 
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1. INTRODUCTION 

Density prediction has crucial implications from many perspectives, including policy 

making, risk management and derivatives pricing. Historical data has conventionally been 

used to estimate a price dynamic model, with the estimated model then being used to 

simulate the distribution of future prices. With forward-looking information, the 

derivatives markets are able to provide a much richer source for the prediction of the 

future price distribution of the underlying assets. 

Many methods have been proposed as the means of inferring the risk-neutral density 

(RND) of the underlying asset price for the option maturity date.1 A variety of methods 

were also surveyed in Cont (1997), Bahra (1997), Jackwerth (1999), Jondeau and 

Rockinger (2000) and Bliss and Panigirtzoglou (2002). It was demonstrated that most of 

these methods were likely to perform satisfactorily, providing that options were traded 

with sufficient strike prices, and that their range covered most of the distribution. There is, 

however, an inevitable limitation inherent within these methods, since the options used to 

estimate the RND must have the same time-to-maturity, which is of course, also the 

prediction horizon. As a result, the implied information within the option market cannot 

be used in its entirety, and we can only predict the distribution of the underlying asset 

price for a single horizon.2  

However, as long as the corresponding option pricing formula can be derived either 
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analytically or numerically, any risk-neutral specification of the price dynamic process 

potentially has the ability to conquer this limitation and yield RND estimates for any time 

horizon by simultaneously using all market prices of options with different maturities. 

Therefore, along with the progress being made in the advancement of option pricing 

models, density prediction methods have also been continually developing. In particular, 

continuous-time models have provided an ideal method of density prediction, essentially 

because there is often a multi-horizon analytical RND formula which corresponds to this 

type of option pricing model.  

As the assumptions regarding price dynamics become more realistic, the implied 

volatility function can be more precisely captured. Those models that include jumps in the 

price and/or stochastic volatility dynamics have been examined in numerous studies 

including Bates (1996, 2000), Bakshi et al. (1997), Duffie et al. (2000), Eraker et al. 

(2003), Eraker (2004) and Carr and Wu (2004). The common finding in these studies is 

that incorporating jumps with stochastic volatility can substantially improve both the 

option pricing and the consistency of the parameters implied in option prices and 

estimated with relevant time-series data. It is therefore natural to question whether 

incorporating stochastic volatility with jumps in the asset price and/or jumps in volatility 

can also improve the forecasting power of option-implied densities. To the best of our 

knowledge, this issue has not yet been investigated; thus, the present paper aims to 
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contribute to the literature by filling this gap.3 In addition to presenting a more flexible 

framework for the estimation of multi-horizon RNDs, this paper offers important 

empirical evidence on the role played by jumps in density prediction.  

In this study, we follow the affine-analysis framework of Duffie et al. (2000) to 

compare the performance, across five different forecast horizons, of three different density 

prediction models for the FTSE 100 index.4 These models include the stochastic volatility 

(SV) model, the stochastic volatility model with jumps in price only (SVJ), and the 

stochastic volatility model with simultaneous and correlated jumps in both price and 

volatility (SVJJ). The RNDs and ‘real world densities’ (RWDs), transformed by the use of 

statistical calibrations, are evaluated based upon the Anderson-Darling and Berkowitz 

(2001) tests.5

Incorporating jumps with stochastic volatility essentially fattens the tails of the 

distribution of the underlying assets, thus making them more realistic. Therefore, in line 

with the prior studies, our initial finding is that the addition of jumps makes the parameter 

estimates to be much more reasonable and consistent with their theoretical expectations. 

Besides, as compared to the SV model, the SVJ model substantially lowers the fitting 

errors of option prices, whilst the average error for the SVJJ model is even less. 

Furthermore, adding jumps into the price and volatility dynamics can also improve the 

predictive power of RNDs.  
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By contrast, we find that remarkable improvements in the precision of the density 

predictions are achieved by RWDs over RNDs; furthermore, we also find that RWDs 

consistently provided satisfactory density predictions, which were not dependent on the 

approach used to construct the RWDs, the model specification, or the forecast horizon. 

The remainder of the paper is organized as follows. Section 2 provides details of the 

option pricing model used in this study, followed in Section 3 by an explanation of the 

approaches used to derive the RNDs and then transform them into RWDs. The tests used to 

evaluate the density prediction performance are described in Section 4, followed by a 

description of the data used in this study in Section 5. Section 6 presents the analysis of the 

empirical results, with the conclusions drawn from this study finally being presented in 

Section 7. 

2. THE OPTION PRICING MODEL 

A general double-jump stochastic volatility model for option pricing was provided by 

Duffie et al. (2000) using the affine analysis method. Let S be the price process of a 

security which pays dividends at a constant proportional rate ξ , and Y = ln(S). The state 

process is X = (Y,V)T, where V is the variance process with a long-term level υ and 

volatility σν. Also, suppose that the short rate is a constant r, under an equivalent 

martingale measure Q. 
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where W Q is a standard Brownian motion under Q measure in R2; and Z is a pure jump 

process in R2 with constant mean arrival rate λ, whose bivariate jump-size distribution 

has the transform θ. Through the specification of θ, a flexible range of distributions of 

jumps can be explored. In order to satisfy the risk-neutral restriction, μ = θ (1,0) –1. 

Similar to the function proposed by Duffie et al. (2000), the jump transform function 

θ in this study is defined by: 
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The two functions referred to above correspond to two different types of jumps, as 

follows: 

1. Jumps in price, Y, with arrival intensity λ 

y and normally distributed jump size 

with mean μ y and standard deviation σy. 

2. Simultaneous correlated jumps in Y and V, with arrival intensity λ 

c. The 

marginal distribution of the jump size in V is exponential, with mean μ cv . Given 
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a realization of, say zv, in the jump size in V, the conditional distribution of the 

jump size in Y is normal, with mean μ cy + ρJ
 zv and standard deviation σcy . 

Given the constraints on certain parameters, the following three different types of 

model are selected. 

1. SV model: Stochastic volatility model, without jumps, obtained with λ = 0. 

2. SVJ model: Stochastic volatility model, with jumps in price only, obtained with 

λy > 0 and λc = 0. 

3. SVJJ model: Stochastic volatility model, with simultaneous and correlated 

jumps in both price and volatility, obtained with λc > 0 and λy = 0. 

Under the affine transform framework, the price of a call option with the strike price 

K is given as: 
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We estimate the dynamic parameters by minimizing the following loss function:  
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where C* and C denote the respective real market and theoretical call prices.  

3. RISK-NEUTRAL AND REAL-WORLD DENSITIES  

3.1  Risk-neutral Densities (RNDs) 

Rearranging the formula for the call price in Equation (5) to a Black-Scholes-type form of 
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Se-ξTP1-Ke-rTP2, where P2 is the probability of ST ≥ K under a Q measure, we have: 
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The RND is therefore obtained by the derivative of 1– P2 with respect to K evaluated at x , 

and given by: 
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3.2 Real-world Densities (RWDs) 

The theory of asset pricing relates current asset prices to expectations of discounted future 

payoffs and in principle different measures result in the same asset price. Therefore, the 

transformation from RNDs to RWDs relies upon a pricing kernel describing the risk 

preference of the representative agent, i.e. g = k‧f, where g, f and k denote the RWD, 

RND and pricing kernel of a random variable, respectively. The pricing kernel can be 

specified by the assumptions of either an economic model or calibration theory. In order 

to minimize the computation load, our transformation is based upon the statistical 

calibration. 

Given that f (x) and F(x) are the RND and cumulative distribution function (CDF) of 

the random variable X, we define U = F(X ), i.e. u = F(x ). Let the calibration function C(u) be 

the real-world CDF of the random variable U. Then the real-world CDF of X is: 

G(x) = Pr(X ≤ x) = Pr(F( X ) ≤ F(x)) = Pr(U ≤ F(x)) = C(F(x))       (12) 
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Accordingly, the RWD of X is given as: 
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where c(u) is the probability density function (PDF) of U, i.e. a pricing kernel. 

We use the CDF of the Beta distribution as the calibration function (as suggested by 

Fackler and King, 1990). The density transformation using this function was previously 

performed by Shackleton et al. (2006) and Liu et al. (2007). The CDF of the Beta 

distribution is defined as: 
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where B(α, β ) is the Beta function. In accordance with Equation (13), the calibrated RWD 

is: 
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The estimates of the parameters α and β can be obtained by maximizing the 

likelihood assessed with the realized asset prices of the forecast horizon. For forecast 

horizon τ, the log-likelihood function with n RWDs and realized asset prices Si,τ is: 
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where gi,τ denotes the i th RWD with forecast horizon τ. 

As suggested by Shackleton et al. (2006), we can also use an alternative 

non-parametric approach, i.e. an empirical calibration function, to implement the 

transformation. Let (.)φ  and Ф(.) respectively denote the PDF and CDF of the standard 
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normal distribution. Given a sample of n observations, we define ui = F(x i) (i = 1, 2, …, n) 

and transform ui to a new series yi = Ф 
–

 
1 (ui). Under this series, the non-parametric kernels 

PDF and CDF, defined by normal kernels with bandwidth B, are respectively given as 
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Namely, )(/)( yyh φ is a pricing kernel. 

4. DENSITY PREDICTION EVALUATION 

On each density formation date, all of the option prices jointly produce a set of estimates 

for the model parameters; thus, we can construct the estimates of RNDs and RWDs for 

any particular forecast horizon. Using the Anderson-Darling test and the Berkowitz (2001) 

test, we aim to investigate whether the estimated densities are equal to the true densities.  

Let fi,τ (x) and  respectively denote the true and estimated densities for 

forecast horizon τ. Under the null hypothesis that the realizations Si,τ are independent and 

fi,τ (x) = , the probability integral transformations (PITs) of the realizations,  
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will be independently and uniformly distributed.7

Various statistical tests have been proposed and compared in the prior literature.8 We 

adopt the Anderson-Darling A2 test since it is particularly good at identifying mean errors, 

and extremely powerful when the forecasted distribution departs from the true distribution 

in the tails. The test statistic is defined as: 

2
1

1

(2 1) [ln ( ) ln(1 ( ))]
n

i N
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N + −
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−
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where U is the CDF of the uniform distribution. It should be noted that the ui are the 

ordered data. The Anderson-Darling test is a one-side test; the null hypothesis that the 

PITs are uniformly distributed will be rejected if the statistic is higher than the critical 

value or the corresponding p-value is smaller than the significance level. 

Arguing that most of the statistic tests based on the PITs were not sufficiently 

powerful for small samples, Berkowitz (2001) proposed a method for jointly testing 

uniformity and independence, further transforming ui,τ with the inverse function of the 

standard normal distribution Ф 
–

 
1

 (.), as follows: 
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Under the null hypothesis, zi,τ will be i.i.d. and will follow a standard normal 

distribution. In order to test for both the independence and normality, Berkowitz first 

estimated the following model: 

τττ εμρμ ,,1, )( iii zz +−=− − .                  (22) 
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This model was estimated using the maximum likelihood method with the aim being 

to determine the restrictions on the parameters using a likelihood ratio test. Under the null 

that zi,τ is i.i.d., N(0,1), μ = 0, ρ = 0 and Var(εi,τ) = 1. If the log-likelihood function is denoted 

as L(μ, σ2, ρ), the statistic for the likelihood ratio test is: 

)]ˆ,ˆ,ˆ()0,1,0([23 2 ρσμLLLR −−= ,                (23) 

which follows a χ 2(3) distribution under the null hypothesis. 

However, if the data are serially correlated, which could arise from such overlapping 

forecasts, the rejection of the above test may arise from the autocorrelation of the data 

series. Berkowitz (2001) therefore tested for independence separately by examining the 

following likelihood ratio statistic: 

)]ˆ,ˆ,ˆ()0,ˆ,ˆ([21 22 ρσμσμ LLLR −−= ,                (24) 

which follows a χ 2(1) distribution under the null hypothesis. 

Thus, we will support the predictive power of a density only where we fail to reject the 

null hypotheses of both LR3 and LR1. If the null of LR3 is rejected, but the null of LR1 is 

not, we then have evidence indicating that the estimated densities do not provide accurate 

forecasts. Finally, if we reject the nulls of both LR3 and LR1, we will be unable to determine 

whether the rejection of LR3 is caused by serially correlated data. 

5.  DATA 

The underlying asset for the density prediction is the FTSE 100 index; thus, the primary 
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data used in this study is the daily settlement prices of the FTSE 100 index options, which 

are European style options traded on the London International Financial Futures Exchange 

(LIFFE). The dataset, which covers a sample period from 2 January 2000 to 31 December 

2005, was obtained from Euronext. 

Since the quarterly FTSE 100 futures contracts have the same expiration dates as the 

index options, if the mark-to-market effect is insignificant, the index options may then be 

regarded as the index futures options. The LIFFE reports the futures prices as the underlying 

asset prices in the dataset. For the serial-month options, the LIFFE calculates the theoretical 

futures prices based on the term structure of the quarterly futures prices. As serial-month 

options are less actively traded, with their underlying asset prices being constructed 

synthetically, only quarterly options are included in this study. 

The option prices are filtered using additional criterion. Firstly, we exclude those 

option settlement prices that violate any arbitrage-free bounds, as well as those with a zero 

trading volume. Call and put option prices for the same strike and maturity should 

essentially contain the same information; however, given that the out-of-the-money (OTM) 

options are usually more heavily traded, we discard the in-the-money (ITM) options. 

Furthermore, in order to avoid the liquidity issue being imposed on the short-maturity 

options, we exclude those options with a time-to-maturity which is less than seven 

calendar days. We also eliminate those options with prices that are less than £1.00 since 
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the minimum quote and change in the option prices is 50 pence, and as such, these option 

prices could be insensitive to the information contained therein. 

In addition to the prices of futures and options, the risk-free rates adopted in this 

study are proxied by the three-month Euro-currency interest rates for Pounds Sterling, 

given that the three-month Euro-currency market has the best liquidity (these interest rates 

are obtained from Datastream). All of the put prices are converted to equivalent call prices 

using put-call parity. A summary of the option prices is provided in Exhibit 1, which is a 

cross-sectional table comprising of six sections of moneyness divided by 0.94, 0.97, 1.0, 

1.03 and 1.06, and three sections of time-to-maturity divided by 90 and 180 calendar 

days.9  

<Exhibit 1 is inserted about here> 

Our study sample ultimately comprised of a total of 72,494 option prices with an 

average call (equivalent) price of £427.40. As expected, the call price has a positive 

association with time-to-maturity and a negative association with moneyness. The number 

of OTM put contracts (moneyness < 0.97) is generally much higher than the number of 

OTM call option contracts (moneyness > 1.03). The average index values across 

moneyness are also given in the last column of Exhibit 1. During our sample period, the 

average level of the FTSE 100 index is 5009.98 and does not vary much across 

moneyness.  
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6. EMPIRICAL RESULTS 

Given that in virtually all of the prior empirical studies on the role of jumps in the 

specification of price dynamics and option pricing the focus was on either the S&P 500 or 

NASDAQ 100 index, the investigation of other assets is quite sparse. Therefore, prior to 

exploring the impact of jumps on the predictive power of option-implied densities, we 

must first estimate the parameters of the SV, SVJ and SVJJ models to determine whether 

the parameters describing the price dynamics of the FTSE 100 index are consistent with 

the general expectation, and then use the estimated parameters to examine the way in 

which the jumps affect the option pricing errors of the FTSE 100 index. We then go on to 

investigate the impact of the jump dynamics on density predictions for the FTSE 100 

index. Finally, we briefly look at the risk preference implied in the option market.  

6.1  Estimation of Model Parameters 

We begin with the estimation of the parameters of the SV, SVJ and SVJJ models by 

minimizing the sum of the squared differences between the market and theoretical prices 

of the FTSE 100 index options across different strike prices and different periods of 

time-to-maturity, once per day. The summary statistics of the parameter estimates of the 

three models are provided in Exhibit 2. 

<Exhibit 2 is inserted about here> 

As suggested in several of the prior studies, the addition of jumps lowers the average 
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annualized level of the stochastic volatility ( υ ) from 25.96 per cent (SV model) to 21.10 per 

cent (SVJJ model).10 The estimation of the initial stochastic volatility ( 0V ) is also lower 

when the jump factor is considered. Although a higher value of the volatility of volatility (σν) 

implies fatter tails of the index level distribution, the value for the SV model is unreasonably 

high (0.73); however, adding jumps reduces this level substantially, to 0.47 for the SVJ model 

and 0.41 for the SVJJ model.11 In the same vein, the speed of the mean reversion of volatility 

(κν) is also reduced from 2.06 to about 1.6. 

Adding a jump factor into the price process (SVJ model) essentially fattens the tails 

of the returns distribution, with the volatility of the jump size fattening both tails, whereas 

a negative mean ( μy = –0.41) implies that the right tail is relatively less fat, which is 

consistent with the general findings for equity returns. The arrival intensity of the jump in 

the price process of the SVJ model is estimated to be an average of 0.32. 

In the SVJ model, the significant movement in prices resulting from jumps has no 

impact on volatility. Correcting the shortcoming in the SVJ model, the SVJJ specification 

allows jumps to affect both prices and volatility. The addition of the jump factor in 

volatility makes the distribution of volatility more positively skewed, and hence, fattens 

the tails of the returns distribution.  

The intensities of jumps in both prices and volatility in the SVJJ model follow the 

same Poisson process, with the sizes of the jumps all being correlated. The correlation ( ρj) 
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is found to be negative (–0.47), which indicates that the larger the market price crash, the 

greater the increase in volatility. The patterns of the parameters associated with the jump 

process in prices (λc , μcy and σcy) are similar to those of the SVJ model, although the 

magnitudes of the former are smaller. 

In summary, the estimates of all of the model parameters for the FTSE 100 index are 

consistent with the theoretical expectations, as well as the findings of the prior studies 

with regard to other assets; namely, a more general model can make the distribution of 

both prices and volatility more realistic, and explain more of the stylized facts observed in 

the real world stock market. 

6.2  Fitting of Option Prices 

Given the estimates of the model parameters from daily option market prices, we then go 

on to calculate the theoretical prices under the three price dynamic assumptions. In this 

section, we investigate whether adding jumps can improve the model price fitting for the 

FTSE 100 index options. A summary of the fitting errors across different levels of 

moneyness and periods of time-to-maturity, defined by the difference between the 

theoretical and market prices, is provided in Exhibit 3. 

<Exhibit 3 is inserted about here> 

As compared with the Black-Scholes model, the SV model offers a flexible price 

distribution with substantially improved option pricing. Following the lead of Bakshi et al. 
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(1997), in many subsequent studies on the role of jumps in option pricing it has been 

suggested that the incorporation of jumps into the price process is very important; 

however, Bakshi et al. (1997) found that the SVJ model still systematically overpriced the 

OTM call options. Nevertheless, Bates (2000), Duffie et al. (2000), Pan (2002) and Eraker 

et al. (2003) each demonstrated that adding jumps into volatility could attenuate the 

overpricing problem in the SVJ model.  

In general, our results for the FTSE 100 index are consistent with those of the prior 

studies. The addition of jumps into the price process (SVJ model) lowers the fitting errors 

considerably. For short-maturity near-the-money calls, as compared to the SV model, the 

reduction in the average fitting error for the SVJ model was found to be as high as 46.03 

per cent. 

In addition to the significant improvement in short-maturity (<90 days) calls, the 

improvement in longer-maturity (>90 days) calls is also very impressive. When we allow 

simultaneous and correlated jumps in the volatility process (SVJJ model), the fitting errors 

are reduced still further. The average magnitude of the SVJJ model over the SVJ model is 

not as significant as that of the SVJ model over the SV model; nevertheless, the 

improvement is, on average, in excess of 10 per cent.  

In summary, our results provide strong support for the argument that the 

incorporation of jumps into option pricing is an important development, since we find that 
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the model with jumps incorporated into the price process can substantially improve the 

precision of option pricing. Adding jumps into the volatility process can further lower the 

pricing error, and indeed, the presence of jumps in volatility does not eliminate the 

requirement for jumps in prices. The contribution of the jumps comes from the more 

realistic distributions of prices and volatility.  

6.3  Density Prediction 

Although a more complex model can generally result in better in-sample performance, it may 

not necessarily have better out-of-sample performance since such performance may be 

penalized by overfitting. Therefore, in this section we investigate whether the addition of 

jumps can improve the density predictions of the future levels of the FTSE 100 index.  

The density predictions are executed for five horizons, 1 day, 1 week, 2 weeks, 3 

weeks and 4 weeks, evaluated under the Anderson-Darling and Berkowitz (2001) tests. 

We form the forecasts once per unit of horizon so as to avoid overlapping forecasts; for 

example, for the 2-week-ahead forecast, the forecast is formed once every two weeks so 

that there is no forecast between a formation date and the corresponding realization date. 

As a result, we have 1,486 observations for the 1-day-ahead predictions, and 38 

observations for the 4-week-ahead predictions. 

Given the estimates of the model parameters, the RNDs for the five forecast horizons 

can be constructed for the three different models using the closed-form solution of 
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Equation (11). We transform the RNDs to RWDs using either the Beta-distribution or the 

non-parametric calibration method. The RNDs and RWDs under the two different 

calibrations are then evaluated against the realized levels of the FTSE 100 index for every 

forecast horizon.  

The results of the Anderson-Darling tests, including the statistics and the p-values, 

are presented in Exhibit 4. Basically, the lower (higher) the statistic (p-value), the more 

satisfactory the density prediction. The test results show that with the exception of the 

3-week-ahead forecast horizon, the RNDs constructed for all other forecast horizons using 

the SV model provide poor prediction of the density of the future levels of the FTSE 100 

index at the 5 per cent significance level. By contrast, with the exception of the 

1-week-ahead forecasts, the addition of jumps in volatility results in acceptable forecasts 

for all other horizons at the 5 per cent significance level.  

<Exhibit 4 is inserted about here> 

Adding jumps into the volatility process further raises the significance levels of most 

of the forecast horizons above 10 per cent. In general, therefore, the incorporation of 

jumps with stochastic volatility can improve the overall precision of the density 

predictions made by the RNDs, with the SVJJ model demonstrating the most satisfactory 

performance. 

Consistent with the prior studies, including Bliss and Panigirtzoglou (2004), 
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Anagnou-Basioudis et al. (2005), Shackleton et al. (2006) and Liu et al. (2007), the RWDs 

provide satisfactory forecasts for the densities of future index levels for all prediction 

horizons, and indeed, these are not dependent on either the model specifications or the 

approaches used for the construction of the RWDs. All of the Anderson-Darling statistics 

are insignificant at a very high level, with the highest being those for the RWDs 

constructed under the SVJJ model. Most of the p-values used to evaluate the RWDs are 

greater than 0.8.  

Since most of the statistical tests based on the PITs, such as the Anderson-Darling 

test, may not be sufficiently powerful for small samples, we also employ the test proposed 

by Berkowitz (2001) to evaluate our density prediction; the Berkowitz LR3 and LR1 test 

statistics and p-values are presented in Exhibit 5. From the results in Panel 1, we find that 

almost all of the RNDs constructed using the SV model provide poor density prediction 

for the FTSE 100 index, since all of the LR3 tests are rejected and all of the LR1 tests, 

with the exception of the 3-week forecast horizon, are accepted.  

<Exhibit 5 is inserted about here> 

In contrast to the results obtained using the Anderson-Darling test, adding jumps into 

prices and/or volatility results in satisfactory density predictions for only the 1-day-ahead 

forecast at the 10 per cent significance level, since both the LR3 and LR1 tests are 

accepted. According to the test statistics and p-values, although the incorporation of jumps 
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with stochastic volatility does improve the prediction performance of the RNDs, the 

improvement may not be sufficiently significant to render such predictions acceptable 

under a reasonable level of significance. If we adopt a 1 per cent significance level, then 

the 1-day, 2-week and 3-week-ahead forecasts of the RNDs under the SVJJ model are 

acceptable. 

From Panels 2 and 3 of Exhibit 5, we find that the RWD forecasts are satisfactory for 

all prediction horizons at the 5 per cent significance level, with some of the p-values being 

even greater than 0.8. In similar vein to our findings using the Anderson-Darling test, the 

improved performance provided by the RWDs is dependent on neither the model 

specifications nor the approaches used to transform the densities. However, given that the 

power of the Berkowitz test may be higher than that of the Anderson-Darling test, the 

p-values are, on average, lower. 

To further visualize our findings, we use the realized index levels to calculate the 

values of their CDFs assessed by both the RNDs and RWDs constructed under the three 

different models for the five different forecast horizons and then go on to plot the 

differences between the predicted CDF values and their empirical CDF values against the 

empirical CDF values.12 If a density prediction is perfect, then the differences are equal to 

zero.  

Since the patterns for all forecast horizons are similar, in Exhibit 7 the plots are 
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produced for the 1-day horizon only and those for other horizons are available upon 

request. As illustrated by the plots, the RWDs provide remarkable improvements over the 

prediction power of the RNDs, across all model specifications and forecast horizons, since 

the differences for the RWDs are much smaller.  

<Exhibit 7 is inserted about here> 

Following the same assessment rules, the addition of jumps also improves the density 

prediction of the SV RND, with the most significant improvement being found in the 

1-day-ahead forecast. Moreover, as the differences for RNDs are highly positive (negative) 

in the left (right) tail, the risk-neutral distributions implied in the option prices are more 

negatively skewed than those of the spot index levels, with the calibrated RWDs 

mitigating this problem substantially. 

In summary, based upon the results of this study, using two different tests, we find 

that the addition of jumps into the price and volatility dynamics does improve the 

precision of the density predictions made by RNDs; however, the magnitude of such 

improvement may not always be sufficiently significant. By contrast, regardless of 

whether we used the Beta-distribution or non-parametric calibration method, or whether 

or not jumps were incorporated, the RWDs provided consistently satisfactory density 

predictions for future FTSE 100 index levels.  

6.4 Risk Preference Implied in the Option Market 
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Shackleton et al. (2006) derive the necessary and sufficient condition for the 

Beta-distribution calibrated density to imply a risk-averse utility function, 

1  (with )α β α≤ ≤ ≠ β . If either α>1 or β<1, then the representative agent is a risk-seeker 

for an interval of wealth, with respect to which the second derivative of the utility function 

is positive. Exhibit 6 lists our estimates of α and β across models and forecast horizons. 

Most of the estimates of α are larger than 1, indicating that the risk preference implied 

in the option prices of the FTSE 100 index is different from the rational assumption 

imposed in most asset pricing models. If one does not constrain α to be 1, then Shackleton 

et al. (2006) also find that the implied risk preference is not risk-aversion. Using different 

approaches, Carr et al. (2002) and Constantinides et al. (2006) also find empirical support 

for the irrational risk preference. 

In our study, the risk-preference implied by the 1-day density prediction of the SVJJ 

model is the only one case that fits the rational assumption. This finding leaves some 

questions for future studies, including whether option investors are really risk-seekers, 

whether there is any space to improve the SVJJ model for option pricing, and whether 

there is a better density for the pricing kernel. 

7.  CONCLUSIONS 

We have used the Anderson-Darling and Berkowitz (2001) tests in this study to evaluate the 

density predictions of multi-horizon RNDs and RWDs implied under the three different 
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continuous-time option pricing (SV, SVJ and SVJJ) models, nested by the general 

double-jump model of Duffie et al (2000). By so doing, we have been able to investigate 

whether the addition of jumps into the price and/or volatility dynamics can lead to 

improvements in density prediction. Our empirical examination was conducted for the FTSE 

100 index at five different forecast horizons, with the RWDs being transformed from RNDs 

under either the Beta-distribution or the non-parametric calibration method.  

Our findings indicate that (i) all estimates of the model parameters are consistent 

with their theoretical expectations, (ii) adding jumps into the price and volatility processes 

substantially lowers the fitting errors of the option prices, (iii) incorporating jumps with 

stochastic volatility can improve the predictive power of RNDs, and (iv) RWDs provide 

consistently satisfactory density predictions, which are dependent on neither the model 

selection nor the approaches used to construct the RWDs.  

In conclusion, apart from presenting a more flexible framework for estimating 

multi-horizon RNDs, this paper also offers important empirical evidence on the role of 

jumps in density prediction. In addition, our empirical results regarding the option-implied 

risk preference leave some interesting questions for future studies.  
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Exhibit 1  Summary of option prices  

 
 Maturity  Average 

Moneyness  

<90 90-180 >180 Total Index Level 

<0.94 
711.54      

(10,851) 
830.50      
(8,272) 

958.06      
(10,493) 

832.10      
(29,616) 

5001.91 

0.94-0.97 
287.34      
(2,970) 

347.93      
(1,663) 

450.31      
(1,630) 

345.80      
(6,263) 

5084.65 

0.97-1.00 
174.61      
(3,032) 

246.48      
(1,754) 

350.63      
(1,873) 

243.10      
(6,659) 

5100.44 

1.00-1.03 
91.03      

(2,996) 
163.65      
(1,721) 

260.13      
(1,692) 

155.20      
(6,409) 

5061.87 

1.03-1.06 
46.45      

(2,923) 
102.31      
(1,707) 

182.96      
(1,664) 

97.69      
(6,294) 

5071.01 

>1.06 
22.67      

(4,826) 
46.79     

(5,077) 
81.73      

(7,350) 
54.93      

(17,253) 
4920.38 

Total 
348.63      

(27,598) 
424.61      

(20,194) 
517.73      

(24,702) 
427.40      

(72,494) 
5009.98 

 
Both the average and total numbers of settlement prices are provided for call options on the FTSE100 index across 
‘time-to-maturity’ and ‘moneyness’ for the years 2000-2005. All prices of put options are converted to their equivalent 
call prices using put-call parity; only out-of-the-money options are selected. Moneyness is defined by the ratio of the 
strike price to the forward price. Time-to-maturity is defined by the number of calendar days between trading and expiry 
dates. Figures in parentheses refer to the total number of option prices within each of the classifications. The average 
index levels across moneyness are also provided in the last column. 
   



 
Exhibit 2  Parameter estimates for alternative models  

 

Parameters κν υ σν ρ V0 λc μcy σcy μcv ρj 

Panel A: SV Model       

Mean 2.0613 0.0674 0.7273 –0.6618 0.0476 – – – – – 

Median 1.9483 0.0595 0.6796 –0.6588 0.0325 – – – – – 

Std. Dev. 1.1439 0.0336 0.2594 0.0721 0.0468 – – – – – 

Panel B: SVJ Model           

Mean 1.5492 0.0541 0.4713 –0.6475 0.0410 0.3411 –0.4102 0.2155 – – 

Median 1.1623 0.0439 0.3968 –0.6323 0.0284 0.0696 –0.3758 0.2142 – – 

Std. Dev. 1.5407 0.0419 0.2428 0.1087 0.0407 0.8465 0.2852 0.1351 – – 

Panel C: SVJJ M  odel           

Mean 1.6307 0.0445 0.4145 –0.6525 0.0397 0.3182 –0.2664 0.1305 –0.0483 –0.4673 

Median 1.1669 0.0307 0.3673 –0.6378 0.0275 0.2516 –0.1330 0.0219 0.0679 –0.4712 

Std. Dev. 1.7190 0.0497 0.2983 0.1585 0.0400 0.3457 0.3273 0.1836 0.4382 0.2168 

 
Summary statistics of the parameter estimates of SV, SVJ and SVJJ models are provided for the years 2000-2005. The parameters are estimated by minimizing the loss function, 
defined as the sum of the squared errors of option price fitting. 
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Exhibit 3  Price fitting errors under alternative models 

 
 Maturity 

<90 90-180 >180     Moneyness  

   SV SVJ SVJJ  SV SVJ SVJJ  SV SVJ SVJJ 

<0.94 1.99 1.34    
(32.76) 

1.16  
(12.79) 

1.86 1.51   
(18.81) 

1.35  
(11.08) 

2.10 1.67    
(20.82) 

1.58   
(5.10) 

0.94-0.97 2.38 1.38    
(42.28) 

1.20  
(12.45) 

2.28 1.58    
(30.86) 

1.39  
(11.66) 

2.18 1.92    
(11.96) 

1.77    
(7.60) 

0.97-1.00 2.69 1.45    
(46.03) 

1.26  
(13.09) 

1.93 1.52   
(21.37) 

1.33  
(12.10) 

2.19 1.92    
(12.38) 

1.74    
(9.41) 

1.00-1.03 2.15 1.42    
(34.01) 

1.17  
(17.90) 

2.47 1.52   
(38.49) 

1.42   
(6.65) 

2.27 1.86    
(18.27) 

1.67    
(9.74) 

1.03-1.06 1.81 1.37    
(24.42) 

1.19  
(13.00) 

2.99 1.69  
(43.52) 

1.54    
(8.86) 

2.43 1.93  
(20.92) 

1.65    
(14.50) 

>1.06 1.32 1.27    
(4.04) 

1.19    
(6.12) 

2.26 1.58    
(30.30) 

1.49    
(5.29) 

2.51 1.75   
(30.19) 

1.58    
(9.87) 

 
Average price fitting errors are provided for call options on the FTSE100 index across ‘time-to-maturity’ and ‘moneyness’ using SV, SVJ and SVJJ option pricing models. The fitting 
error is defined as the absolute difference between the model-generating price and the market price of the option. Time-to-maturity is defined by the number of calendar days between 
trading and expiry dates. Moneyness is defined by the ratio of the strike price to the forward price. Figures in parentheses under the SVJ (SVJJ) pricing errors refer to the 
improvements in option price fitting achieved by the model over the SV (SVJ) model, defined as the difference in price fitting errors ÷ SV (SVJ) errors x 100. 
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Exhibit 4  Evaluation of density predictions under the Anderson-Darling test 

 
Model 

 RND  RWD (Beta distribution)  RWD (Non-parametric distribution) Forecast   
 Horizons 

 SV SVJ SVJJ  SV SVJ SVJJ  SV SVJ SVJJ 

1 day 
6.2785    

(0.0007) 
2.2263    

(0.0692) 
1.5821 

(0.1580) 
1.1579 

(0.2841) 
1.1474 

(0.2884) 
1.0179 

(0.3480) 
0.4419 

(0.8064) 
0.4423 

(0.8060) 
0.4212 

(0.8274) 

1 week 
6.3438    

(0.0007) 
4.4573    

(0.0052) 
3.8598 

(0.0102) 
0.2724 

(0.9573) 
0.1919 

(0.9925) 
0.1872 

(0.9935) 
0.2900 

(0.9455) 
0.2901 

(0.9454) 
0.2975 

(0.9400) 

2 weeks 
2.5128    

(0.0488) 
1.9818    

(0.0940) 
1.8262 

(0.1147) 
0.3836 

(0.8648) 
0.4796 

(0.7677) 
0.5275 

(0.7189) 
0.3377 

(0.9074) 
0.3740 

(0.8740) 
0.3950 

(0.8537) 

3 weeks 
1.5356    

(0.1682) 
1.2827    

(0.2380) 
1.1640 

(0.2816) 
0.3763   

(0.8719) 
0.4098  

(0.8389) 
0.3918    

(0.8568) 
0.3770 

(0.8712) 
0.3828 

(0.8656) 
0.3798  

(0.8685) 

4 weeks 
2.6321    

(0.0423) 
2.3635 

(0.0585) 
2.2246    

(0.0693) 
0.4271  

(0.8215) 
0.5693 

(0.6775) 
0.4938   

(0.7532) 
0.3996 

(0.8491) 
0.3835 

(0.8649) 
0.3512 

(0.8953) 

 
The Anderson-Darling statistics are used to evaluate the predictive power of the ‘risk-neutral densities’ (RNDs) and the ‘real-world densities’ (RWDs) estimated with alternative 
models from the FTSE 100 option prices for the years 2000-2005. The forecast horizons include 1 day, 1 week, 2 weeks, 3 weeks and 4 weeks, with the periods for all horizons being 
non-overlapping. The RWDs are transformed from the RNDs using either parametric (Beta distribution function) or non-parametric statistical calibration. Figures in parentheses refer 
to p-values. 
 
 



 
Exhibit 5  Evaluation of density predictions under the Berkowitz (2001) test 

 
Model 

 SV SVJ SVJJ 
Forecast  

 Horizons  

LR3 LR1 LR3 LR1 LR3 LR1 

Panel 1: RND 

1 day 23.9067  
(0.0000) 

2.2189 
(0.1363) 

5.1888  
(0.1575) 

2.3522   
(0.1251) 

3.8483   
(0.2783) 

2.3960   
(0.1216) 

1 week 35.8530 
(0.0000) 

0.0172  
(0.8958) 

25.2688   
(0.0000) 

0.0538   
(0.8166) 

21.3113   
(0.0001) 

0.0460   
(0.8301) 

2 weeks 15.1981   
(0.0017) 

2.5071   
(0.1133) 

12.5399   
(0.0057) 

2.2822   
(0.1309) 

11.1067   
(0.0112) 

2.1954   
(0.1384) 

3 weeks 11.7437 
(0.0083) 

3.6859   
(0.0549) 

9.9599   
(0.0189) 

3.2151   
(0.0730) 

9.4303   
(0.0241) 

3.0066   
(0.0829) 

4 weeks 16.0759 
(0.0011) 

1.2821 
(0.2575) 

13.8448   
(0.0031) 

1.1404  
(0.2856) 

13.3838   
(0.0039) 

1.1302   
(0.2877) 

Panel 2: RWD (Beta distribution) 

1 day 2.2294   
(0.5262) 

2.2219   
(0.1361) 

2.3787   
(0.4976) 

2.3589   
(0.1246) 

2.4144   
(0.4910) 

2.4024   
(0.1211) 

1 week 0.0229   
(0.9991) 

0.0151   
(0.9021) 

0.0510   
(0.9970) 

0.0497   
(0.8235) 

0.0440   
(0.9976) 

0.0420  
(0.8376) 

2 weeks 2.5106   
(0.4734) 

2.5063   
(0.1134) 

2.2870   
(0.5150) 

2.2821  
(0.1319) 

2.2025   
(0.5315) 

2.1959  
(0.1384) 

3 weeks 3.6875   
(0.2972) 

3.6857   
(0.0549) 

3.2252  
(0.3582) 

3.2196 
(0.0728) 

3.0156  
(0.3892) 

3.0120  
(0.0826) 

4 weeks 1.2758 
(0.7349) 

1.2756   
(0.2587) 

1.1357  
(0.7685) 

1.1341 
(0.2869) 

1.1251 
(0.7710) 

1.1242 
(0.2890) 

Panel 3: RWD (Non-parametric distribution) 

1 day 4.0345   
(0.2578) 

2.1506  
(0.1425) 

4.2503 
(0.2357) 

2.3266 
(0.1272) 

4.4241   
(0.2192) 

2.4691 
(0.1161) 

1 week 1.4255 
(0.6996) 

0.0578 
(0.8100) 

1.4688 
(0.6895) 

0.0626 
(0.8025) 

1.4695 
(0.6892) 

0.0619 
(0.8035) 

2 weeks 3.8209 
(0.2815) 

2.4467 
(0.1178) 

3.7585 
(0.2887) 

2.3377 
(0.1263) 

3.6817 
(0.2979) 

2.2365 
(0.1348) 

3 weeks 4.7616 
(0.1901) 

3.5474 
(0.0596) 

4.7327 
(0.1925) 

3.4100 
(0.0648) 

4.6497 
(0.1993) 

3.2929 
(0.0696) 

4 weeks 2.2472 
(0.5227) 

1.2074 
(0.2719) 

2.2991 
(0.5127) 

1.1373 
(0.2862) 

2.2614 
(0.5199) 

1.1278 
(0.2882) 

 
The Berkowitz (2001) LR1 and LR3 statistics are used to evaluate the predictive power of ‘risk-neutral densities’ 
(RNDs) and ‘real-world densities’ (RWDs) estimated under alternative models using the FTSE 100 option prices for 
the years 2000-2005. The forecast horizons include 1 day, 1 week, 2 weeks, 3 weeks and 4 weeks, with the periods 
for all horizons being non-overlapping. Figures in parentheses refer to p-values. The RWDs are transformed from the 
RNDs using either parametric (Beta distribution function) or non-parametric statistical calibration. 
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Exhibit 6  Parameter estimates of the Beta function 

 
Model SV SVJ SVJJ 

Horizon α β α β α β 

1 day 1.1403 1.1784 1.0255 1.0623 0.9870 1.0235 

1 week 1.5131 1.6150 1.3983 1.4899 1.3490 1.4409 

2 weeks 1.3994 1.4997 1.3451 1.4340 1.3076 1.4016 

3 weeks 1.3823 1.4794 1.3373 1.4306 1.3256 1.4151 

4 weeks 1.7389 1.8784 1.6648 1.7834 1.6512 1.7589 

 

α and β are the parameters of the Beta distribution function used to transform the option-implied 

risk-neutral densities to the real-world densities.  



The Figures plot the differences between the predicted CDF values and the empirical CDF values across each of the models, both of which are evaluated with RNDs and 
RWDs (plotted individually against the empirical CDFs) for the purpose of comparison. As the patterns for all forecast horizons are similar, the plots are produced for the 
1-day horizon only. Since the transformed RWDs (using the two different calibration methods) are quite similar, we report only the results for the RWDs transformed under 
non-parametric calibration.   
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Exhibit 7  Variations in predicted (option implied) and empirical CDF values 
 

 

 



ENDNOTES 
                                                 
1 In some studies, a particular type of distribution is assumed for the underlying asset 

price at the option maturity date; examples include lognormal mixtures (Ritchey, 1990), 

generalized beta distribution of the second kind (GB2) (Bookstaber and McDonald, 1987) 

and the Hermite lognormal-polynomial method (Madan and Milne, 1994). As opposed to 

directly specifying the density, some specify the implied volatility function of the 

Black-Scholes formula, usually as a polynomial (Shimko, 1993; Malz, 1996, 1997). 

Furthermore, in order to achieve greater flexibility, some studies have used real data 

with a density smoothing technique to form a non-parametric distribution. A more 

recent study, Figlewski (2008), proposes a comprehensive approach that takes into 

account of the market’s bid-ask spread for smoothing and completes the density beyond 

the available range of strike prices with a Generalized Extreme Value distribution. 
2 In particular, the prices for short-maturity options (for example, 5 days) are usually 

excluded due to liquidity concerns, which results in difficulties in predicting the 

distribution over such a short horizon. 
3 Jondeau and Rockinger (2000) compared the performance of the stochastic volatility 

model with certain parametric methods using only the market prices of options with the 

same maturity as the forecast horizon. Shackleton et al. (2006) used the stochastic 

volatility model of Heston (1993) to execute a multi-horizon comparison of density 

forecasts for the S&P 500 index. 
4 In almost all of the prior empirical studies on the role of jumps in the specification of 

price dynamics and option pricing, the focus was on either the S&P 500 or NASDAQ 

100 index; the investigation of other assets is quite sparse. 
5  Numerous studies over the past decade have placed considerable effort into 

determining ways of transforming an RND into an RWD; these include Bliss and 

Panigirtzoglou (2004), Anagnou-Basioudis et al. (2005) and Liu et al. (2007). Basically, 

two methods have been adopted for such transformation, the first method involving 

applying the relationship between a utility function and the pricing kernel, and the 

second involving the use of a statistical calibration. In our analysis in the present study, 

the computation load involved in the first of these methods is regarded as being too 

heavy. 
6 Since the standardized values have unit variance, it is acceptable to use B = n-0.2.  
7 See Diebold et al. (1998). 
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8 See D’Agostino and Stephens (1986) and Noceti et al. (2003). 
9 The moneyness level is defined by the ratio of the strike price to the forward price. 
10 This is consistent with the findings of Eraker et al. (2003). 
11 Bates (1996, 2000) and Bakshi et al. (1997) found that the volatility level in the SV 

model appeared to be too high. 
12 According to the evaluation results of the density prediction, the performance of 

RWD is not dependent on the approach used to transform the densities. Here we report 

only the results for the RWDs transformed under the non-parametric calibration 

method. 
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