Hedging Demand and Foreign Exchange Risk Premia

David Tien*
Haas School of Business
UC Berkeley
Berkeley, CA 94720-1900
tien@haas.berkeley.edu

November 6, 2001

ABSTRACT

This paper develops and tests a model of foreign exchange risk premia. Risk premia in our model are driven by non-marketable income shocks which risk averse agents attempt to hedge by trading foreign currency. We test our model using data on hedging demand in currency futures and find that our estimates of risk premia are consistent with the theory and explain approximately 45 percent of the variation in currency returns. We find that innovations in hedging demand Granger cause changes in speculative flows and that hedgers in the currency futures markets appear to be negative feedback traders. We also compare hedging demand in the futures market to customer-dealer order flow from a major international bank and find little relationship between hedging demands and aggregate customer order imbalances.

*I thank Ash Alankar, John Brigginshaw, Mintao Fan, Jacob Sagi, Hayne Leland, Richard Lyons, Terry Marsh, Mark Rubinstein and Mark Seasholes for helpful comments and suggestions. I am indebted to Mike Rosenberg and Bob Lawrie at Deutsche Bank for their insights and access to their data.
I. Introduction

Exchange rate economics has long struggled to reconcile the empirical behavior of currency fluctuations with rational theories of exchange rate dynamics. Numerous studies (see Meese and Rogoff (1983) and Fama (1984)) have demonstrated the failure of models based on macroeconomic fundamentals to explain a significant proportion of the variation in exchange rates at horizons of one year or less.\(^1\) Recent research applying tools from the market microstructure literature have been more successful in explaining currency dynamics in terms of order flows between various types of agents, see Lyons (2001) for a recent survey of the literature. The current interpretation of the results from the FX microstructure literature are somewhat counterintuitive. Many researchers take the observed correlation between order flow and currency returns as evidence that some traders have private information. The existence of asymmetric information in the currency market runs counter to the general perception that currency markets are among the most informationally efficient markets in existence.\(^2\)

The key to reconciling the existence of asymmetric information with the perceived informational efficiency of the foreign exchange market lies in identifying the nature of the informational asymmetry. If certain traders have private information about the distribution of endowment shocks or changing risk appetites across the economy, then the market serves as a mechanism for distributing information to aid in the optimal allocation of risk across all agents as described by Hayek (1945). If, however, some traders have information regarding future statistical releases or central bank policy changes, the market is still serving as a mechanism to disseminate information, but the liquidity of the market may be quite low as other traders would be hesitant to trade against a better informed counterparty. A better understanding the information structure in currency markets would give us a clearer picture of the role of specu-

\(^1\)There is evidence that standard macroeconomic models have significant explanatory power over longer horizons, see Flood and Taylor (1996).

\(^2\)A recent BIS study estimates daily turnover in the spot foreign exchange market at US$ 1.5 trillion. Also, past studies have shown that the over-the-counter currency markets trade transact billions of dollars with a bid/ask spread in the neighborhood of a few hundredths of a cent.
lators in the market, are they a stabilizing influence as posited by Friedman or the scourge of financial markets as described by Prime Minister Mahathir of Malaysia.

This paper demonstrates the observed relationships between trading variables and currency returns are completely consistent with a market where the only motive for trade is risk sharing. We develop and test a simple model of the foreign exchange risk premium where non-marketable cash flows generate hedging demands from risk averse agents. We derive equilibrium hedging demands and risk premia in an economy with two types of risk averse agents, hedgers who face non-marketable risks, and liquidity providers who stand ready to share risk with the hedgers for the right price. Our empirical tests of the model make use the fact that hedging demands are proportional to the foreign exchange risk premium. Using data from the currency futures markets, we construct a proxy for hedging demand in currency futures and estimate risk premia for five currencies. The market for currency futures is a natural setting to test the implications of our model. First, the zero entry cost for futures, standardized contract specifications, and relatively low transactions cost make these markets very liquid, attracting a wide variety of traders. Second, the open-outcry nature of the futures pits adds a measure of transparency that serves to discourage informed speculators from entering these markets, allowing us to more accurately measure hedging flows. Lastly, the small size of the currency futures market relative the entire over-the-counter market diminishes the likelihood that price pressure in the futures market affects the aggregate market for spot foreign exchange.\(^3\)

Our results affirm the interpretation of hedging demand as a proxy for risk premia. We find that on average, hedging demand explains forty five percent of the variation in currency returns. To examine what might be driving this result, we consider the forecasting power of hedging demand over future realizations of bilateral trade balances and find that hedging demand has significant forecasting power over these flows for the British Pound. We then compare the performance of hedgers versus non-hedgers in the futures market. We find, in-

\(^3\)The aggregate notional amount of outstanding positions in the currency futures market is US$103 billion compared with US$1.5 trillion in average daily volume for the spot foreign exchange market. Though spot-futures arbitrage may confound some results, even these flows should be miniscule relative to the entire market.
tuitively, that hedgers tend to lose money to non-hedgers. These losses can be interpreted as compensation to speculators for insuring the hedgers. Along these lines, we also test causal relationships between hedging and speculative flows and find, consistent with the theory, that changes in hedging demand Granger cause changes in speculative demands in four of the five currencies at the weekly level. We also test to see if the observed effects could be due to some type of positive feedback trading on the part of hedgers, we find that hedgers actually tend to be negative feedback traders. Lastly, to see if these results are directly related to the findings of Evans and Lyons (2001a), we compare hedging demands to data on customer order flow from a major international bank. We find that futures market hedging demand is not related to the aggregate order imbalance in customer order flow.

There is a vast literature which tries to explain the short-run variability of exchange rates. Previous studies of the foreign exchange risk premium have examined the conditional variance of exchange rates as a proxy for risk premia (Domowitz and Hakkio 1985), considered consumption-based CAPM models (Mark and Wu 1998), and examined the possibility of “peso problem” effects (Evans 1996). The difficulty in identifying a risk premium in currency returns is analogous to the “equity premium” puzzle in the asset pricing literature. Observed fundamentals do not appear volatile enough to justify the volatility of floating exchange rates. Other attempts to identify the risk premium have used survey data on exchange rate forecasts of market participants to control for expectational errors (Frankel and Froot 1989) and statistical models to identify time-varying risk premia (Baillie and Bollerslev 1994). Some non-risk related explanations of the forward discount bias include irrationality (Froot and Thaler 1990), regime shifts driven by policy changes (Engel and Hamilton 1990), and learning (Roberts 1995).

This study is similar in spirit to recent research on the microstructure of the foreign exchange market and the literature on futures risk premia. Evans and Lyons (2001a) show that

4 The literature on exchange rate risk premia is vast, see Engel (1996) for a recent survey.
5 The term “peso problem” refers to the possibility that agents attach a small probability to some extreme event that has not yet been observed in the data. The term comes from the experience of the Mexican peso in the 1970s when agents appeared to expect a huge devaluation despite the fact such an event had never been observed.
signed order flow in the interdealer market possesses significant explanatory power for exchange rate returns, but their model is agnostic as to whether the results are driven by private information about future returns or risk sharing motives. By focusing on hedging demand, we are able to more clearly identify the link between currency returns, some macro fundamentals, and time varying risk premia. Research on futures risk premia are also closely related to this study. Bessembinder (1992) and de Roon, Nijman, and Veld (2000), testing a theory of futures pricing developed in Hirshleifer (1990), find that hedging pressure risk is priced in the futures market. We extend their results to show that the effects they observed appear to affect the broad market for foreign exchange.

This research has policy implications in the debate over the transactions taxes in the currency market, see Eichengreen, Tobin, and Wyplosz (1995). The case for transaction taxes rests on the assumption that irrational traders can destabilize currencies by engaging in positive feedback strategies or herding together to drive exchange rates away from their fundamental values. Our results indicate that, at least for the major currency markets, the imposition of a transaction tax could have significant welfare implications for firms trying to hedge their exposures to currency risk.

This paper is organized as follows. Section II develops the model relating hedging demand and risk premia. Section III describes the data used in this paper while Section IV outlines our estimation procedures and discusses the results. Section V concludes.

II. The Model

In this section, we develop a model that relates expected returns on foreign exchange to observable variables, namely interest rate differentials and hedging demand. Our model is unique in that it bridges the gap between traditional asset pricing and microstructure models by using trading variables as proxies for risk premia derived in a standard risk sharing environment. This feature is important in that previous work has interpreted the strong contemporaneous
correlation between order flow and currency returns as evidence of the existence of private information in the foreign exchange market. Our model shows that the observed correlations are consistent with risk sharing in a symmetric information environment. The model developed in Wang (1994) is similar in some respects to our model in that he also links the microstructure variables to expected returns by exploring the behavior of trading volume in dynamic rational expectations economies.

The theoretical setting we consider is a simple economy populated by two types of risk-averse agents with utility functions that exhibit constant absolute risk aversion (CARA), hedgers and speculators. Agents can either invest in domestic or foreign risk-free bonds that yield r^D_{t-1} and r^F_{t-1} from period $t-1$ to t, respectively. In order to purchase foreign bonds, agents must purchase foreign currency, P_t is the amount of domestic currency that can be exchanged for one unit of foreign currency. Hedgers are unique in that they also receive a non-tradable flow of stochastic income that yields r^N_t and is correlated with exchange rate returns. To close the model, we assume that all agents have symmetric information and that all assets are in zero net supply.\(^6\)

Let W^h_t be the wealth of the hedger at time t,

$$W^h_t = (1 + r^F_{t-1})(1 + r^p_t)\lambda^h_tW^h_{t-1} + (1 + r^D_{t-1})(1 - \lambda^h_t - \beta)W^h_{t-1} + (1 + r^N_t)\beta W^h_{t-1} \tag{1}$$

where λ^h_t is the hedger’s portfolio holding of foreign assets chosen at time $t-1$ and held through time t, β is the fixed proportion of wealth that the non-tradable income stream comprises, and r^p_t is the foreign currency return. In other words, if r^p_t is positive then the foreign currency has appreciated relative to the domestic currency. Note that the domestic return on

\(^6\)The assumption that all assets are in zero net supply is purely for mathematical convenience, all of the results are essentially unchanged if there is a positive net supply of foreign and domestic bonds.
foreign bonds, \((1 + r_{F_{t-1}})[(1 + r_{P_{t}})]\), is approximately equal to \(1 + r_{F_{t-1}} + r_{P_{t}}\). Using this approximation, we can write down the wealth of the hedger as,

\[
W^h_t = W^h_{t-1} + (r^h_{F_{t-1}} + r^h_{P_{t}})\lambda^h_{t}W^h_{t-1} + r^D_{t-1}(1 - \lambda^h_{t} - \beta)W^h_{t-1} + (r^N_{t})\beta W^h_{t-1}
\] (2)

Similarly, the wealth of the speculator at time \(t\) is \(W^s_t\) where,

\[
W^s_t = W^s_{t-1} + (r^s_{F_{t-1}} + r^s_{P_{t}})\lambda^s_{t}W^s_{t-1} + r^D_{t-1}(1 - \lambda^h_{t} - \beta)W^s_{t-1} + (r^N_{t})\beta W^s_{t-1}
\] (3)

There are only two sources of uncertainty in this economy, exchange rate risk and the stochastic non-tradable income. We assume that both random variables are conditionally Normally distributed,

\[
r^p_t = E_{t-1}[r^p_t] + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma^2_{\epsilon})
\]

\[
r^N_t = \theta + \eta_t, \quad \eta_t \sim N(0, \sigma^2_{\eta})
\]

\[
E_{t-1}[\epsilon_t \eta_t] = \sigma^2_{\epsilon \eta} \neq 0
\]

where \(\theta\) is a fixed scalar. For simplicity, we assume that both the hedger and speculator have CARA preferences and maximize utility over wealth next period. In this setting, agents effectively maximize the one-period return on wealth, \(r^W_{h_{t}}\) and \(r^W_{s_{t}}\), for the hedger and speculator, respectively. Their preferences imply that their choices will only depend on the mean and variance of return on wealth.

\[
E_{t-1}[r^W_{h_{t}}] = [\lambda^h_{t}(r^F_{t-1} + E_{t-1}[r^P_{t}])] + (1 - \lambda^h_{t})r^D_{t-1} + \theta \beta
\] (4)

\[
Var_{t-1}[r^W_{h_{t}}] = (\lambda^h_{t})^2 \sigma^2_{\epsilon} + \beta^2 \sigma^2_{\eta} + 2\lambda^h_{t}\beta \sigma^2_{\epsilon \eta}
\] (5)

\(7(1 + r^F_{t-1})(1 + r^P_{t}) = 1 + r^F_{t-1} + r^P_{t} + r^F_{t-1}r^P_{t} \approx 1 + r^F_{t-1} + r^P_{t}\). Note that at the monthly level bond and currency returns are likely to be less than 1% per month, implying that the term \(r^F_{t-1}r^P_{t}\) will generally be less than 0.01%.
The expressions for the mean and variance of the speculator are very similar and omitted for the sake of clarity. Thus, the hedger’s investment problem is equivalent to,

$$\max_{\lambda^h_t} E_{t-1}[r^Wh_t] - \frac{1}{2} \rho^h \text{Var}_{t-1}[r^Wh_t]$$

(6)

where ρ^h is the hedger’s coefficient of constant absolute risk aversion. Taking the first order conditions for (6) and solving for the hedging demand yields,

$$\lambda^h_t = \frac{(r^F_{t-1} - r^D_{t-1}) + E_{t-1}[r^p_t] - \rho^h \beta \sigma_{t-1}^\eta}{\rho^h \sigma^2_{\xi}}$$

(7)

Similarly, the speculative demand is,

$$\lambda^s_t = \frac{(r^F_{t-1} - r^D_{t-1}) + E_{t-1}[r^p_t]}{\rho^s \sigma^2_{\xi}}$$

(8)

Since the bonds are in zero net supply, combining (6) and (7) and imposing market clearing, i.e. $\lambda^h_t + \lambda^s_t = 0$, yields,

$$E_{t-1}[r^p_t] = (r^F_{t-1} - r^D_{t-1}) + \frac{\rho^h \rho^s}{\rho^h + \rho^s \beta} \sigma_{t-1}^\eta$$

(9)

Equation (9) shows that the foreign exchange risk premium is driven by the covariance of the non-tradable income shocks and exchange rate returns. Unfortunately, these income shocks are unobservable to the econometrician. To find an observable proxy for the risk premium, we can substitute (9) into (7) which yields,

$$\lambda^h_t = -\frac{\rho^h}{(\rho^h + \rho^s \beta) \sigma_{t-1}^\eta}$$

(10)

Rearranging (10) and substituting back into (9) yields,

$$E_{t-1}[r^p_t] = (r^F_{t-1} - r^D_{t-1}) - (\sigma^2_{\xi} \rho^s) \lambda^h_t$$

(11)
Equation (11) is now completely in terms of observables and can be estimated with the data.

The model developed above is very much in the spirit of the consumption-based CAPM developed by Rubinstein (1976) and Breeden (1979). Demand for foreign exchange is driven by the desire of hedgers to purchase assets that hedge their stochastic income stream, as their income becomes more correlated with currency returns they demand less. Though we have assumed a single source of income uncertainty, multiple sources of uncertainty would increase or decrease hedging demands depending on their covariances. The model is also related to Portfolio Balance models of exchange rate determination described in Branson and Henderson (1985). In that class of models, currency risk premia arise from the imperfect substitutability of foreign and domestic bonds. In our model, foreign and domestic bonds are not perfect substitutes because the non-tradable income stream received by hedgers is correlated with currency fluctuations, making foreign bonds effective hedging instruments.

Though we do not explicitly model the random income shock, one can think of it as a domestic firm’s income from a foreign subsidiary that repatriates profits quarterly or as receipts to a firm that exports goods overseas. Our non-marketable income stream is consistent with Obstfeld and Rogoff (2000) in that nominal price rigidities, pricing-to-market, and trading costs could induce non-tradable income shocks that cause firms to hedge in the futures market. From an asset pricing point of view, the non-marketableability of the uncertain income stream violates the necessary conditions for a representative agent representation for this economy and forces us to identify an observable proxy for the risk premium.

III. The Data

We use monthly observations on the aggregate positions of hedgers in the currency futures markets to construct our hedging demand proxy, these data are collected and distributed by the Commodity Futures Trading Commission (CFTC). Our data set includes five currency futures contracts, the Canadian Dollar (CAD), Swiss Franc (CHF), German Deutschemark
(DEM), British Pound (GBP), and Japanese Yen (JPY) over the period from January 1986 through December 2000.\(^8\)

In each market, the CFTC classifies large traders as either Commercial or Non-commercial, where a trader is typically classified as a Commercial trader if she is “engaged in business activities hedged by the use of the futures or option markets.”\(^9\) We follow Bessembinder (1992) and de Roon, Nijman, and Veld (2000) and treat Commercial traders as hedgers and Non-commercial traders as liquidity providers. These positions are reported to the public on a weekly basis in the Commitment of Traders Report, the reported positions typically account for 70 to 80 percent of the open interest in any given contract, summary statistics for each contract are reported in Table 1A, note these statistics are for the period January 2000 to December 2000.\(^10\)

<table>
<thead>
<tr>
<th></th>
<th>CAD</th>
<th>CHF</th>
<th>DEM</th>
<th>GBP</th>
<th>JPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract Size</td>
<td>CS$100,000</td>
<td>SFr125,000</td>
<td>DM125,000</td>
<td>£62,500</td>
<td>Y12.5 million</td>
</tr>
<tr>
<td>Delivery Months</td>
<td>3, 6, 9, 12</td>
</tr>
<tr>
<td>Average Daily Volume</td>
<td>9,672</td>
<td>12,862</td>
<td>649</td>
<td>8,054</td>
<td>15,736</td>
</tr>
<tr>
<td>Average Open Interest</td>
<td>55,147</td>
<td>43,549</td>
<td>3,485</td>
<td>19,146</td>
<td>72,033</td>
</tr>
<tr>
<td>Bank Participation</td>
<td>29.7%</td>
<td>40.4%</td>
<td>NR</td>
<td>16.0%</td>
<td>32.7%</td>
</tr>
</tbody>
</table>

We form our measure of hedging demand in each currency as,

\[
h_t = \frac{\text{number of long hedge contracts} - \text{number of short hedge contracts}}{\text{total number of hedge contracts}}
\]

(12)

This definition was used in de Roon, Nijman, and Veld (2000) and is simply the relative net position of hedgers in the market. This is a natural measure of hedging activity because it captures the net portfolio weight the average hedger has in each currency. Summary statistics on the statistical properties of \(h_t\) are reported for each currency in Table 1B.

\(^8\)We only study the Deutschemark up to the introduction of the Euro in January 1999.

\(^10\)The percentages reported for Bank Participation are for December 2000 only, but are fairly representative of average participation
Table 1B: Summary Statistics for h_t By Currency

<table>
<thead>
<tr>
<th></th>
<th>CAD</th>
<th>CHF</th>
<th>DEM</th>
<th>GBP</th>
<th>JPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.14</td>
<td>0.06</td>
<td>0.01</td>
<td>-0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>0.41</td>
<td>0.45</td>
<td>0.31</td>
<td>0.43</td>
<td>0.39</td>
</tr>
<tr>
<td>Median</td>
<td>-0.15</td>
<td>0.10</td>
<td>0.02</td>
<td>0.02</td>
<td>0.12</td>
</tr>
<tr>
<td>Minimum</td>
<td>-1.00</td>
<td>-0.84</td>
<td>-0.65</td>
<td>-0.89</td>
<td>-0.92</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.73</td>
<td>0.88</td>
<td>0.82</td>
<td>0.90</td>
<td>0.72</td>
</tr>
<tr>
<td>ACF(1)</td>
<td>0.56</td>
<td>0.44</td>
<td>0.45</td>
<td>0.34</td>
<td>0.56</td>
</tr>
<tr>
<td>ACF(2)</td>
<td>0.33</td>
<td>0.16</td>
<td>0.25</td>
<td>0.10</td>
<td>0.33</td>
</tr>
<tr>
<td>PACF(2)</td>
<td>0.02</td>
<td>-0.04</td>
<td>0.07</td>
<td>-0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Figure 1a and 1b plot the historical path of the spot Japanese Yen exchange rate and the hedging demand, h_t, for the Yen, respectively. An alternative measure of hedging demand used in Bessembinder (1992) is the *absolute* net position of hedgers, or $a_t = \text{number of long hedge contracts} - \text{number of short hedge contracts}$. We use this measure in Section IV.C when we examine the causal relationship between hedging and speculative activity.
Identifying the major players in the currency futures markets is quite difficult. Using a similar dataset, Kodres and Pritsker (1997) find that commercial banks, broker-dealers, and hedge funds typically account for approximately 35% of the open interest in currency futures markets. Their study, however, did not include non-financial corporations. Anecdotal evidence suggests that the currency futures markets likely mirrors activity in the interbank market. Major corporations typically do not transact in the futures market because they face very low transaction costs in spot and forward markets. Major currency dealers occasionally use futures markets to lay off inventory risk with hedge funds, commodity trading advisors (CTAs), or other “local” traders. Since commercial banks are classified as commercial traders by CFTC guidelines, it is likely that the dynamics in hedging activity are driven by changes in positioning by interbank dealers.

To compare the behavior of trading currency futures to the spot market in foreign exchange, we also utilize a database of customer-dealer trades done with Deutsche Bank, a ma-
This database contains over 800,000 transactions in all spot currency markets over the period from January 1998 to March 2000. While we have some data at the transaction level (i.e. customer locale, transaction size and rate), transactions are not time-stamped. We aggregate these trades to make them comparable to our futures data set. Anecdotal evidence suggests that the Deutsche Bank customer base was fairly diverse and included a significant proportion of hedge fund clients along with more traditional corporate customers.

We use spot exchange rate data released by the Federal Reserve Bank of New York. These rates are collected daily at 12:00 pm Eastern Standard Time. Our forward rate data consists of 30-day forward rates obtained from Datastream. In calculating our currency returns and expected depreciation, we restate all spot and forward exchange rates in terms of U.S. dollars per unit of foreign currency to remain consistent with our modeling framework. Our data on bilateral trade flows come from the US Census Bureau.

IV. Estimation and Empirical Results

In this section, we test the model developed in Section II and perform some robustness checks against plausible alternative explanations for the results. The first set of results directly test (11) in Section 2. The next subsection explores the relation between hedging demand and future goods trade and portfolio flows. The following subsections test the robustness of the results to two plausible alternatives, the private information hypothesis and the positive feedback trading hypothesis. This section concludes by comparing hedging demand and customer order flow to see if our results are generic to any type of order flow.

\footnote{Estimates of Deutsche Bank’s market share in the spot foreign exchange market range around 10\%.}

\footnote{Data on bilateral trade flows is available from the Census Bureau’s web site at http://www.census.gov/foreign-trade/www/.}
A. Hedging Demand and Exchange Rate Dynamics

The Table 2 below documents the results of standard uncovered interest parity (UIP) regressions on the five currencies we study,

Table 2: Uncovered Interest Parity Without Hedging Demand

\[p_t - p_{t-1} = \alpha + \beta (f_{t-1} - p_{t-1}) + \epsilon_t \]

(Standard errors reported in parenthesis)

<table>
<thead>
<tr>
<th>Currency</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>Adj. (R^2)</th>
<th>D-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>-0.0003</td>
<td>0.1167</td>
<td>0.00</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>(0.0010)</td>
<td>(0.4274)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHF</td>
<td>0.0003</td>
<td>-0.5746</td>
<td>0.01</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>(0.0025)</td>
<td>(0.4482)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEM</td>
<td>-0.0004</td>
<td>-0.0020</td>
<td>0.01</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>(0.0024)</td>
<td>(0.3646)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBP</td>
<td>-0.0002</td>
<td>0.5602</td>
<td>0.00</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>(0.0023)</td>
<td>(0.5287)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPY</td>
<td>0.0031</td>
<td>-0.5013</td>
<td>0.00</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>(0.0032)</td>
<td>(0.6577)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where \(p_t \) is the natural logarithm of the spot exchange rate quoted in terms of U.S. dollars per unit of foreign currency at time \(t \) and \(f_t \) is the 30-day forward rate as of time \(t \). The estimates in Tables 2 and 3 were calculated taking all five currencies as a system of equations using a Seemingly Unrelated Regressions (SUR) framework. SUR provides uniformly better estimates than OLS equation by equation in cases where the residuals are correlated across equations, as is likely to be the case here because all of the exchange rates we study are US dollar based. The results mirror the findings of previous studies. The forward discount has extremely poor explanatory power over future changes in spot rates. The well-documented forward discount bias is evident in the coefficients for the Swiss Franc and the Japanese Yen, i.e. that the \(\beta \) for these currencies is negative. These results are troubling because all but one of the coefficients are significantly less than one.
Table 3 reports the results of the regression which implements (11). First, note how the coefficients on the forward discount term for the Yen and Franc have become more positive while the coefficient in the Pound equation has basically remained unchanged. The beta coefficients for the Canadian Dollar and Deutschemark have both become more negative, but these results may be confounded by current account flows in the case of the Canadian Dollar and Euro convergence trading for the Deutschemark. Second, the coefficients on the hedging demand term are negative and significantly different from zero for all currencies, the sign of the coefficients is consistent with the theory. The sign of the coefficient indicates that when hedgers buy Yen forward, for instance, the Yen tends to depreciates, i.e. hedgers tend to lose money. Third, Table 3 also reports the implied price impact of trading 10,000 contracts for each market. Interestingly, the price impact of 10,000 contracts (roughly US$1 billion for all contracts) is similar in magnitude to the price impact estimated in Evans and Lyons (2001b) Finally, the adjusted R^2 for all of the equations has increased dramatically.

Table 3: Uncovered Interest Parity With Hedging Demand

\[
p_t - p_{t-1} = \alpha + \beta(f_{t-1} - p_{t-1}) + \gamma h_t + \epsilon_t
\]

(Standard errors reported in parenthesis)

<table>
<thead>
<tr>
<th>Currency</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>Implied Price Impact for 10,000 Contracts</th>
<th>Adj. R^2</th>
<th>D-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>-0.0032</td>
<td>0.0482</td>
<td>-0.0208</td>
<td>-34 bps</td>
<td>0.39</td>
<td>2.33</td>
</tr>
<tr>
<td></td>
<td>(0.0009)</td>
<td>(0.3328)</td>
<td>(0.0019)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHF</td>
<td>0.0045</td>
<td>-0.1414</td>
<td>-0.0406</td>
<td>-54 bps</td>
<td>0.47</td>
<td>2.02</td>
</tr>
<tr>
<td></td>
<td>(0.0019)</td>
<td>(0.3583)</td>
<td>(0.0028)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEM</td>
<td>0.0035</td>
<td>-0.2215</td>
<td>-0.0537</td>
<td>-32 bps</td>
<td>0.47</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>(0.0018)</td>
<td>(0.2934)</td>
<td>(0.0046)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBP</td>
<td>0.0008</td>
<td>0.5718</td>
<td>-0.0389</td>
<td>-44 bps</td>
<td>0.48</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>(0.5718)</td>
<td>(0.4085)</td>
<td>(0.0029)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPY</td>
<td>0.0070</td>
<td>0.3273</td>
<td>-0.0533</td>
<td>-34 bps</td>
<td>0.38</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>(0.0025)</td>
<td>(0.5356)</td>
<td>(0.0045)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13 Though (11) relates currency returns to interest rate differentials and risk premia, the regression equation estimated is still equivalent to (11) by the covered interest parity condition, \(f_t - p_{t-1} = r^F_t - r^D_t\).
The impact of adding a hedging demand variable to the UIP regression is very similar to the effect observed in Evans and Lyons (2001a), where they use signed interdealer order flow instead of hedging demand. One of the key differences between their work and this research is that we explicitly attribute the relationship between order flow and returns to a hedging motive. In the Portfolio Shifts model developed by Evans and Lyons (2001a), the initial customer order flow which drives trading for the rest of the day is exogenous, it can either be driven by private information or hedging. Thus, their model cannot distinguish between informed speculation and risk sharing as the driver of the relationship between order flow and exchange rate dynamics.

B. Hedging Demand and the Balance of Payments

Table 3 documents the strong contemporaneous correlation between hedging demand and currency returns. These results beg the question, “What are these traders hedging?” In this section, we study goods trade as a possible motivation for hedging activity. More specifically, we examine the forecasting power of hedging demand in the currency futures market over future realizations of bilateral trade balances and portfolio flows into U.S. securities.

Trade in goods and services is an intuitive place to begin the search for the non-tradable income streams discussed in Section II. International trade induces currency exposures for firms because of the long lags between the time when a transaction is completed and the time when payment is physically made\(^\text{14}\). Firms uncomfortable with the uncertainty involved in receiving a fixed payment in foreign currency can easily hedge the transaction using either futures or forward contracts.

If firms actively use currency futures to hedge international transactions in goods and services, then one would expect currency hedging demand to have forecasting power over bilateral trade balances. The intuition here is that once a transaction is initiated, firms extending

\(^{14}\text{Currency exposures induced by trade are generally referred to as transaction exposures in the international corporate finance literature}\)
standard accounts receivable terms can expect payment within one to three months. If firms begin to hedge once they become aware of the currency exposure, then hedging demands should lead actual trade balance flows by one to three months. To explore this hypothesis, we test the in sample forecasting power of currency hedging demand on bilateral trade balances. We do this by estimating autoregressive moving average with exogenous regressor (ARMAX) models for each currency pair in our study. Using the Box-Jenkins methodology, we estimate ARMAX(1,1,1) models of the form,

\[tb_t = \alpha + \rho tb_{t-1} + \beta h_{t-1} + \epsilon_t + \theta \epsilon_{t-1} \] \hspace{1cm} (13)

where \(\epsilon_t \) is a white noise process and \(tb_t \) is the bilateral trade balance at time \(t \) with the United States taken as the home country. We report the results in Table 4 below.

<table>
<thead>
<tr>
<th>Currency</th>
<th>(\alpha)</th>
<th>(\rho)</th>
<th>(\beta)</th>
<th>(\theta)</th>
<th>Adj. (R^2)</th>
<th>D-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>-483.0890</td>
<td>1.0318</td>
<td>-55.1508</td>
<td>-0.4699</td>
<td>0.90</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>(621.7300)</td>
<td>(0.0152)</td>
<td>(75.0778)</td>
<td>(0.0740)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHF</td>
<td>-31.7730</td>
<td>0.3375</td>
<td>-25.7875</td>
<td>0.1403</td>
<td>0.15</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>(22.7708)</td>
<td>(0.0800)</td>
<td>(31.4724)</td>
<td>(0.0841)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBP</td>
<td>183.6510</td>
<td>0.7137</td>
<td>158.7435</td>
<td>-0.3679</td>
<td>0.19</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td>(54.7747)</td>
<td>(0.1255)</td>
<td>(59.1050)</td>
<td>(0.1675)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPY</td>
<td>-7464.4000</td>
<td>0.9932</td>
<td>189.9433</td>
<td>-0.6815</td>
<td>0.69</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td>(8047.4290)</td>
<td>(0.0193)</td>
<td>(168.1731)</td>
<td>(0.0776)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results are mixed with the only significant results coming from the trade balance with the UK, the United States’ fifth largest trading partner. The coefficient on the hedging demand term is of the correct sign in that purchases of British pounds forward tend to lead relative increases in exports. The lack of significance in the Swiss regression is not too surprising
because of the relatively small bilateral trade between Switzerland and the United States15. The results for the Canadian and Japanese trade flows are likely confounded by the presence of a unit root in the level of monthly trade flows. We estimated the same model using differenced trade balances for these two countries and still found no significant relation between hedging demand in the futures market and trade flows. The insignificant results for both the Canadian and Japanese trading balances could be due to the use of natural or economic hedges by firms. Given the large volumes of trade between the U.S. and Canada and Japan, many firms may choose to locate their operations in foreign countries16 to denominate their cost and revenue streams in a common currency to reduce their net exposure to currency fluctuations.

The weak relationship between hedging demand and trade flows is consistent with the types of agents that typically trade in currency futures. As described in Section II, hedgers in the currency futures markets are comprised of large commercial banks and medium-sized corporates. Trading activity from banks will likely reflect conditions in the interbank market while the corporate players in the futures markets probably comprise a small portion of the total volume of bilateral goods trade.

C. Speculators: Informed “Insiders” or Insurance Providers

The previous section showed that hedging demand in currency futures markets does not appear to be driven by income shocks related to goods trade. While this result is not totally surprising given the relative magnitudes of trading volume in currencies versus the amount of bilateral trade between countries, it may imply that motives other than risk sharing may be driving the results in Table 3.

15In 2000, the volume of trade between the U.S. and Switzerland was roughly $20 billion as compared to $80 billion traded between the U.K. and the U.S. or the $400 billion of trade between Canada and the U.S.

16Examples of these natural hedges include the construction of semiconductor fabrication plants in Ireland and Germany by Intel and AMD, both American firms and the large manufacturing capacity that Japanese auto maker Toyota Motor Corporation has developed in North America, producing almost 20\% of its output there.
An alternative hypothesis that is consistent with the results in Tables 3 and 4 is that hedgers are in fact noise traders who trade against much better informed speculators. Under this hypothesis, hedging demand should not be related to trade flows since hedgers trade in a random fashion and hedgers should, on average, lose money to informed speculators, leading to the negative coefficients on γ in Table 3. To explore the validity of this hypothesis, we regress exchange rate returns on speculative and hedging demands to check that speculative demand is positively related to currency returns.

Table 5: The Profitability of Hedgers Versus Speculators

$$p_t - p_{t-1} = \alpha_h + \gamma_h h_t + \epsilon_t$$
$$p_t - p_{t-1} = \alpha_s + \gamma_s x_t + \epsilon_t$$

(Standard errors reported in parenthesis)

<table>
<thead>
<tr>
<th>Currency</th>
<th>α_h</th>
<th>α_s</th>
<th>γ_h</th>
<th>γ_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>-0.0033</td>
<td>-0.0020</td>
<td>-0.0210</td>
<td>0.0134</td>
</tr>
<tr>
<td></td>
<td>(0.0008)</td>
<td>(0.0008)</td>
<td>(0.0019)</td>
<td>(0.0014)</td>
</tr>
<tr>
<td>CHF</td>
<td>0.0052</td>
<td>0.0061</td>
<td>-0.0578</td>
<td>0.0371</td>
</tr>
<tr>
<td></td>
<td>(0.0019)</td>
<td>(0.0021)</td>
<td>(0.0042)</td>
<td>(0.0034)</td>
</tr>
<tr>
<td>DEM</td>
<td>0.0035</td>
<td>0.0047</td>
<td>-0.0872</td>
<td>0.0500</td>
</tr>
<tr>
<td></td>
<td>(0.0018)</td>
<td>(0.0020)</td>
<td>(0.0062)</td>
<td>(0.0043)</td>
</tr>
<tr>
<td>GBP</td>
<td>0.0005</td>
<td>0.0001</td>
<td>-0.0503</td>
<td>0.0286</td>
</tr>
<tr>
<td></td>
<td>(0.0017)</td>
<td>(0.0018)</td>
<td>(0.0034)</td>
<td>(0.0026)</td>
</tr>
<tr>
<td>JPY</td>
<td>0.0082</td>
<td>0.0100</td>
<td>-0.0575</td>
<td>0.0372</td>
</tr>
<tr>
<td></td>
<td>(0.0021)</td>
<td>(0.0023)</td>
<td>(0.0055)</td>
<td>(0.0039)</td>
</tr>
</tbody>
</table>

These results indicate that when speculators buy a given currency, that currency appears to appreciate. This behavior would be consistent with a Kyle (1985) setting where speculators have private information about future returns. The nature of trading in the futures pits implies that the speculators gains come at the expense of the hedgers. The hypothesis that these results are due to an informational advantage held by speculators is somewhat suspect. First, the magnitude and stability of these returns imply that speculators have extremely good information.
about future returns. Second, the sustained losses by hedgers over the sample period seem too
great to justify their continued existence.

The risk sharing environment developed in Section II, however, also predicts the observed
relationship between speculators and hedgers. The intuition here is that hedgers “pay” specu-
lators a premium for bearing risks that they do not wish to hold. Thus, under this interpretation
one can view the losses of the hedgers as an insurance premium. The key difference between
the information and risk sharing scenarios is the causality between hedging and speculative
demands. In the Kyle setting, speculators enter the market and induce hedgers to take the other
side their trades, while in the risk sharing model, hedgers are the initiators of trade.

To differentiate between these competing models, we run Granger causality tests to iden-
tify the causal relationship between innovations in hedging and speculative flows at the weekly
level, the results are reported in Table 6.17 The results are quite striking, in all currencies ex-
cept for the Canadian Dollar, innovations in hedging demand Granger cause changes in specu-
lative demand, even for the Canadian Dollar the results point toward hedging demand Granger
causing speculative demand, but the results are not significant. Though Granger causality is at
best a rough measure of causality, the results are fairly clear in that none of the tests indicate
reverse causality. These results lend support to the risk sharing interpretation of the results.
The findings make intuitive sense in that it is hard to believe that speculators could sustain an
informational advantage over such a long period \textit{while at the same time} hedgers continued to
accumulate losses.

17The results presented use two weekly lags, to measure changes in demand we simply use the absolute net
change in position for each class of trader. The results are essentially unchanged when one includes lags from 1
to 4 weeks.
Table 6: Granger Causality Test of Weekly Hedging Versus Speculative Flows

<table>
<thead>
<tr>
<th>Currency</th>
<th>Hypothesis</th>
<th>F-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>Δh_t does not Granger cause Δx_t</td>
<td>1.879</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>Δx_t does not Granger cause Δh_t</td>
<td>0.641</td>
<td>0.527</td>
</tr>
<tr>
<td>CHF</td>
<td>Δh_t does not Granger cause Δx_t</td>
<td>8.070</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Δx_t does not Granger cause Δh_t</td>
<td>2.526</td>
<td>0.081</td>
</tr>
<tr>
<td>DEM</td>
<td>Δh_t does not Granger cause Δx_t</td>
<td>4.480</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>Δx_t does not Granger cause Δh_t</td>
<td>1.954</td>
<td>0.144</td>
</tr>
<tr>
<td>GBP</td>
<td>Δh_t does not Granger cause Δx_t</td>
<td>3.088</td>
<td>0.047</td>
</tr>
<tr>
<td></td>
<td>Δx_t does not Granger cause Δh_t</td>
<td>2.028</td>
<td>0.133</td>
</tr>
<tr>
<td>JPY</td>
<td>Δh_t does not Granger cause Δx_t</td>
<td>5.927</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Δx_t does not Granger cause Δh_t</td>
<td>0.676</td>
<td>0.509</td>
</tr>
</tbody>
</table>

D. Hedging and Feedback Trading

The previous section showed that hedgers appear to be driving the trading dynamics in the futures market, lending support to the theory developed in Section II. Another alternative model that could be driving the results is that hedgers are simply irrational feedback traders. The literature has typically focused on positive feedback, or momentum, trading as an irrational trading strategy. Many authors have shown the fragility of financial markets when positive feedback traders are present. Here, we study the nature of trading by hedgers following some type of positive feedback strategy.

Table 7 below documents the relationship between hedging demand and lagged currency returns. These results suggest that hedgers tend to act as negative feedback traders, i.e. hedgers tend to purchase a currency after it has depreciated. Negative feedback trading is much more difficult to justify using behavioral arguments, as it requires traders to buy after prices go down. This finding, coupled with the results from Table VIII, shed an interesting new light on previous studies that documented positive feedback trading in futures markets, see Kodres (1994).
Our results suggest that destabilizing speculation of the sort described in de Long, Shleifer, Summers, and Waldmann (1990) is unlikely. In their model, rational speculators may bid up the price of a security, inducing “noise traders” who use positive feedback strategies to enter the market, subsequently selling out at a higher price. While some subset of traders classified as speculators may indeed fit the description of a positive feedback noise trader, the presence of hedgers who are on average negative feedback traders should drastically reduce the net susceptibility of the market to rational destabilization.

E. Futures Hedging and Customer-Dealer Order Flow

Recent research in the microstructure of the foreign exchange market indicates that aggregate foreign exchange order flow is significantly related to currency returns, see Rime (2000). In this section, we test to see how futures hedging demands are related to a data set containing customer-dealer order flow.
Table 8 documents the relationship between customer order flow normalized by US$100 million, Δx_t^c, and currency returns at the weekly level. Note that we do not test the Deutschemark here because it effectively stopped trading half way through our sample.

<table>
<thead>
<tr>
<th>Currency</th>
<th>α</th>
<th>β</th>
<th>Adj. R^2</th>
<th>D-W</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>-0.0002</td>
<td>-0.0003</td>
<td>0.00</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td>(0.0008)</td>
<td>(0.0009)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHF</td>
<td>-0.0017</td>
<td>-0.0012</td>
<td>0.01</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td>(0.0014)</td>
<td>(0.0010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBP</td>
<td>0.0002</td>
<td>0.0004</td>
<td>0.01</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>(0.0009)</td>
<td>(0.0004)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPY</td>
<td>0.0011</td>
<td>0.0005</td>
<td>0.02</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>(0.0020)</td>
<td>(0.0004)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The almost complete lack of explanatory power is surprising given prior research that has generally associated order flow with returns quite strongly. Deutsche Bank’s large market share and diverse customer base go some way to explain these results. Given that foreign exchange dealers are extremely reluctant to hold positions overnight, net daily customer order flow in the aggregate should fluctuate randomly around zero.

This set of results indicates that the effects we observe in previous tables is not due to a generic order flow effect. These results also have important implications for future research. It appears that researchers would be well served to study specific components of customer order flow to identify structural relationships in the market. Intuitively, the potential for informational gains from disaggregating order flows is similar to the benefits from studying cointegrating relationships versus simply differencing a non-stationary time series.
V. Conclusion

This paper developed a model of risk premia in a stylized foreign exchange market based on the need of some agents to hedge non-marketable income flows. Using data on hedging demand in the currency futures market, we tested the implications of the model and found broad support for it. We tested our results against the specific alternative that the observed results were due to information-based trading rather than risk sharing. Consistent with our theory, we found that while hedgers tended to lose money at the expense of speculators and changes in hedging demands Granger cause changes in speculative demand. We also ruled out the possibility that the influence of hedgers is driven by some type of naive positive feedback strategies. Lastly, we compared the explanatory power of futures hedging demand over currency returns to that of Deutsche Bank customer order flow. We found that our customer order flow data had little or no explanatory power over exchange rate returns over weekly horizons.

The consistency of the empirical findings with our theoretical predictions suggests that risk premia are present and identifiable in foreign exchange. Equivalently, the results suggest that risk sharing can explain a significant proportion of the variation in exchange rates. Our findings intuitively show that the foreign exchange market is an efficient mechanism for allocating risk across the economy. The type of information which is privately held appears to be information related to risk premia and not future payoffs. This finding is consistent with previous evidence of asymmetric information in currency markets as well as the enormous depth and liquidity of the major currency markets. Traders are more willing to transact because they are less likely to be trading against someone with superior information.

While our model is very simple, the result that hedging demand is closely related to risk premia is quite general. Unfortunately, this generality precludes a straightforward explanation of what drives the risk premium, but provides a fruitful area for future research. The composition of the large players in the futures markets and the lack of a relationship between hedging demand and trade balances suggests that the effects we observe reflect conditions in
the interbank market. In future research, we plan to explore the process whereby risk sharing among dealers and other speculative traders can drive short-term currency dynamics while macroeconomic forces enforce long-term cycles in exchange rates.

Our results also have practical implications. First, the observation that futures hedging demand is priced in the aggregate foreign exchange market implies that currency trading provides risk reduction benefits to a non-trivial group of agents. This suggests that the imposition of transactions costs to reduce speculation, at least in developed markets, could have significant welfare costs. Second, lack of explanatory power of our aggregate customer order flow data set suggests that future research should focus on components of order flow which have a theoretical relation to variables of interest.

References

Kodres, Laura E., and Matthew Pritsker, 1997, Directionally similar position taking and herding by large futures market participants, Working paper.

