Extremely Accurate and Efficient Algorithms for European-Style Asian Options with Range Bounds

Tian-Shyr Dai∗ Guan-Shieng Huang† Yuh-Dauh Lyuu‡

Abstract
Asian options can be priced on the unrecombining binomial tree. Unfortunately, without approximation, the running time is exponential. This paper presents efficient and extremely accurate approximation algorithms for European-style Asian options on the binomial tree. For a European-style Asian option with strike price X on an n-period binomial tree, our algorithm runs in $O(kn^2)$ time with a guaranteed error bound of $O(X\sqrt{n}/k)$ for any positive integer k. Parameter k can be adjusted for any desired trade-off between time and accuracy. This basic algorithm is then modified to give increasingly tighter upper and lower bounds (or range bounds) that bracket the desired option value while maintaining the same computational efficiency. As the upper and lower bounds are essentially numerically identical in practice, the proposed algorithms can be said to price European-style Asian options exactly without combinatorial explosion. Our results also imply for the first time in the literature that the popular Hull-White algorithms are upper-bound algorithms. Extensive computer experiments are conducted to confirm the extreme accuracy of the algorithms and their competitiveness in comparison with alternative schemes.

1 Introduction
Path-dependent derivatives are derivative securities whose payoff depends nontrivially on the price history of the underlying asset. Some path-dependent derivatives such

∗Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan. The author was supported in part by NSC grant 90-2213-E-002-081.
†Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan.
‡Corresponding author. Department of Finance and (preferred address) Department of Computer Science & Information Engineering, National Taiwan University, No 1, Sec 4, Roosevelt Rd, Taipei, Taiwan. E-mail: lyuu@csie.ntu.edu.tw. The author was supported in part by NSC grant 90-2213-E-002-081.
as barrier options can be efficiently priced as in Lyuu (1998). Others, however, are known to be difficult to price in terms of speed and/or accuracy as surveyed in Lyuu (2002). The (arithmetic) Asian option is perhaps the most representative of the latter category.

Tree methods and their related discretized partial-differential-equation method are another common approach. The difficulty with the tree method in the case of Asian options lies in its exponential nature: It seems that 2^n paths have to be individually evaluated for a binomial tree with n periods. Many approaches have been proposed to tackle this combinatorial explosion. A very successful paradigm by Hull and White (1993) limits the number of price sums at each node of the tree to some manageable magnitude k. It then resorts to interpolation or even extrapolation in backward induction; see Hull and White (1993), Klassen (2001), and Zvan et al. (1999). This paradigm is efficient, with a running time of $O(kn^2)$. But it lacks convergence guarantees. In fact, this paper will prove rigorously that some versions of Hull-White algorithms are upper-bound algorithms. Rogers and Shi (1995) propose approximations for European-style Asian options based on analytical insights.

Another paradigm due to Dai and Lyuu (1999) constructs a trinomial tree with stock prices which are rational numbers of finite precision. The advantage is that the possible price sums at each node are finitely enumerable. This done, backward induction can be carried out without the need of approximation at all. The algorithm is also guaranteed to converge to the true value. The worst-case running time seems to be proportional to $O(2^{\sqrt{n}})$. Although this time bound substantially improves on the naive $O(2^n)$-time algorithm, its superpolynomial nature forbids the use of very large n’s. This does not seem to pose a problem for typical parameters, however.

The last paradigm seeks approximation algorithms that produce upper and lower bounds (called range bounds) that bracket the option value on the exponential-sized unrecombining binomial tree. The hope is that the desired option value becomes practically available when the upper bound and the lower bound are essentially identical. Furthermore, the difference between the upper bound and the lower bound, call it e, gives an upper limit on the uncertainty surrounding the desired option value (see Fig. 1). Chalasani, et al. (1999) propose $O(n^4)$-time range-bound algorithms for
Asian options. The $O(kn^2)$-time algorithm of Aingworth, et al. (2000) guarantees a theoretical error bound of $O(Xn/k)$ in the case of European-style Asian options. The parameter k can be varied for any desired trade-off between time and accuracy. This bound is also interesting in that it is known before the algorithm starts.

$$e$$

Figure 1: Range bound and uncertainty e about the desired but unknown option value.

This paper follows the last paradigm. Our first algorithm has an error bound of $O(X\sqrt{n}/k)$ for European-style Asian options. This is an improvement over the results of Aingworth, et al. One can choose n and k to obtain an upper bound on the pricing error one is comfortable with before the algorithm is executed. The resulting algorithm is guaranteed to output a value that does not deviate from the desired option value by more than the predetermined upper bound. Variations on this basic algorithm tighten the bounds further. Extensive computer experiments conclude that the upper and lower bounds after such tightening are essentially identical in practice. Because all the algorithms run in time $O(kn^2)$, the desired option value is obtained without combinatorial explosion. As the magnitude of the pricing error is $O(X\sqrt{n}/k)$, it suffices to pick k to be proportional to \sqrt{n}. So the algorithms' practical running time is at most $O(n^{2.5})$. Besides, the theoretical proofs of range bounds, which are of some independent interest, yield an unexpected corollary that says the popular approximation algorithms in Hull (1997) and Hull and White (1993) are in fact upper-bound algorithms.

This paper is organized as follows. Section 2 reviews the familiar CRR binomial model and defines the Asian option. In Section 3 we lay down the framework for the error analysis of European-style Asian options. Section 4 presents and analyzes a range-bound algorithm for European-style Asian options, which is the starting point of all the algorithms to follow. This basic range-bound algorithm achieves the error bound $O(X\sqrt{n}/k)$. We then propose an algorithm with an even tighter range bound in Section 5 and evaluate its numerical performance in Section 6. Section 7 concludes the paper.

2 Basic Terms

The standard CRR binomial model will be used to model the stock price dynamics. Let S_i denote the stock price at time i. The binomial model says that S_{i+1} equals $S_i u$ with probability p and $S_i d$ with probability $1 - p$, where $d < u$ and $ud = 1$. The
binomial model will start at time 0 and end at time n throughout the paper. The stock price at time i that results from j down moves and $i-j$ up moves therefore equals $S_0 u^{i-j} d^j$ with probability $\binom{i}{j} p^{i-j} (1-p)^j$. A 2-period binomial model is illustrated in Fig. 2(a). We shall assume that the stock does not pay dividends for ease of presentation.

Figure 2: The binomial model and the binomial tree. (a) A 2-period binomial model and (b) a 2-period binomial tree. The probability of reaching each node is listed under the node.

We now map the stock prices to nodes on a binomial tree used for pricing. Node $N(i, j)$ stands for the node at time i with j cumulative down moves. Its associated stock price is hence $S_0 u^{i-j} d^j$. The stock price can move from $N(i, j)$ to $N(i+1, j)$ with probability p and to $N(i+1, j+1)$ with probability $1-p$. As a consequence, node $N(i, j)$ can be reached with probability $\binom{i}{j} p^{i-j} (1-p)^j$. See Fig. 2(b) for illustration.

A path from the root to a node at maturity contains $n+1$ prices S_0, S_1, \ldots, S_n. For pricing purposes, the probability p for an up move is set to $(e^r - d)/(u - d)$, where r denotes the continuously compounded risk-free interest rate per period. Both $d \leq e^r \leq u$ and $0 \leq p \leq 1$ must hold to avoid arbitrage.

Let $X > 0$ be the strike price. The European-style Asian call has a payoff of

$$\left(\frac{1}{n+1} \sum_{i=0}^{n} S_i - X \right)^+$$

at maturity, where $(x)^+$ means max$(x, 0)$. Its arbitrage-free price is therefore

$$e^{-rn} E \left[\left(\frac{1}{n+1} \sum_{i=0}^{n} S_i - X \right)^+ \right]. \quad (1)$$
The option value can be evaluated by averaging the payoffs of all possible 2^n price paths (S_0, S_1, \ldots, S_n). This value will serve as our benchmark, which converges to the true value as n goes to infinity; see Duffie (1996). This simple pricing methodology, however, results in the exponential-time algorithm alluded to in the introduction. When deriving explicit error bounds, we shall disregard the e^{-rn} factor in formula (1) for convenience. This omission leads to pessimistic error bounds.

Notation $A:B$ will refer to the range-bound algorithm that employs the lower-bound algorithm A and the upper-bound algorithm B to bracket the benchmark option value (1). Because $A \leq \text{benchmark} \leq B$ by definition, the difference of their outputs, written as $B - A$, is an upper bound on the deviate of A and B from the benchmark value. In numerical experiments, we will use $B - A$ to measure the pricing error of the range-bound algorithm $A:B$.

3 Preliminaries

The sum of a path prefix (S_0, S_1, \ldots, S_j) is defined by $\sum_{i=0}^{j} S_i$. We call it a prefix sum. To speed up the computation, an approximation algorithm replaces the random variable S_i by some other random variable \hat{S}_i, which can be thought of as an approximation to S_i with deviate $D_i = S_i - \hat{S}_i$. Note that $D_0 = 0$. The core computational problem can now be rephrased as

$$E \left[\max \left\{ \frac{1}{n+1} \sum_{i=0}^{n} (\hat{S}_i + D_i), X \right\} \right].$$

If the algorithm calculates

$$E \left[\max \left\{ \frac{1}{n+1} \sum_{i=0}^{n} \hat{S}_i, X \right\} \right]$$

instead, the magnitude of error will be bounded above by

$$E \left[\frac{1}{n+1} \sum_{i=0}^{n} |D_i| \right]. \quad (2)$$

A path with a prefix sum equal to or exceeding $(n+1)X$ at some node is guaranteed to end with a price average at least X, thus in or at the money. This path’s contribution to the option value is given by the following lemma under the risk-neutral probability; see Aingworth et al. (2000).

Lemma 3.1 Suppose that a path prefix of length j has price sum $(n+1)X + \epsilon$, where $\epsilon \geq 0$, and it ends at a node with stock price S_j. Then the discounted expected European-style Asian option payoff by the extension of that path prefix to paths of length n equals
Lemma 3.1 implies that a European-style Asian option pricing algorithm can limit the range of prefix sums at each node to range \([0, (n + 1)X]\). The contribution of prefix sums equal to or exceeding \((n + 1)X\) to the option value can be calculated exactly by the lemma.

4 The Basic Range-Bound Algorithm and Its Pricing Error

4.1 Description of the Algorithms

We start by segmenting the range \([0, (n + 1)X]\) by \(k_{ij} + 1\) equally distanced buckets. The \(\ell\)th bucket, \(0 \leq \ell \leq k_{ij}\), is associated with prefix sum \(\ell(n + 1)X/k_{ij}\). Two adjacent buckets’ associated prefix sums are thus separated by \((n + 1)X/k_{ij}\). See Fig. 3 for illustration. In practice, bucket \(k_{ij}\) is not really needed in pricing European-style Asian options. The reason is that it is guaranteed to end up in or at the money, making Lemma 3.1 applicable. We maintain it to simplify the presentation.

Let \(b(i, j, \ell)\) denote the \(\ell\)th bucket at node \(N(i, j)\) and \(s(i, j, \ell)\) denote the associated prefix sum. For our algorithm, the prefix sums are fixed at

\[
s(i, j, \ell) = \ell(n + 1)X/k_{ij}. \tag{3}
\]

The root node \(N(0, 0)\) is a special case, with \(k_{00} = 1\) and \(s(0, 0, 0) = S_0\). The contribution to the option value by prefix sums equal to or exceeding \((n + 1)X\) before maturity is given by Lemma 3.1. The contribution of each prefix sum \(s \geq (n + 1)X\) at maturity is \(e^{-nr}[s/(n + 1) - X]\). Any other bucket at maturity (that is, those \(b(n, j, \ell)\) with \(\ell < k_{ij}\)) contributes nothing to the option value because

\[
e^{-nr}\left[\frac{s(n, j, \ell)}{n + 1} - X\right]^+ = e^{-nr}\left(\frac{\ell X}{k_{ij}} - X\right)^+ = 0.
\]

The algorithm uses forward induction to calculate the probability associated with each bucket. Each bucket’s associated prefix sum most likely does not correspond to a valid prefix sum on the binomial tree. Paths are hence rounded to the nearest bucket in the following way. When a prefix sum falls between two adjacent buckets, the sum is rounded down to the lower bucket. Specifically, at node \(N(i, j)\) with stock price \(S_0u^{i-j}d^j\), the paths collected at bucket \(b(i, j, \ell)\) are expected to move up to node \(N(i + 1, j)\) with prefix sum \(s(i, j, \ell) + S_0u^{i-j+1}d^j\) and down to node \(N(i + 1, j + 1)\) with prefix sum \(s(i, j, \ell) + S_0u^{i-j}d^{j+1}\). These two prefix sums are then rounded down...
Figure 3: **Bucketing.** Each node $N(i, j)$ has $k_{ij} + 1$ buckets, starting from prefix sum 0 and ending at prefix sum $(n + 1)X$ with increments of $(n + 1)X/k_{ij}$.

to the nearest buckets, called the **up bucket** and the **down bucket** of $b(i, j, \ell)$, respectively.

The above discussion entails the following inductive procedure for the desired probabilities. The probability $p(i, j, \ell)$ for bucket $b(i, j, \ell)$ is multiplied by p and added to the probability of the up bucket:

$$b \left(i + 1, j, \left\lceil \frac{s(i, j, \ell) + S_0 u^{i-j+1} d^j}{(n + 1)X/k_{i+1,j}} \right\rceil \right).$$

(4)

Similarly, the same probability $p(i, j, \ell)$ is multiplied by $1 - p$ and added to the probability of the down bucket:

$$b \left(i + 1, j + 1, \left\lfloor \frac{s(i, j, \ell) + S_0 u^{i-j} d^{j+1}}{(n + 1)X/k_{i+1,j+1}} \right\rfloor \right).$$

(5)

See Fig. 4 for illustration. Bucket $b(i, j, \ell)$ therefore covers the prefix sums s in range

$$\ell(n + 1)X/k_{ij} \leq s < (\ell + 1)(n + 1)X/k_{ij}.$$

(6)
Figure 4: Rounding down the partial sums. Each of the $k_{ij} + 1$ buckets at $N(i, j)$ moves up to the bucket of node $N(i + 1, j)$ and down to the bucket of node $N(i + 1, j + 1)$ as shown. In the rounding-up version, the floor operations are replaced with the ceiling operations.

Observe that the range has a width of $(n+1)X/k_{ij}$. The algorithm in effect calculates for each bucket the probability that a path has a prefix sum covered by that bucket.

We call this algorithm nUnifDown. The prefix nUnif emphasizes the nonuniformity of bucketing, as the number of buckets, $k_{ij} + 1$, may vary from nodes to nodes. The suffix Down means that the successor buckets are located by rounding down. If we change the rounding-down operations in formulas (4) and (5) to rounding-up, the resulting algorithm is called, naturally, nUnifUp with the suffix Up. Evidently, nUnifDown and nUnifUp bracket the benchmark option value:

$$\text{nUnifDown} \leq \text{benchmark} \leq \text{nUnifUp}.$$

Hence nUnifDown: UnifUp is a range-bound algorithm. In the next subsection, we shall show that, by a judicious choice of k_{ij}, very tight error bounds obtain.

Both nUnifDown and nUnifUp share the bucketing idea of the Hull-White paradigm. But there are also significant differences. The Hull-White paradigm does not take advantage of the limited range of prefix sums made possible by Lemma 3.1. It also uses interpolation, not rounding, in pricing, making the analysis of error much more difficult. Later in the paper, we will prove rigorously for the first time in the literature that the algorithms in Hull (1997) and Hull and White (1993) are upper-bound algorithms.

By picking a uniform $k_{ij} = k$ to make the number of buckets the same $k + 1$ for every node, the algorithm in Aingworth, et al. (2000) is a special case of our nUnifDown. We shall call it UnifDown to emphasize its uniformity of bucketing. Its rounding-up version shall be labeled UnifUp.
4.2 Optimal Choice of the Number of Buckets

Denote the rounding error at node \(N(i, j)\) by \(D_{ij}\). Then the pricing error’s upper bound (2) is further bounded above by

\[
\frac{1}{n + 1} \sum_{i=0}^{n} \sum_{j=0}^{i} \binom{i}{j} p^{i-j}(1-p)^j |D_{ij}|. \tag{7}
\]

Because \(|D_{ij}|\) are not identically weighted in formula (7), \(k_{ij}\) should not be a constant. Set

\[
\text{TIME} = \sum_{0 \leq j \leq i \leq n} k_{ij}, \tag{8}
\]

the total number of buckets allocated by the algorithm. The running time is proportional to \(\text{TIME}\). Note that the summands are not \(k_{ij} + 1\) because bucket \(k_{ij}\), as we mentioned earlier, is not allocated in practice.

As any two adjacent buckets at node \(N(i, j)\) are \((n+1)X/k_{ij}\) apart, it follows that \(|D_{ij}| \leq (n+1)X/k_{ij}\). With \(b(i, j; p) \equiv \binom{i}{j} p^{i-j}(1-p)^j\) and \(|D_{ij}|\) set to \((n+1)X/k_{ij}\), pricing error (7) is bounded above by

\[
\text{ERROR} = X \sum_{i=1}^{n} \sum_{j=0}^{i} \frac{b(i, j; p)}{k_{ij}}. \tag{10}
\]

If the budget for \(\text{TIME}\) is fixed, then \(\text{ERROR}\) is minimized by setting

\[
k_{ij} = \text{TIME} \times \frac{\sqrt{b(i, j; p)}}{\sum_{0 \leq j \leq i \leq n} \sqrt{b(i, j; p)}}.
\]

The pricing error’s upper bound,

\[
\frac{X}{\text{TIME}} \times \left[\sum_{0 \leq j \leq i \leq n} \sqrt{b(i, j; p)} \right]^2, \tag{9}
\]

is then maximized at \(p = 1/2\).

The algorithm can now be completely specified with

\[
k_{ij} = \left[\text{TIME} \times \frac{\sqrt{b(i, j; p)}}{\sum_{0 \leq j \leq i \leq n} \sqrt{b(i, j; p)}} \right]. \tag{10}
\]

Equation (8) and the choice

\[
\text{TIME} = kn^2/2
\]

imply that \(k\) measures the average number of buckets per node.
4.3 Error Analysis

We proceed to derive an upper bound on the pricing error (9) of \(nUnifDown \). The same proof works for \(nUnifUp \). Recall that \(p = 1/2 \). Bender (1974) shows that

\[
\sum_{0 \leq i \leq n} \sqrt{b(i, j; 1/2)} \sim (2\pi i)^{1/4}.
\]

Substitute the above into formula (9) to yield

\[
ERROR \leq \frac{X}{TIME} \times \left[\sum_{0 \leq i \leq n} (2\pi i)^{1/4} \right]^2.
\]

As \(\sum_{0 \leq i \leq n} i^{1/4} \sim \int_0^n x^{1/4} dx = \frac{4}{7} n^{5/4} \) and \(\text{TIME} = kn^2/2 \),

\[
ERROR \leq \frac{X}{kn^2/2} \sqrt{2\pi} (4/5)^2 n^{5/2} < 4X \sqrt{n}/k
\]

asymptotically. We have therefore proved the following theorem.

Theorem 4.1 European-style Asian options can be approximated within \(O(X \sqrt{n}/k) \) by the \(O(kn^2) \)-time range-bound algorithm \(nUnifDown:nUnifUp \) with the numbers of buckets given by formula (10).

5 Tighter Range Bounds

Both bucketing and rounding schemes impact the quality of approximation. There are uniform bucketing and the more general nonuniform bucketing to choose from. Rounding also offers two choices: rounding-down and rounding-up. Neither is ideal because every path is either uniformly rounded down or uniformly rounded up at each node, generating a systematic bias. A straightforward answer is to average the results of \(UnifDown \) and \(UnifUp \) in the hope of cancelling the rounding errors but at the cost of doubling the running time. Call this method \(UnifAvg \).

5.1 A tighter upper-bound algorithm

Our next algorithm applies the averaging idea bucket by bucket. Although the algorithm is similar to \(nUnifDown \) and \(nUnifUp \), it no longer always rounds down a path to the down bucket as in \(nUnifDown \) or rounds up a path to the up bucket as in \(nUnifUp \). Instead, a path is split into both buckets in such a portion that the average prefix sums associated with the two buckets equals the prefix sum of the original path.

More precisely, consider node \(N(i+1, j) \) and a path with a prefix sum \(s \) at \(N(i+1, j) \) after making an up move from bucket \(b(i, j, k) \). Recall that scheme \(nUnifDown \)
directs the path to the down bucket \(b(i + 1, j, \text{RoundDown}) \), whereas scheme \(\text{nUnifUp} \) directs the path to the up bucket \(b(i + 1, j, \text{RoundUp}) \), where

\[
\text{RoundDown} = \left\lfloor \frac{sk_{i+1,j}}{(n + 1)X} \right\rfloor,
\]

\[
\text{RoundUp} = \left\lceil \frac{sk_{i+1,j}}{(n + 1)X} \right\rceil.
\]

Our new algorithm does a bit of both by solving

\[
s = \lambda \cdot s(i + 1, j, \text{RoundUp}) + (1 - \lambda) \cdot s(i + 1, j, \text{RoundDown})
\]

for \(\lambda \). It then gives proportions \(\lambda \) and \(1 - \lambda \) of \(p(i, j, k) \)—the probabilistic weight of \(b(i, j, k) \)—to the up bucket and the down bucket, respectively. See Fig. 5 for illustration. In the unlikely event that \(\text{RoundDown} = \text{RoundUp} \), we let \(\lambda = 1 \). Repeat the same steps for the down move from bucket \(b(i, j, k) \). Other than the splitting of paths, the algorithm is identical to \(\text{nUnifDown} \). Call this algorithm \(\text{nUnifSpl} \) (for splitting).

![Diagram](image)

Figure 5: Splitting a path. Bucket \(\text{RoundUp} \) receives \(\lambda \) of the probabilistic weight. Bucket \(\text{RoundDown} \) receives \(1 - \lambda \) of the probabilistic weight.

We make a few remarks here. Every path is conceptually split into \(2^n \) paths in \(\text{nUnifSpl} \). Some of the paths may be terminated earlier if their prefix sums ever equal or exceed \((n + 1)X\), where Lemma 3.1 takes over. Each of the paths is rounded to buckets along the way to prevent combinatorial explosion. Furthermore, for any \(0 \leq m \leq n \), a path’s prefix sum of \(m \) prices equals the expected length-\(m \) prefix sum of all the split paths.

5.2 A tighter lower-bound algorithm

The core idea of our next algorithm is to use

\[
e^{-rn} \left(E \left[\frac{1}{n + 1} \sum_{i=0}^{n} S_i - X \right] \right)^+,
\]
to approximate the desired option value (1). The approximation underestimates the option value because of Jensen’s inequality. Our algorithm simply adds bucketing to the above idea. This algorithm will be called \texttt{nUnifCvg} (for convergence). We illustrate the idea in Fig. 6 without bucketing for simplicity. Take the node with probability \(2p(1-p)\) for example. Its prefix sum is calculated by adding up the contribution through the \(S_0u\) node and that through the \(S_0d\) node. The result is

\[
(1-p)p(S_0 + S_0u + S_0) + p(1-p)(S_0 + S_0d + S_0)
\]

Its associated probability is calculated in the standard way,

\[
p(1-p) + (1-p)p = 2p(1-p).\]

Finally, we divide the nonzero prefix sum by the above probability to obtain

\[
[(S_0 + S_0u + S_0) + (S_0 + S_0d + S_0)]/2,
\]

the desired average prefix sum. The other average price sums at maturity are given in Fig. 6. The approximation is hence

\[
e^{-rn} \left[p^2 \left\{ (S_0 + S_0u + S_0u^2) - X \right\}^+ + 2p(1-p) \left\{ \frac{(S_0 + S_0u + S_0) + (S_0 + S_0d + S_0)}{2} - X \right\}^+ + (1-p)^2 \left\{ (S_0 + S_0d + S_0d^2) - X \right\}^+ \right].
\]

The following key result says that the algorithm \texttt{nUnifCvg:nUnifSpl} produces tighter range bounds than \texttt{nUnifDown:nUnifUp}.

Theorem 5.1 \texttt{nUnifDown} \(\leq\) \texttt{nUnifCvg} \(\leq\) \texttt{benchmark} \(\leq\) \texttt{nUnifSpl} \(\leq\) \texttt{nUnifUp}.

Proof. We knew that \texttt{nUnifDown} \(\leq\) \texttt{benchmark} \(\leq\) \texttt{nUnifUp}. It should also be clear that \texttt{nUnifDown} \(\leq\) \texttt{nUnifCvg} and \texttt{nUnifSpl} \(\leq\) \texttt{nUnifUp}. That \texttt{nUnifCvg} \(\leq\) \texttt{benchmark} is a consequence of the inequality

\[
\left(E \left[\frac{1}{n+1} \sum_{i=0}^{n} S_i - X \right] \right)^+ \leq E \left[\left(\frac{1}{n+1} \sum_{i=0}^{n} S_i - X \right)^+ \right],
\]

which holds for each bucket at maturity by Jensen’s inequality.

It remains to show that \texttt{benchmark} \(\leq\) \texttt{nUnifSpl}. Recall that \texttt{nUnifSpl} splits each path \(P = (S_0, S_1, \ldots, S_n)\) into \(2^n\) paths with the consequence that the expected value of the average price for any path \(x\), say \(A_x\), equals the average price of \(P\), i.e., \(E[A_x] = \sum_{i=0}^{n} S_i/(n+1)\). By Jensen’s inequality, \(P\)’s payoff, \(\{\sum_{i=0}^{n} S_i/(n+1) - X\}^+\),
is dominated by $n\text{UnifSpl}$’s approximation, $E[(A_x - X)^+]$. As this inequality holds for every path, the desired result follows. \hfill \Box

The popular approximation algorithms in Hull (1997) and Hull and White (1993) are special cases of our Spl algorithm. It follows that these algorithms compute upper bounds.

Corollary 5.2 The approximation algorithms in Hull (1997) and Hull and White (1993) are upper-bound algorithms for European-style Asian options.

6 Numerical Results for European-Style Asian Options

All the experimental results reported here are based on a Pentium III 500MHz PC with 256MB DRAM. The programs are written in C++. Our key finding will be that the range-bound algorithm $n\text{UnifCvg} : n\text{UnifSpl}$ is efficient and brackets the benchmark value extremely tightly. It also outperforms all the other range-bound algorithms in the paper for accuracy and efficiency.

We first confirm that our particular nonuniform bucketing scheme (10) improves upon the uniform bucketing scheme. Toward that end, the nonuniform $n\text{UnifUp}$ is compared against the uniform UnifUp and UnifAvg, with the Monte Carlo algorithm as the proxy benchmark. To be fair, the total number of buckets is the same for all three algorithms. The plot in Fig. 7 shows that the nonuniform $n\text{UnifUp}$ converges more smoothly and quickly than either UnifUp or UnifAvg, which in turn can be seen to outperform UnifUp. This conclusion is consistent with the theoretical result.
Figure 7: Comparing UnifUp, UnifAvg, and nUnifUp. MC10^6 denotes Monte Carlo simulation based on 1,000,000 trials. Both UnifAvg and UnifUp allocate $k = 50,000$ buckets at each node, and nUnifUp allocates an average of $k = 50,000$ buckets per node. The benchmark option values must lie below nUnifUp. The data are: $S_0 = 50$, $X = 60$, annual volatility $\sigma = 30\%$, $r = 10\%$ per annum, and maturity $\tau = 0.5 \text{ (year)}$.

Having demonstrated the advantage of using our nonuniform bucketing scheme, we next compare the nonuniform lower-bound algorithm nUnifCvg against UnifAvg and the multiresolution algorithm in Dai and Lyuu (1999). Again, both nUnifCvg and UnifAvg use the same total number of buckets. The results are tabulated in Fig. 8. Observe that nUnifCvg is superior to UnifAvg in terms of accuracy and speed despite that it takes slightly less time than UnifAvg. The multiresolution algorithm, which is based on trinomial trees, is the best performer when n is small. But since it runs in time mildly exponential in n, it is not competitive for large n. We then add the algorithm in Hull and White (1993) and Levy’s analytical approach in Levy (1992) to the comparisons in Fig. 9. Observe that nUnifCvg is competitive in all the scenarios whether the option is in the money or out of the money. Many proposed algorithms have been found to fail in extreme cases. When the cases of Fu et al. (1998/1999) are tested in Fig. 10, nUnifCvg does not display any discernible biases. These tests strongly suggest that nUnifCvg gives extremely tight lower bounds.

Both nUnifCvg and nUnifSpl are more sophisticated strategies to handle pricing errors than UnifUp, UnifDown, or UnifAvg. We now demonstrate that they are also better strategies. For the purpose of fair comparison between these methods, we reduce the number of buckets for nUnifCvg and nUnifSpl so that they use slightly less time than UnifUp. The results are illustrated in Fig. 11. Clearly, both nUnifSpl and nUnifCvg converge better than UnifUp, UnifDown, or UnifAvg. In fact, the range bounds given by nUnifCvg:nUnifSpl are so tight that they form a single curve instead of a band. The same cannot be said of UnifDown:UnifUp. As
Monte Carlo simulation, nUnifCvg, UnifAvg, and multiresolution. Monte Carlo simulations are based on 2,000,000 trials. The “Lower” and “Upper” columns represent the 95% confidence interval obtained from Monte Carlo simulations. Both nUnifCvg and UnifAvg set $k = 50,000$. “MR” denotes the multiresolution algorithm in Dai and Lyuu (1999). At $n \geq 174$, MR’s demand for computer memory is beyond what the system can offer. The computational times are measured in seconds. Asterisks mark those answers which are out of the 95% confidence interval. The data are: $S_0 = 50$, $X = 60$, $r = 10\%$ per annum, $\sigma = 30\%$, and $\tau = 0.5$.

<table>
<thead>
<tr>
<th>n</th>
<th>Lower</th>
<th>Upper</th>
<th>nUnifCvg</th>
<th>Value</th>
<th>Time</th>
<th>UnifAvg</th>
<th>Value</th>
<th>Time</th>
<th>MR</th>
<th>Value</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>0.324</td>
<td>0.328</td>
<td>0.322*</td>
<td>78</td>
<td></td>
<td>0.322*</td>
<td>118</td>
<td></td>
<td></td>
<td>0.324*</td>
<td>13</td>
</tr>
<tr>
<td>97</td>
<td>0.325</td>
<td>0.329</td>
<td>0.323*</td>
<td>100</td>
<td></td>
<td>0.323*</td>
<td>154</td>
<td></td>
<td></td>
<td>0.325</td>
<td>23</td>
</tr>
<tr>
<td>108</td>
<td>0.324</td>
<td>0.328</td>
<td>0.324</td>
<td>124</td>
<td></td>
<td>0.323*</td>
<td>196</td>
<td></td>
<td></td>
<td>0.327</td>
<td>39</td>
</tr>
<tr>
<td>119</td>
<td>0.326</td>
<td>0.330</td>
<td>0.324*</td>
<td>152</td>
<td></td>
<td>0.323*</td>
<td>245</td>
<td></td>
<td></td>
<td>0.328</td>
<td>61</td>
</tr>
<tr>
<td>130</td>
<td>0.324</td>
<td>0.328</td>
<td>0.324</td>
<td>181</td>
<td></td>
<td>0.325</td>
<td>298</td>
<td></td>
<td></td>
<td>0.327</td>
<td>96</td>
</tr>
<tr>
<td>141</td>
<td>0.325</td>
<td>0.329</td>
<td>0.325</td>
<td>213</td>
<td></td>
<td>0.324*</td>
<td>358</td>
<td></td>
<td></td>
<td>0.326</td>
<td>145</td>
</tr>
<tr>
<td>152</td>
<td>0.326</td>
<td>0.330</td>
<td>0.325*</td>
<td>249</td>
<td></td>
<td>0.323*</td>
<td>422</td>
<td></td>
<td></td>
<td>0.325*</td>
<td>210</td>
</tr>
<tr>
<td>163</td>
<td>0.324</td>
<td>0.328</td>
<td>0.325</td>
<td>286</td>
<td></td>
<td>0.326</td>
<td>492</td>
<td></td>
<td></td>
<td>0.325</td>
<td>302</td>
</tr>
<tr>
<td>174</td>
<td>0.326</td>
<td>0.329</td>
<td>0.325*</td>
<td>327</td>
<td></td>
<td>0.325*</td>
<td>562</td>
<td></td>
<td></td>
<td>0.325</td>
<td>562</td>
</tr>
<tr>
<td>185</td>
<td>0.324</td>
<td>0.328</td>
<td>0.326</td>
<td>370</td>
<td></td>
<td>0.326</td>
<td>634</td>
<td></td>
<td></td>
<td>0.326</td>
<td>634</td>
</tr>
<tr>
<td>196</td>
<td>0.327</td>
<td>0.330</td>
<td>0.326*</td>
<td>414</td>
<td></td>
<td>0.326*</td>
<td>711</td>
<td></td>
<td></td>
<td>0.326*</td>
<td>711</td>
</tr>
<tr>
<td>207</td>
<td>0.326</td>
<td>0.330</td>
<td>0.326</td>
<td>463</td>
<td></td>
<td>0.326</td>
<td>792</td>
<td></td>
<td></td>
<td>0.326</td>
<td>792</td>
</tr>
<tr>
<td>218</td>
<td>0.326</td>
<td>0.329</td>
<td>0.326</td>
<td>513</td>
<td></td>
<td>0.326</td>
<td>879</td>
<td></td>
<td></td>
<td>0.326</td>
<td>879</td>
</tr>
<tr>
<td>229</td>
<td>0.326</td>
<td>0.329</td>
<td>0.326</td>
<td>564</td>
<td></td>
<td>0.326</td>
<td>972</td>
<td></td>
<td></td>
<td>0.326</td>
<td>972</td>
</tr>
<tr>
<td>240</td>
<td>0.327</td>
<td>0.330</td>
<td>0.326*</td>
<td>618</td>
<td></td>
<td>0.326*</td>
<td>1066</td>
<td></td>
<td></td>
<td>0.326*</td>
<td>1066</td>
</tr>
<tr>
<td>251</td>
<td>0.326</td>
<td>0.330</td>
<td>0.326</td>
<td>675</td>
<td></td>
<td>0.326</td>
<td>1160</td>
<td></td>
<td></td>
<td>0.326</td>
<td>1160</td>
</tr>
<tr>
<td>262</td>
<td>0.326</td>
<td>0.329</td>
<td>0.326</td>
<td>738</td>
<td></td>
<td>0.326</td>
<td>1269</td>
<td></td>
<td></td>
<td>0.326</td>
<td>1269</td>
</tr>
<tr>
<td>273</td>
<td>0.326</td>
<td>0.329</td>
<td>0.326</td>
<td>799</td>
<td></td>
<td>0.327</td>
<td>1379</td>
<td></td>
<td></td>
<td>0.327</td>
<td>1379</td>
</tr>
<tr>
<td>284</td>
<td>0.326</td>
<td>0.329</td>
<td>0.327</td>
<td>865</td>
<td></td>
<td>0.327</td>
<td>1493</td>
<td></td>
<td></td>
<td>0.327</td>
<td>1493</td>
</tr>
</tbody>
</table>

nUnifCvg:nUnifSpl brackets the benchmark option value (Theorem 5.1), its pricing error must be negligible.

By how much is nUnifCvg:nUnifSpl superior to nUnifDown:nUnifUp? Because both employ the same nonuniform bucketing scheme, this comparison extracts the benefits which are due to different algorithms, not bucketing schemes. We use the range bounds to measure the pricing error, i.e., nUnifSpl – nUnifCvg and nUnifUp – nUnifDown. It is clear from Fig. 12 that nUnifCvg:nUnifSpl produces much tighter range bounds, hence smaller errors, than nUnifDown:nUnifUp.

Finally, we are interested in knowing how k—the average number of buckets per node—impacts the accuracy of the algorithms. Figure 13 shows the effects of k on
<table>
<thead>
<tr>
<th>Maturity (years)</th>
<th>Algorithm</th>
<th>Strike price X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>0.5</td>
<td>HW</td>
<td>10.755</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>10.759</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.005)</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>10.754</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>10.765</td>
</tr>
<tr>
<td></td>
<td>nUnifCvg</td>
<td>10.754</td>
</tr>
<tr>
<td>1.0</td>
<td>HW</td>
<td>11.545</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>11.544</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.008)</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>11.547</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>11.576</td>
</tr>
<tr>
<td></td>
<td>nUnifCvg</td>
<td>11.544</td>
</tr>
<tr>
<td>1.5</td>
<td>HW</td>
<td>12.285</td>
</tr>
<tr>
<td></td>
<td>MC</td>
<td>12.289</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.010)</td>
</tr>
<tr>
<td></td>
<td>MR</td>
<td>12.284</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>12.337</td>
</tr>
<tr>
<td></td>
<td>nUnifCvg</td>
<td>12.283</td>
</tr>
<tr>
<td>2.0</td>
<td>HW</td>
<td>12.953</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.013)</td>
</tr>
</tbody>
</table>

Figure 9: Comparing nUnifCvg against various algorithms. “HW” denotes the algorithm in Hull White (1993) based on \(n = 40 \) and \(h = 0.005 \). “MC” denotes Monte Carlo simulation based on \(n = 40 \) and 100,000 trials (the sample standard deviations are in parentheses). “MR” is the multiresolution algorithm with \(n = 30 \). “L” denotes the analytical approach described in Levy (1992). Algorithm nUnifCvg sets \(k = \lfloor 50,000/7 \rfloor \). The data are: \(S_0 = 50 \), \(r = 10\% \) per annum, and \(\sigma = 30\% \). Some of the data are taken from Dai and Lyuu (1999).

the theoretical error upper bound,

\[
\text{nUnifUp} - \text{nUnifDown} \leq 8X\sqrt{n/k},
\]

and our range-bound algorithms’ error bounds as defined above. We can see that nUnifCvg:nUnifSpl is several orders better than nUnifDown:nUnifUp for any \(k \) with other conditions being equal.

We conclude from the above experiments that nUnifCvg:nUnifSpl is an extremely efficient and accurate pricing algorithm for European-style Asian options.

7 Conclusions

We have proposed several efficient algorithms to price European-style Asian options. These algorithms bracket the benchmark option value, whose brute-force computation is prohibitive. The range-bound results hold regardless of the average number
Figure 10: Comparing nUnifCvg against the analytical approaches. The strike price X is 2.0, and nUnifCvg uses $n = 40$. The alternative methods are: Geman-Eydeland (GE), Shaw, Euler, Post-Widder (PW), and Turnbull-Wakeman (TW). MC10 uses 10 periods per day, whereas MC100 uses 100. Both are based on 100,000 trials. S.D. stands for sample standard deviation. Cvg stands for nUnifCvg. Some of the data are from Fu et al. (1998/1999). As before, nUnifCvg sets $k = \lceil 50,000/7 \rceil$.

<table>
<thead>
<tr>
<th>r</th>
<th>σ</th>
<th>T</th>
<th>S_0</th>
<th>GE</th>
<th>Shaw</th>
<th>Euler</th>
<th>PW</th>
<th>TW</th>
<th>MC10</th>
<th>MC100</th>
<th>S.D.</th>
<th>Cvg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.050</td>
<td>0.50</td>
<td>1</td>
<td>1.9</td>
<td>.195</td>
<td>.193</td>
<td>.194</td>
<td>.194</td>
<td>.195</td>
<td>.192</td>
<td>.196</td>
<td>.004</td>
<td>.193</td>
</tr>
<tr>
<td>0.050</td>
<td>0.50</td>
<td>1</td>
<td>2.0</td>
<td>.248</td>
<td>.246</td>
<td>.247</td>
<td>.247</td>
<td>.250</td>
<td>.245</td>
<td>.249</td>
<td>.004</td>
<td>.246</td>
</tr>
<tr>
<td>0.050</td>
<td>0.50</td>
<td>1</td>
<td>2.1</td>
<td>.308</td>
<td>.306</td>
<td>.307</td>
<td>.307</td>
<td>.311</td>
<td>.305</td>
<td>.309</td>
<td>.005</td>
<td>.306</td>
</tr>
<tr>
<td>0.020</td>
<td>0.10</td>
<td>1</td>
<td>2.0</td>
<td>.058</td>
<td>.520</td>
<td>.056</td>
<td>.0624</td>
<td>.0568</td>
<td>.0559</td>
<td>.0565</td>
<td>.0008</td>
<td>.0559</td>
</tr>
<tr>
<td>0.180</td>
<td>0.30</td>
<td>1</td>
<td>2.0</td>
<td>.227</td>
<td>.217</td>
<td>.219</td>
<td>.219</td>
<td>.220</td>
<td>.219</td>
<td>.220</td>
<td>.003</td>
<td>.218</td>
</tr>
<tr>
<td>0.125</td>
<td>0.25</td>
<td>2</td>
<td>2.0</td>
<td>.172</td>
<td>.172</td>
<td>.172</td>
<td>.172</td>
<td>.173</td>
<td>.173</td>
<td>.172</td>
<td>.003</td>
<td>.172</td>
</tr>
<tr>
<td>0.050</td>
<td>0.50</td>
<td>2</td>
<td>2.0</td>
<td>.351</td>
<td>.350</td>
<td>.352</td>
<td>.352</td>
<td>.359</td>
<td>.351</td>
<td>.348</td>
<td>.007</td>
<td>.349</td>
</tr>
</tbody>
</table>

of buckets per node, k. But k can be varied to strike any desired balance between accuracy and efficiency. The pricing error can be measured by the difference of the upper bound and the lower bound. It can even be bounded before the algorithms begin. Computer experiments indicate that the range-bound algorithms give numerical results which are so tight that they practically give the correct option value. These results together show that Asian options can be priced correctly and efficiently. Surprisingly, our techniques also imply that some of the Hull-White approximation algorithms are upper-bound algorithms.

Acknowledgements

We thank Profs. Ed Bender, Ira Gessel, and Ming-Yang Kao for discussions.

References

Figure 11: **Comparing** $n\text{UnifCvg}$ and $n\text{UnifSpl}$ **against** UnifUp, UnifDown, and UnifAvg. UnifUp, UnifDown, and UnifAvg each set $k = 50,000$, whereas $n\text{UnifSpl}$ and $n\text{UnifCvg}$ set $k = \lfloor 50,000/7 \rfloor$. These choices make $n\text{UnifCvg}$ and $n\text{UnifSpl}$ take slightly less time than UnifUp. The plots of $n\text{UnifCvg}$ and $n\text{UnifSpl}$ essentially coincide. The data are: $S_0 = 50$, $X = 60$, $\sigma = 30\%$, $r = 10\%$ per annum, and $\tau = 0.5$.

Figure 12: Pricing errors of \(n\text{UnifCvg} : n\text{UnifS}\) and \(n\text{UnifDown} : n\text{UnifUp}\). All four algorithms set \(k = \lfloor 50,000/7 \rfloor \). The other parameters are identical to the ones used in Fig. 11.

Figure 13: The number of buckets and accuracy. This plot shows the log-plot (base 10) of the various error bounds vs. k. We use $n = 285$ here. The other parameters are identical to the ones used in Fig. 11.

